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INFINITE SYSTEMS OF HYPERBOLIC
FUNCTIONAL DIFFERENTIAL EQUATIONS

HECKIHYEHHI CHCTEMH I'ITEPEOJITIHIX
OYHKITTOHAJTbHUX THOEPEHIIIA THHIX PIBHSIHD

We consider initial problems for infinite systems of first order partial functional differential equations.
The unknown function is the functional argument in equations and the partial derivations appear in a
classical sense. A theorem on the existence of 2 solution and continuous dependence upon initial dato is
proved. The Cauchy problem is transformed into a system of functlonal integral equations. The
existence of a solution of this system Iz proved by using integral inequalities and the iterative method.
Infinite differential systerns with deviated argument and differential integral systems can be derived from
a general model by specializing given operators.

Poarnispaioiies novaTEonl sajasl fiif iieckinvennng chcres dhyikiiomaibingg fudbepeliiliaibiIHg
PIBILAIS MEpUIOTD NOPANKY 3 YACTHINHME moxiname, Joneneno Teopemdy Npo icnyBamis posn’ a3xy
Ta NeMepepRlly neXuicTs Bl novaTKonux manwx. 3afavy Kowi TpanucdropMonaHo ¥ CHoTeMy
oy ONAN L HX e pannimX pipnans. (oo posn” sy 1iel CHETEMH JOBE/IEI0 X JOTOMOrald
ilfrerpajiniiux nepinitocTefl Ta iTepanifinoi'o setony. Heexitwenni pudeepenmiansil cHCTeMH 3
APryMenToM, Wo BiHAgeThen, Ta audrepemiannal nTerpansii cHCTEMH MOMIIE OTPHMATH i3
SACANLICT MOfel WIRKXoM crelianizarl 3a/[aHx cnepaTopin.

1. Introduction. For any metric spaces U and V we denote by C(U, V) the class of
all continuous functions from U to V. We will use vectorial inequalities with the
understanding that the same inequalities hold between their corresponding components.

Let Eg= [, 0]X R", E=[0,a)x R" and B= [y, 0] % [-r,7] € R'™ where nye
€R,, R,=[0,+=), a>0andr=(r,..., r,) € R}. Givena function v: EEUE —
— R and apeint (t,x)e E. Wedefineafunction vy, : B—=R by vy ulny)=
=v(t+1, x+y), (t,y)e B. The function v ., is the restriction of v to the set
[f=rgt]1% [x=r,x +r] and this resiriction is shifted to the set B, Let £ be an
arbitrary set of indices and

X = {p=1{Plreg: Pe <R for keQ and |p| = sup{|p;|: ke Q} < +=}.
We use the same symbol |-| to denote the absolute value of a real number and the
norm in the Banach space X. For x=(x|,...,x,) € R" we put [|x]| = | x| +... +|x, ]
Let = {{p)rep where L= yp--nlni) € R" for k e Q. For simplicity of no-
tation we write

Iel = sup{[guml: % 0}

For a function z= {z;}4cg, 2%: EoUE = R, and for a point (7, x) € E we denote
2gn = {@po been-

We will use the symbol |-|, to denote the supremum norm in the space C(B, R).

Let CY(B,X) be the space of continuous functions w: B— X, w = {wi beeg. with
the finite supremum norm

Iwly = sup{|wely : k < @}.
Let w= (yg¥") = (¥, ¥,,-.., ¥,) beagiven function where w,: [0,a]= [0, a],

y': E— R". Write y(t,x)=(yo(r}, y'(z,x)). Set Q=Ex C’”{B,Xj x R" and
suppose that the functions
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INFINITE SYSTEMS OF HYPERBOLIC FUNCTIONAL ... 1679

f= fikeg: fi: @ >R, and @ = (Q4lreg, P%: Eg = R,
are given. We consider the system of functional differential equations

afz,l;l:::x} tac) fk{'rlx?ﬂf{;l;}: axzk{f- x}}. k € Qr {1]
where 9,2, = (9, 2, ....9,, 2 ), with the initial condition
z2(t,x) = o(t,x) for (t,x) e Eyp. (2)

Note that z;, = {(zk}"‘ ik }h o is the restriction of z to the set [t—wn, ] X [x—r,
x+r] and this restriction is shifted to the set B. Then
2yt = 1@ a0 G }*Eg

denotes the restriction of z to the set  [yq(t) = rg, wit)] = [ (e, x)=r, Wt x)+r]c

< R™" with a domain shifted to B.
Now we give examples of systems (1). Given the functions

F = (Rlteg. Fy: EXXxR"> R, ¢ = .{':F'J:}.l:eﬂl @ Ey > R, (3)
and
o = {O)reg. o [0,a]l = R,
B= Budrag: Bry=PBras--nBus): E— R
Suppose that yu(th =t for ¢ & [0, a], W(t,x})=x for (t,x)e E and
filt, xw, @) = F(t, x, wlo(t) —¢, By(r, )~ %), q) on Q )

where k& (. Then (1) is equivalent to the infinite system of differential equations
with a deviated argument

9,z (t, x) = Ft, x, 200, (0), Bry(r, 2)), A,z (8. X)), ke O (6)

Now we consider differential integral systems. Suppose that the function y=
= ['q_-‘,,:,, ') satisfies the conditions: Wy & C([0,al, R) and 0= wy(r) =t for t e [0,

a) and y'=(y,,..., ¥,) e C(E,R"). Write
D[t x] = {{1, e R Yot —mEsTsye(), vt x)-rsyswyis, x}l+r},
where (r,x)e E. Let' F and @ be given by (3) and

Jielt, x, w, q) = Fi[f, x, [wix, y)dudy, q]. ke (6)
B
where

[wez y)drdy = { | wm.ymdy}
i) & kad

It is easily seen that

fills, xazv['r,x‘,ll-q} = Fi.[l’,x, J.Z{Ts y)dudy, '?]l- ke g
Dir.x]

where
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1680 Z. KAMONT

J;{t.y}d’:dy ={ J ZgET,}'}d"ﬂd}’} .
Dit,x] D r.x] ke

Then (1) is equivalent to the infinite system of differential integral equations

d,z(t,x) = _Fj':[r,x. _[z{-:. yidrdy, 9,.z(1, x}], ke Q N
Dfr.x]

Existence results for systems (5) and (7) with initial condition (2) are given in Sec-
tion 6.
We will consider weak solutions of problem (1), (2). A function v= {v;}seq. V;:

[=bg, gl® R" = R, where 0<¢<a, isasolution of the above problem provides
) vyne C‘”{B,J{] for (t,x)e [0, c]lx BR" and the derivatives div=
= {0y }rep existon [0, c]xR";

(ii) foreach ke Q and x € R" the function w(-,x): [0,¢]— R is absolutely
continuous on [0, ¢]:

(iii) forevery ke Q and xe R" equation (1) is satisfied for almost all ¢ e [0, ¢]
and condition (2) holds,

In the paper we prove that under suitable assumptions on f, W and ¢ there exists
a weak solution of (1), (2) which is local with respect Lo ¢.

In this time numerous papers were published concerning various problems for first
order partial functional differential equations. The following questions were consider-
ed: functional differential inequalities generated by initial or mixed problems and their
applications, existence theory of classical or weak solutions of equations of finite sys-
tems with initial or initial boundary conditions, approximate solutions of functional
differential problems. Itis not our aim lo show a full review of papers concerning the
above problems. We consider the questions of the existence of solutions only.

Classical solutions of initial problems have been considered in [1 — 3). Existence
results presented in these papers are based on a method of successive approximations
which was introduced by T. Wazewski for systems without functional dependence [4].
Monlinear equations with first order partial derivatives have the following property:
any classieal solution exists locally with respect to t. This leads in & natural way to
weak or generalized solutions. Weak splutions of differential integral equations have
been studied in [5]. Existence results to quasilinear functional differential hyperbolic
systems in the second canonical form and for Carathéodory solulions can be found in
[6]. The method of bicharacteristics and functional integral inequalities are used.
Existence results given in [7] are also based on the theory of bicharacteristies. Soluti-
ons are local with respect to the first variable. Nonlinear equations with a functional
dependence and Carathéodory solutions of initial problems have been considered in [8,
9]. The case when the unknown function depends on two variables has been investiga-
ted. The solutions are global with respect to both variables. A difference method has
been used for obtaining the existence resulls. The general case is not solved.

Nonlinear equations and solutions in the Cinguini — Cibrario sense have been consi-
dered in [10, 11]. Existence results are based on a method of linearization which was
introduced and widely studied in nonfunctional setting by 8. Cinquini and M. Cibrario
[12, 13]). Existence results based on iterative methods for parabolic functional differen-
tial equations can be found in [14 — 16].

For further bibliography concerning existence results for functional differential
equations or finite systems see [11, 17].

Infinite systems of first order partial differential functional equations were first tra-
ted in [18, 19]. The paper [19] deals with an infinite system of weakly coupled differ-
ential equations. This means that every equation contains the vector of unknown func-
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tions and the derivatives of only one function. For initial problems the following ques-
tions have been discussed: error bound for approximate solutions, uniqueness of the
solutions and its continuous dependence on the right-hand sides of the system and on
the initial functions. The results are obtained under the assumptions that given
functions satisfy the Lipschitz condition in a suitable function space. The existence
result for the Cauchy problem related to an infinite system of first order functional
differential equations has been proved in [18]. The iterative method is used an classical
solutions have been considered. Cinquini — Cibrario solutions have been obtained in
[20] for a class of infinite systems of functional differential equations with initial
conditions. The method of bicharacleristics is used.

Existence results for infinite systems of parabolic functional differential equations
can be found in [21].

The aim of the paper is to prove a theorem on the local existence of the weak
solution and continuous dependence upon initial function for initial problem (1), (2).
We use the method of bicharacteristics. The Cauchy problem is transformed into an
infinite system of functional integral equations. 'We prove the existence of the solution
of this system by using the iterative method and simple results on integral inequalities.
As a consequence of the main theorem we obtain existence theorems for infinite
systems with a retarded argument and for differential integral systems.

The paper is a continuation of [1] and [10] and it gives a generalization of results of
papers [1, 3, 18, 20].

2. Function spaces. Let L([0, a], R,) be the class of all functions v: [0, a] =

— R, which are integrable on [0, a]. We will denote by c! (B,X) the set of all
functions w: B— X, w = {w,},ep, of the variables (t,y)=(1,¥;,...,¥,) such

that w e C“{E.XJ. the derivatives ;
w = (Ayweleegr Wk = @y Wi on 0y, Wi,
exist, dywp € C(B, R"™) for ke @ and '
[wll, = Iwly + sup{a, wi.»)|: ®y) € B} < +e=.
Let C'“L(B, X) be the class of all functions w & C'(B, X) such that

dy w(t,y)—dy wit, y) "
Iwl, = sup{u 2 [ry“f1| Y E: @yL(Ly) € B, y #:f} <+,

We define "“"HI,L = [|w] +HH,w||L where w e CE(B, X).

Given 5= (sp, 5, 52) € R2, we denote by CL[Eq, 5] the set of all functions ¢ e
€ E{Eﬂrx}: p= {‘Pk}kEﬂu such that
(i) the partial derivatives Ox@ (¢, x) = {0, Pp(t. X)) pep exist and dxgre C(E,,

R™ for ke O
(ii) for (r,x), (t,x) € E; we have

lo@t.x)] < 0. [[B.002)] < 51,

90t x) = a0 ) S saflx-%].
Let pe CVE[E,, 5] begivenandlet 0<c<a, d= (dg.dp,dy), A = (hg,Ay) where
d,zs, for i=0,1,2, and A; € L([0,a], R,) for i=0, 1. We denote by Cgtld, A
the set of all functions z: [~ )X R" = X, 2= (24 )geq, suchthat z(r,x)=g(t,x)
on E,, z€ C([-rp ¥ R",X) and
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1682 Z. KAMONT

(i) there exists drz(t,x)= (9,2;(t,%)}1ep on [0, c]x R™;

(ii) |z(¢t,x)| S dp and [|9,z(t.x)|<d; on [~rm,c)xR™;
(iii) for ¢, f€[0,c], x, x €R" wehave

|zt x) = 2(f, )| < .

j ?hn{'t}-tft

I
19,2¢6,%) = 3,2E D) < || M@ydr| + dy|x - Z]).
I

Let g e C"L[E,, 5] be givenandlet p = (py,p;) € R} and p e L([0, €], R,).
We denote by Canfp, 1] the class of all functions

u= {uyleegr ¥y = (pp-nting) : el x R — R,
such that g (t,x) = d,.9(r,x) on E; for ke Q and
@ Jutt.x)|<py on [0,e]xR™
(i) for (t,x), (£,.X) € [0,c]x R" we have

+ pyllx - x|

Jute.x) - w0 <

oL
[

Write E, = [—ruﬂlc]xR“ where 0<t<a. Forafunction ze C(E, X), z= {z3)peq.
we put

lzlly, = swp{lzwy)|: (ny) € E,}.
For a function u= {u)eg. Yp) € C(E, R"), and for 0<r<c weput

flell, = sup{utzy)]: (xy) € E}.
Suppose that z € C(E,, X) and the derivatives dxz = (9,2, )4ep existand drzie
e C(E, R"). Then we put

Hzlli.r = "zllu_r + |Ia:z":

where 0<t<a. For +=0 we will write [|z[|; instead of [z, ,-

We will prove that under suitable assumptions of f, v, and ¢ and for sufficiently
small ¢, 0 <c <a, there exists a solution Z of problem (1), (2) such that
feCpid,\] and 3,7 e Corilp, .

3. Bicharacteristics of nonlinear systems. Write £2;= £ x CI(B. X)xR" and
Q=Ex CI‘L{B.X}XR". Denote by Z the set of all functions o : [0, 2] X R, —
—+ Ry such that o(-, t) € L([0, a], R,) for t € R, and the function & (t, - ) € C(R,,
R,) is nondecreasing on R, for almost all re [0, a]. We will need the following
assumptions,

Assumpfion H[dzf]. Suppose that

1} the derivatives

9f = Bfilrag:  ofk = g fi-+9q,f1)s
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INFINITE SYSTEMS OF HYFERBOLIC FUNCTIONAL ... % 1683

existon Qg and 9,f.(-,x,w q) € L{[0, al,R™) for ke O, (x,w,q)e R"x C'(B,
X)xR"
2} there exist functions o, v< 2 such that
logrtxwma)] < aftlwl) on @
and

||ag-f'|:': E: wth, E} 50 agf{rr-x1 L g}” -4 T(‘rr "w"].L}["I -£H+Hh|[1 +!|Q‘ = E"}

where (t,x,w,q)e Q;;, ¥, 7 € R", and he C'(B,X).
Assumption H[y]. Suppose that the function W= (yg, ') satisfies the condi-
tions:
1) wye C([0,a],R) and 0= yo(r) =¢ for e [0,a] and y'e C(E,R™):;
2) the derivatives
art w' = [a.t:wf]‘

Jolaan

existon E;
3) there are ap, a; € R, and xe L{[0, 2], R,) such that

for t, ¢ e [0,a],

lwole) = wolf)| =

j K(t)dr

and

+a)|x =%

i
vl s @, 12, ¥Ex)-2,wED| < |[x@d
¢

on E.
Suppose that

p e Cl"'[E};.s]. ZE C,,'F;_Ig[d.?.j and u e ngécip, m, u= {t4. .l pliap
Let k € { be fixed and consider the Cauchy problem
N°(7) = = 0,F (% M), Zyeneey Yy(® M), M) = x, (8)

and denote by g,[z,upyy] (,1,x) its solution. The function gelz, ugy] is the k-th
bicharacteristic of system (1) corresponding to (z,u;). The set of all bicharacteris-

tics of (1) corresponding to (z, u) € C,:,i‘{d, Al C'g:"_lp,u] we denote by gz, u] =

= {g:[z, ”[&]]}kEQ'
Lemma 1. Suppose that Assumptions H[dgf] and H[y] are satisfied and let

9.7 € C*Eysl, ze CREM, 7 e Cgildd),

ue Cg';'t[p,u], u e Cg%:,[p,[l],

where 0 <c < a, be given. Then the solutions glz,ul (. t.x) and g[Z,u¥] (1,x)
existan [0, ¢], they are unique and we have the estimates

@)

[v&laha

i
lgtz, ul(x t.x) - gz, ) (n.2,2)| < ja(&.d}dt; + Ix—fﬂ] txp[d
I
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1684 Z. KAMONT
where |d|= dy+d|+dy, d =dy+d|, d =1+(d)+dy)ag+p and
|glz, ul(x, ¢, )= glz, B)(x, 1, x)] =

Y@ laD[le 2, +1u-Tl g wp[i f«:mdud’cﬂ (10)

=

where (1,8, %), (t.[.X) € [0,¢]1x[0, c]x R".
Progf. Our proof starts with the observation that

!|Z(t.r}'ztf.ﬂ“1 < (d +dfy =¥l (11)
[zenl, = 4. ”z{r.:-}HLL s |d|, (12)

and
lzen-2epl, < @ +dly =71+ lz-zl,. (13)
luttyy-a@nl < pilly -7 + lu-=l.. (14)

where (t,¥), (t,7) < [0,c]x R". The existence and uniqueness of the solution of
Cauchy problem (8) follows from classical theorems. On this purpose note that the
right-hand side od the differential system satisfies the Carathéodory assumptions and

the following Lipschitz condition holds on [0,¢]x R"™:

3476657, 2y ey 28 YD) = 3of it T2y u& | < dy(m|dDlly -7].
We conclude from Assumptions H [d¢f], H [y] and (8), (11) — (14) that the integral
inequality :

lglz. (st x) - glz. ul(w £, )] < +x=%| +

[ ate dydt

[

+d

lt ' —

[ Y@ ldDllglz. &, 6,x) - gz, u)&.F. D)t
is satisfied. By virtue of Gronwall inequality estimate (9) follows. According to
Assumptions H [dgf], H[w] and (8), (11) - (14), we have that

[ ¥@laD[lz=Zlyg +lu—l Jat
r

llgtz, u)tr, ¢, x) - gz, @5, £, x)| < N

+

d [ Y& |dDlglz ulE.t.x) - glz. @ E, nﬂﬂ“”é‘-

From Gronwall inequality we deduce (10) and Lemma 1 is proved.

4. Integral functional equations. We denote by CL(E, X) the set of all linear
and continuous functions defined on CDEB, X7 and taking values in X. We endow
CL(B,X) by the usual norm |-|,. We formulate further assumptions on f.

Assumption H[f,d.f.d,.f ] Suppose that

1) foreach ke Q and (x,w,g)e R"x CO{E, X)x R" the function f.(-.x.w,
g):[0,a]— R is measurable and there is ¥ & E such that [f(rx,wq)| <
< ¥(tlwly) on ©;
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2) there exist on £2; the partial derivatives
of = {9 }kEQl def = (ax:fh ey arﬂfk)s

and the Fréchet derivatives d,.f = {0,/ }ieg
3) for (t,x,w,g)e £; we have the estimates

3.5 exwal < afelwl). [BfExwal < el.]wl).

4) for (r,x,w,gq)e ;; andfor X, §€R", he Q; we have the estimates

1a.f & 5w+ b D -3 f tx.wal < v(elwl, )[lx -] +]al, +lq-7]]
and
"a“f{:‘.f, w+h,g)—a,flt, x-'“":‘i']lL s T{h"W"LL}[”x _-?""'Hh |I:| "'"gI —‘i'-jll

Remark 1. For simplicity of notations we have assumed the same estimation for
the derivatives d.f, d,,f, d,f. We have assumed also the Lipschitz condition for

these derivatives with the same coefficient.
Now we formulate an infinite system of integral functional equations wich are ge-

nerated by (1), (2). Given eC“ (Ey,s], z € Cytld,A), u e Coylp.n) where 0<
<g=aand u= {HL#,..., uﬂ.k}kﬂﬂ‘ Let 1 £i<n befixed Set uﬂﬂ = {u[lk}teﬂ.
For simplicity of notation we write also

'E'k{th r,.r] - {‘t.gk[z.:.n[k]]{".‘,r,xj]
and
Pyl t,x) = [53(‘12. 1,X), Zy(s, (x, L2} ug (Beln e, I}}]-
Letus denote by F and Gyy, 1=i<n, ke Q, the operators given by
Filz, u)(t,x) = 9,(8,(0,4,x)) +

f=1

i n
+ ] [f (P(r 6, 2)) = 23, Fi(Pelr t,x))u; 1 (8(5, 1, x)) ]d"«'.
a

and

Gialz, ul(t,x) = 9, 9 (8,00,1,x)) +

+ [{0 Fe(Pu@ ) + 3, f k(Pulr, t,x)) wy e [ul} v,
[i]

where
f
wiglu] = J‘Elaxﬂ"j{‘ﬁt{“‘: t, X)) (15,0 dyisy v, 0,20

and ke . Moreover we put
Gulz, wl(t,x) = (Giale, )6, %), Gple,W)(6,3)), & € O
and
Flz,u)(t,x) = {Flz,ul(t.x)}reg. Glzult.x) = {Gylz, ul(t,2) } kep-
We will consider the following system of integral functional equations
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1686 Z. KAMONT

z= Flz,u), u= Glz,u] (15)
with the initial conditions
z(t,x) = ¢(t,x) on Ep, u(tx)= 9.9(x) on Ej. (16)

Remark 2. Integral functional system (15) is obtained in the following way. We
introduce first an additional unknown function u = 3:z, u = {#y g ... ¥pi)reg IN
system (1). Then we consider the following linearization of a such obtained system
with respect to u:

diz(t, x) = fi(Up) + an.fk{uk][a:jzk{‘r x)=u (0], ke @ (A7
et

where Up= (1%, 2y s ) (6, ¥)). By virtue of (1) we get the differential system for
the unknown function u:

By (1, x) = O Fi(Uy) + 3, Fy(Up) X3, W (8, X))z +
J=l

+ 30, AUt ), i =1, ke Q (18)
J=l '
where
) = {Cr 2y},

Finally we put d,z=u in (18).

Note that the systems (17), (18) have the following property: the differential equa-
tions of bicharacteristics for (17) and (18) are the same and they have the form (8). If
we consider systems (17), (18) along the bicharacteristics gk[z, "[k]] (-, t,x) then we
abtain

izx(ﬁm ) = f(B(nt,2) = X3, fi(B(n 1)), Ge(r1,2), ke Q
f=l
and

i”f.k(akh- t,x) = 0y fil(R(% 1, ) + 9, filR(ss X)) w; g u,

i=1...n ke

By integrating the above relations on [0, ¢] with respect to T we get system (15).
The praof of the existence of the solution of problem (15), (16) is based on the

following method of successive approximations. Suppose that ¢ € CM(E,, 5] and
that Assumptions H([dgf), H[w], H[f,9,f.9,f] are satisfied. We define the
sequence

[0, glmy Gm) {z‘["‘}'}“g. Wm {“}.mi)'"m'}"“'ugi}}kﬁg'
in the following way. 'We put first
zm(r.x) = ¢(r,x) on Eg, z[':”(!,x}1= ©(0,x) on [0,e]xR", (19
W X = dxq(r,x) on Eg, u{m{r, x) = p(0,x) on [0,¢lxR". (20)
Then z@ecyiid A and «PeCyiip,p). I 2™ ecplldAl and ™ e
& Cg’;;[p, 1) are known functions then u™*" is the solution of the problem
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u= ™), u(tx)= dep(f,x) on Eg, (213
where
" = {6}, o0 G = (6. c%P),
G, x) = 3, 9(8 (0,1, x)) +
i .
+ [[B £e(BI 1, 0) + 3, K (P, 1, %)) (™) de (22)
o
and

Wf.k[u{m}] Zralr ."F.f (ak {1 £ I:l')( Q}w{.&f"}(-r.; x}j
55{"}(1 tx) = (5gxle"™, ugplin 1),
B™(r,t,x) = [3“"]{1.' X 2 gtgimn ey 1K }'[T'r"ﬂ)}

The function z™*" is defined by
"D, x) = ¢(t,x) on E,

" x) = PR™®Nx) ‘on (0,2)%R% (23)

We wish to emphasize that the main difficulty in carrying out of this construction is the
problem of the existence of the sequences {z"™} and {u™)},

Remark 3. Note that problem u = G[z™,u], u = 3,9 on Eg and (21) are not

identical. System (21) is obtained in the following way. Suppose that z™ e

e ck J:'[.:.l‘ ?L] and u¥ e C‘;;PILL.[F.LL] are known functions, we consider system (18)

with z'™ instead of z, i.e.

Qi (6 %) = By FR(UF™) + 3, F(UF™) X, 3, w; (6. x) W [2™] +
J=1

L]
+ Elaq,fkwf”’)% (%), i=1l...n keg,

where J[.l’{"“j (1, x zs:glxj, u[ﬂ[I,x]}, If we assume that Elxz':m]‘ = ub™ (see Lemma

2), then by integrating the above system along bicharacteristics g,z g 1, %)

we obtain (21).
5. Existence of solutions of initial problems. We first prove that the sequence

{z{’"} u™} exists and that 3,z (r,x) = u"(t,x) on [0, c)x R" provide ¢ € (0,
a] is sufficiently small.

Lemma 2. Suppose that ¢ € C“F[Ey, 5] and that As.mmprmm H[d4f1, Hly]
and H[f,0.f,0,F] are satisfied.

Then there are ¢ & (0,a] and dER_?_. P eR2 B, Ag, Ay e L([0, €], R,)
such that for any m 20 we have

(1) 2" and u'™ are defined on [, €]l % R" and ' e (_'."L[d Al, ™ e

& Cadp.1l;
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(1) 9.z2™t,x) = u™,x) on [0, c]x R
Proof. Let d=(dy, dy,d;)e R} and p=(pg,p;) e R} besuch that
dp>s5 for i=0,1,2, and py=4), p; =4d;. (24)

We define the functions T, T': [0, a] = R, by

(1) = cxp[gj"f{g,ldﬂdﬁ}{sz+E[1+aﬂpu}j"f(§.|d|}d§ +
[i] [i]
+ £ﬂna1+naol£ﬂfﬁ-5}d€}1

) = cxp[iivtt,ldnda}{sl +@ +maj;a@.é)dt+2pu { mdudr;},
and

¥ = yE|d) + «E.d), § = @) +1+ay + po.
Suppose that the constant ¢ & (0, ] is small enough to satisfy

agJaE d)dE < 1, T(e) S p,,
o

e =1 '
[Iwnjuc(&.dhdé] [s.+ja(€.43d§] < p, (25)
1 0
and
50+ [[7(E.do) + poa&. D) < d,. 26)
[
Write
M(1) = Ft.do) + poar(t.d) + T(9) a(r, d) @7
and ’
A(t) = p(e) = M0 +1 + aupg]cx(f,é}. (28)

We will prove (I,,) and (I,) by induction. It follows from (19), (20) that conditi-
ons (Iy) and (II,) are satisfied. Supposed now that conditions (f,,) and (II,)

hold for a given m =0 we will prove that there exists the solution 1™*! & (:;'l:c[p, K]

of (21) and that z™*" given by (21) is an element of the space Cgt(d, A].
We claim that

G™ : Coilp.u) = Chudp, k). (29)
Indeed, it follows that for u e Cg:'f[p.].ﬂ we have g

|6 ie.x)| < 5 +Q+agpo) (€, d)dE
[}
and
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i
|6t x) - G™WIED] < (M) +1+agpo) [ DdE| + T)]x - 7]
on [0, e]x R". The above inequalities and (25), (28) imply (29).

It follows that for u, & ec;’;,[p, K] we have

6" tu)-c"@|, < 7[F@lu-il ds, ¢ e [0,c). (30)
o
For u, i & Cg‘;',[p. W] we put

[[u—i]] = sup{ﬂu—ﬁ",:xp[—i.ff?{t}d{l: te [D.c]}.

It follows from (30) that

6" -c"@| < Fl(lu-al) [ exp [ZEIT@:!&]M <
0 0

)
< %Hu-ﬁl]exp[liﬁmdt]. t e [0,¢c),
0
and consequently
[|6™0 - 6™ a)|] < %[| =[]

Then the Banach fixed point theorem shows that there exists exactly one u!™* ¢
= Cf;f"[p, ] satisfying (21). Now we prove that the function z™*" given by (23)
satisfies ([1,,,,). For each ke Q consider the function

At x,3) = 20005 - 2™V x) - DM 0E -x). @D
J=l

where t e [0, ¢], x, ¥ € R". It follows from (21), (23) that
At x, %) = Fi[zfmjluimq-ljlmﬂ o

- Bz, a0, x) - ﬁ{f; —x; )G W e, x).
Jj=I

We conclude from Lemma 1 and (22), (23) that foreach ke Q there exists C, e
€ fiy such that

|agt,x, D) £ Cillx=%|* for r e [0,¢), x ¥ e R".
See [20] and [11) (Chapter 4) for more details concerning the method of the proof.

The above estimates and (31) imply (I}

Now we prove that z™*" eCplis,A). Of course z

[~ c)x R" and z®"*(t,x) = @(t, x) on E,. Moreover, it follows from (24), (25)
and (If,.,) that

m*1) s continuous on

2.2 x| < &
and
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+ dyf|x - %]

[r®)at

[P ex) - 3.2 ) <

on [0, ¢]x R". Our assumptions and (26), (27) imply also the following inequalities

I :'»u@d&\

ﬂz"”'*”{r,x}ﬂ < do, ]|z‘""‘"”{r,.r:|—z‘:"'"”(r_.x}l] <

on [0, ¢]x R". This completes the proof of Lemma 2.

Now we prove that the sequences {z™} and {«"} are convergent if the con-
stant ¢ € (0, a) is sufficiently small.

Lemma 3. Suppose that

1) pe C'L(Eq 5) and Assumptions H[3gf), HIw), H[f,d,f,d,f] are sa-
tisfied,

2) conditions (24)— (28) hold.

Then there is ¢ & (0, a] such that the sequences {z'™) and {u"™) are uni-

formly convergenton [0, c]x R".
Proof. Write ¢ = 1+agpgy + (<) and

G(t) = (1 +agpo + TN (|d) + ager(r,d).
From (21) we conclude that

Iu{m+]}_um‘.l |L < Ejy{g,ldl]"z{m'zm-]wh;dﬁ *
) 3

+ j;G(g}|[u‘"*+“-uf'"’||Ed§, t e [0,c),
and consequently
[ @] < Ecxp[jﬁ(t}dt]iﬂﬁ.ldbﬂz‘”"-z‘"‘“"’ljidt. )
where ¢t e [0, ], Let
&0 = up[c?iﬂa.ldndtﬂs. +Eﬂ+Pu}£T@=IdDd§+F|_ti;ﬂ(€+ﬁ:'d§}+l+Pn

and

C' = Gla) + Eupﬁﬂ{t}dt]z[é(a}"f[mdD+ﬂ(ﬁ-5]]d§-

[

¢ = 2max {C', £ exp [j G(ﬁ}dﬁ]}
0

An easy computation shows that

)
e+ =2%]y, s G@[v@laD[e -2, (ot +
[ .
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! - L
B J[G{aj'\f(&,[d[}+u(?';.d)]|fa'[’"“]—u':””uaa'@ <
0

< %J;T(&,]d[}[llz“"“—a"“"‘||m+[|u‘-'"”—uf“‘“]|§}d§, te [0c) (33)

Estimates (32) and (33) imply _
ey 4 o ] <

S Ei?(&-[di}[|[u‘mmu‘m"}i|ﬁ +]|z““’-af""'”[}olﬁ]d§. (34)

From Assumptions H[9gf] and H[f,d,f,d,.f] it follows that there is C e R,
such that

!
[4®=u®], + [0 -2@], s T+ [ [ do) + A+ po+ aop)a s D),
[i]

where t e [0, ¢]. Suppose that ¢ € (0, a] is such a small constant that

14
[y |dDdE = & < 1. (35)
1]
We conclude from (34) that

[ - 4 o> 2] < a[uu{ﬂf}_nfm"ljﬂr "’Ezm“zm'nﬂu,]

where e [0, c). This gives the uniform convergence of the sequences {z™} and

{«"} on [0, c]xR", which proves Lemma 3.
We are able now to state the main result on the existence of weak solutions.
Theorem 1. Suppose that

1) g C"E[E,, 5] and Assumptions H [3gf), H(w], HI[f,d,f.9,.f] are sa-
tisfied,

2) conditions (24) = (28) and (35) hold.

Then there exists a solution v = {Vi}reg, Vi:[me]XR" = R, of problem
(1), (2). Moreover veCylid,\] and d,ve Carrlp, ).

If §eC " (Eq,s) and 5eCyild,\] is a solution of system (1) with the initi-

al condition

z(t,x) = §(t,x) on Ep (36)
then there exists % e C([0, c], R,) such that
||1.r—ii|}{:u < ®{t ||:p—i|':|fllﬂ, ¢t e [0, ¢]. (37N

Proof. It follows from Lemma 3 that two functions uecéli'[d,l] and u e
€ Cg:c[p,p] exist such that [z':'“j} converges to v and [u':'“"]'} converges to u
uniformly on [0, ¢]x R" and drv =u. Write
Pe(T %) = (1,8, 3,0 )(x 1, x)),
Be(t 1 x) = (Pp(T 1, XD, Uyp, 0,20 OV (P (T, 1, X))).
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Thus we get that
2t x) = @(pe(0,1,x)) +
I " '
+ ,FI;fi (EE‘(TI L, x}) = 2 a‘lﬂ f& {ﬁ& (T'r [ 4 }}a-"i e {aj: ':tl I, -’;)} ]dt 1 {3 3}
[} i=]

where (¢, x) € [0,e]xR", ke @ and g dw](.tx) = {g:30]0.1.x)}1ep
satisfies the integral system

e 3] 6x) = x + [ f, (0t x))dt, ke Q. (39)

Now we prove that v is a weak solutions of (1), (2). Let k € @ be fixed. For a given
xe R" letus put y = g v, d.]00,¢,x). It follows from Lemma 1 that

Et{U,axUt][‘t' t,x] = Ek[ura;”[]“aﬂr}"} fﬂr 1: : E [u!c]‘
Write
Pelt.y) = (b gelv, 9,0 ](x, 0, ))
and
B(r,y) = (Brlt,y), Vi, (ry))e NG (SD)E
Then relations (38) are equivalent to

] I i
be@et.y) = 9(0,y) + j[n(ém-})—}:awn{e(ﬂc.y}}aq Ek@k(f-.}']}]ﬂs (40)
i} fe=1
where (t,y) € [0,c]1x R", ke Q. Therelations
y = gilv,90,]0.6,x) and x = g,[uom](0y)

are equivalent for x, y € R". By differentiating (40) with respect to ¢ and by putting
again x= g;[u,d,1,.](t,0,¥) we obtain that v, satisfies equation in (1) for almost all
te [0, ¢] with fixed x € R". Since v satisfies (16) then initial condition (2) is

satisfied.
MNow we prove (37). An easy computation shows that

l3:0-03.3], < [[6®+&v(E.|aDId,v-2,5ld& +
[

I
* E,FT('E-IdﬁH”_ﬁ”uigﬂﬁ i I|5‘J¢—5‘ﬁ'ﬁ|lu (41)
0
and
t
lo=3lly, < lo-3ll, + {a:ﬁ:zﬁ[||..u—a||LE +la,0- 2,5l Jat +
+ [ d)lap- 3,5, (42)
[
where

G = (F(©+po) 7(t.ld] + a(t,d).
According to (41) and Gronwall inequality we have
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f r L
|Ia.'f1':I i 'a.r“]l; s “‘jT[‘Eﬂ |d D"U = ﬁllaq -R'E‘. ek "axq:' = a.r&' "u] +
o .

+ axp[_u[{ﬂr'@ +,E~r(§.|du}d&]- (43)

Write
b = j{zo'@w(a,Ej}aﬁcxp[ﬂc@:we-r(a.|dmdt]
0 : 0
and A = max (1, 5}. It follows from (42) and (43) that the integral inequality .

lo=5lly, < Alo-5l,, + _L [6"® +bev (G, |aD]lv—5llg e d&

is satisfied for ¢ € [0, ¢]. Then we get (37) with

k() = Aexpf[G"(ﬁ)+5ET{§,[d[}]d§, t e [0,e)]
0

This completes the proof of Theorem 1.

Remark 4. Suppose that all the assumptions of Theorem 1 are satisfied. If v»
and U are the solutons of (1), (2) and (1), (36) respectively then we can estimate the
norm JJu- 1':””, 0<t=¢, in the following way: thereis & e C([0, ¢], R,) such that

flo-3l,, £ ®Olo—-&lo ¢ < [0.¢). (44)
Indeed, it follows from (41), (42) that there is | = L([0, ¢], R,) such that '

lo-3l,, < lo-&l,0 + j;E{E:}H“" Bl ¢ 45.

where t e [0, ¢]. Then we get (44) for

k(@) = r-xp[_[ ﬁ(ﬁ}dﬁ.}
3"

Remark 5. If we assume in Theorem 1: that f is continuous with respect.to f,
then we get classical solutions of Cauchy prﬂblcm (1), (2).

6. Applications of the main theorem. Huw we formulate the existence result for
problem (5), (2).

Assumption H[F]. Suppose that the functmn

F={Flg Fe:ExXxR" 3R,

of the variables (¢, x, p, g) satisfies the conditions:

1) foreach ke Q and (x,p,g)e R"X X x R" the function Fu(-,x,w, q} is
measurable and there is ¥ € L([0, a], R,) such that | F(t, x, w,q)| £ ¥() on ExX x
x R”; .

2) the derivatives &:F = {3, F; }yep, 9gF'= {9,F;}1ep and the Frechét q::iva—
tives 9pF = {9, Fy}4ep existon Ex X x R" and there is & e L([0, al, R,) such
that :
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|9, Fe.x.p.a)] < @@, [2,Fxp.9| s &®,
|2, F@e.xp.9)] < &
on ExXx R“:_
3) thereis B e L([0, al, R,) such that the terms
I3 Ft.x.p.) -3, FCEEDI |3, Ftx.p.a)- 2 F 55D
[2,F . x.p 0) -3, F (0.5, 7.2
are bounded from above by
Be)[lx -z ] +p -7l +Ia-7l.
Assumption H[o, B]. Suppose that the functions
o= {o}eep i 0@l = R, B = Brgrae Py = Bru--uBur): E = R,

satisfy the conditions:

1) age C([0,a), R), By € C(E,R") and —rp S o ()=t <0 for re [0, a],
=rsByltx)—x sr on E where ke O,

2) the derivatives 9Py = [d, Bj ¢)ij=1..n existon E and

[PsBne. )] s Lo, [o:Binte ) - 3B D] < Lylx -],
where ke Q and Ly, L) e R,
Theorem 2. Suppose thart Assumptions H[F)], H[c, B] are satisfied and
Qe CJ'L[En,s].
Then there exist {dﬂ,dj,dZ}ERi, ce (0,a], Ag, Ay L([0, c), R,) and a
Sfunction v e C'q',:f;[d, A] such that v is a weak solution of (3), (2).
Moreover, if § e C"'[Eq,s] and §e Cyild,M is a solution of (5), (36)

then there is ® € C([0, ¢], R,) such that estimate (37) holds.
Proof. We apply Theorem 1 to the function f given by (4). Suppose that (¢, x,
w, q) € £};. Then we have

9. filtx.wq) = 9, Fy(t, x, wlog ()= ¢, Pyt x)—x), @) +
+ 3, Fy(t, x, wlog(t) =1, Bry(t, x)=x), g) X

o Ileay‘_ H’(ﬁk{r)—f, ﬁ[”{!.x}—x}(a_nﬁjlk{t, x}-ﬁu }J. =1 ...m

where & is the Kronecker symbol and
o, it x, wq)h =
= 9, F(t, x, wioe, ()= t, Pyt x) — x), @) Ao () =1, Byl x)—x),
quk_{r,x, w,g) = 3, F(t, x, wlog () -1, Byt x) - x), q)
where ke . An easy computation shows that
13 @ x.p.@)l < @@ [1+0+Lowly],

PufEx.p. ), s 80, [P ftxp. )| = &0
on £};. Moreover the following Lipschitz condition is satisfied
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2.7 .5 wH k@) =3, tx, w)] < ¥ @ lwll, ) [lx == +[&], +lg-7]])
where (t,x,w,q9)eQ;;, X, 7€ R", he c'(B,X), and

Y69 = PO+ A+Lo)s] + &) [ +Lg)* +LyJs.

It is easy to see that the derivatives dgf and dwf satisfy the Lipschitz condition estab-
lished in Assumption H([d;f] and H[f,9.f,9,f] Hence the assertion fo]I-::ws as
an immediate consequence of Theorem 1.

MNow we formulate the existence result for problem (7), (2).

Theorem 3. Suppose that Assumptions H[w] and H[F] are satisfied and o e

e CMiE,. 5.
Then there exist

(do.dy.ds) € B, ce(D,al, Ag.A; € L([0, ¢l R,)

and a function v e C{:,:E.‘[d, A] such that v is a weak solution of (T}, (2).
Moreover, if § € C'L[Eys] and T e CLL[d Al ir a solution of (T), (36)

then there is % € C([0, ¢], R,) such that estimate {3?} holds,

Proaf. It is easy to check that the function f given by (6) satisfies Assumptions
H[dgf] and H[f,d.f.d,f]. Hence the assertion follows from Theorem 1.

Remark 6. Note that the results of the papers [18, 20] are not applicable to system
{7 in the case when () is the set of natural numbers.

Let F and ¢ be given by (3) and
Yy [0,al=[0,a), w:E—=R", w= (y,V),

and
f,k(trxl"“lq} = Fk{rrx H’{G,D},Q), 'k L= Q'

Then system (1) is equivalent to the infinite system of differential equations with a
deviated argument

9,z,(t, x) = Flt,x,z0p(t,x)),0,2,(t.x)), ke Q (45)
Mow we formulate the existence result for problem (43), (2) with rg=0.
Theorem 4. Suppose that Assumptions H[w] and H[F] are satisfied and
o € CEys] with ry=0.
Then there exist

{dnldlldl} € R-::-i = l:ﬂl ﬁ], :"'ﬂr ?"'I e L{[ﬂa c]l'R-+jl

and a function v & Cé‘_ﬁ[d, A]l such thar v is a weak solution of (45), (2) with
!'a =0{.
Mareover, if § e CL'L[En,s] and ¥ e Cq',‘lf_:[d, Al is a solurion of (45), (36)

then there is % & C([0, c], R.) such that estimate (37) holds.
This theorem is a consequence of Theorem 1.
Remark 7. Note that if we apply Theorem 3 from [20] to problem (45), (2) then
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we need the following additional assumption on W': —r Sy'(¢, x)-x < r on E.
Results of the paper [18] are not applicable to problem (45), (2).
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