uDC 5179

M. Lampis (Dipan. Mat, del Politecnico di Milano, Tialia),

D. Ya. Petrina (Inst. Math. Nat. Acad. Sci. Ukraine, Kyiv )
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MPOCTOPOBO-O/THOPITHA IEPAPXIA BOJIIIMAHA
JK YCEPEIHEHA INTPOCTOPOBO-HEOIHOPIJIHA
CTOXACTHYHA I€EPAPXIA FOJIBIIMAHA

We introduce the stochastic dynamics in phase space that comesponds the Boltzmann equation and hierarchy
and is the Boltzmann—Grad limit of Hamiltonian dynamics of systems of hard spheres. By method of averaging
over space of positions, we derive from it the stochastic dynamics in momentum space that corresponds 1o
the space-homogencous Boltzmann equation and hierarchy. Analogous dynamics in mean-field approximation
had been postulated by Kac for explanation of the phenomenon of propagation of chaos and derivation of the
Boltzmann equation.

BeeacHo CTOXACTHYHY QHHAMIKY ¥ halonosy MPOCTOP!, AKa BLEMOBLIAC pARSEAHING Ta iepapxi] Bossusana i e
rpanuies Bonsumana-Tpens raMiutbToROBOT AMHAMIKH CHCTEMH APYRHNE K¥AL MeTogoM yoepeanenis
3 NPOCTOPORHMHA IMIHIHMHA 3 HEl DHBSACHO CTORACTHYHY AHHAMIEY B IMOYALCHOMY MPOSTOR, AK# Bij-
NOBLISE NPOCCTOPOBO-CIHOPILAHOMY PIBNANHID T4 IepapXil BOnLUMANE, AHLIOFTHHD JHHAMIKE B HAGTHKEHH
CEPENHIGTD MOSA ¥ CRIR 480 NOCTYAROBANA Kauos QN8 NOACHCHHA HBMLUG CBOJIKHII X80CY Ti BHBEOCHHA
pisHAHHA BoAbipaHa.

Introduction. Equations of classical statistical mechanics are derived from equations of
classical mechanics, For example, the BBGKY hierarchy is derived from the Hamilton
equations via the Liouville equation for distribution function on the phase space. The
Liouville equation are obtained for distribution functions, at given time £, that arc result
of action of the operator of evolution (the operator of shift along the trajectory) on initial
distribution functions.

The BBGKY hierarchy, that is a basis of nonequilibrium classical statistical mechan-
ics, are obtained by the following method:

1) the Hamilton equation — 2) the operator of evolution (the operator of shift along
the trajectory) on initial distribution function — 3) the Liouville equation for distribution
functions — 4) the BBGKY hierarchy for (reduced) correlation functions [1-5].

The Boltzmann equation are proved (o be of great importance in classical statistical
mechanics. M. Kac [6, 7], as far as we know, was the first who made an attempt to modify
the above described method of derivation of the BBGKY hierarchy and the Boltzmann
equation in the spatially homogeneous case when correlation functions depend only on
time and momenta and do not depend on positions of particles. He proposed the following
method of derivation of the spatially homogeneous Boltzmann equation:

1) certain stochastic Markov process in momentum space — 2) The Kolmogorov—
Chapman equation for distribution function — 3) the hierarchy for (reduced) correlation
functions in mean field approximation.

It has been shown that in the thermodynamic limit the phenomenon of propagation of
chaos takes place and all many-particle correlation functions are products of one-particle
correlation function that satisfies the Boltzmann equation in the spatially homogeneous
case [6-11].

* This work was performed during the stay June—November 2000 of D. Ya. Petrina as visiting professor at
the Politecnico di Milano, supported by the Italian Consiglio Nazionale delle Ricerche.
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SPATIALLY HOMOGENEOUS BOLTZMANN HIERARCHY ... k]

This result was a great achievement of nonequilibrium statistical mechanics, but it
also creates a series of guestions. The first gquestion is connected with the stochastic
dynamics in momentum space, because a physical meaning has only dynamics in phase
space where states of real panicles are determined by their momenta and positions. As
well known, the spatially inhomogeneous Boltzmann equation is associated with certain
stochastic dynamics in phase space [3-5] ard it is natural to suppose that it reduces to the
Kac's dynamics in momentum space in the spatially homogeneous case.

The second question is connected with the mean field approximation that is not com-
pletely justified from the physical point of view because there it was made an assumption
that dees not follow from postulates of physics. The last remark become extremely ac-
tual with connection with the last achievemnents concerning the Boltzmann--Grad limit for
systems of hard spheres.

MNamely, it has been shown that solutions of the BBGKY hierarchy, in the Boltzmann-
Grad limit and for inttial data that satisfy condition of chaos, (i.c. initial many-particles
correlation functions are products of one-particle correlation function), also satisfy con-
dition of chaos in the following sense [2]. Many-particle correlation functions at arbitrary
time {from the interval where solutions exist), and outside certain hyperplancs in phase
space of lower dimension, are equal to products of one-particle correlation functions and
the last is solution of the Boltzmann equation. Any mean-field approximations have not
been made.

It has been established that the Hamilton dynamics of system of hard spheres in the
Boltzmann=Grad limit degencrates into certain stochastic dynamics of point-particles [ 3,
4]. The stochastic dynamics consists in the following: point-particles move freely until
positions of some pain of them coincide. then this pair elastically collides but the vector
that determines the elastic collision is a random one and uniformly distributed on unit
sphere. After collision particles move freely until the next collision. Point-particles in-
teract on time interval [0.¢] only if their phase points belong to hyperplane Vi; where
the vector of difference of their positions is parallel 1o the vector of their momenta, ie.,
G—g=Tm-m)h0sr=i

In conncction with this circumstance the following problem occers: how o define
correlation functions and averages of observables because this stochastic dynamics dif-
fers from free one only on the hyperplanes Vi, where particles interact. In the stand.rd
statistical mechanics in which particles interact through short-range potential the sets of
lower dimension are neglected because correlation functions and averages of observihles
are determined by the Lebesgue integrals.

It wrns out that in this case it is necessary to take into account contributions from
the hyperplanes 'n"'u where point-particles interact [3, 4]0 It was a great surprise that in
solutions of the Boltzmann equation and hierarchy, represented by series of iterations,
the contributions from the hyperplanes Vi have been tken into account and in the like
manner [5]. Thus, a new conception of correlation functions, that 1ok into account the
contributions from hyperplanes where point-particles interact, has been proposed.

For these correlation functions the hierarchy has been derived, it has been named
the stechastic Boltzmann hierarchy, and it differs from the standard Boltzmann hierarchy
by certain terms with &-functions and the boundary condition, Solutions of the stochas-
tic Boltzmann hierarchy satisfy the chaos condition (or the condition of propagation of
chaos), namely, all the correlation functions Fo(t.xy....,x.) = Filt,rp.. .  Fi(t.r)
outside all the hyperpianes Vi, 1 <7 < § < &, if the initial correlation functions satisfy
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the condition of chaos. The one-particle correlation function is solution of the Boltzmann
equation [3-3].

In the present paper we established that Kac's results concerning spatially homoge-
neous case of systems of hard spheres directly follows from the above described our
results [3=5].

Namely, it was established that the evolution operator in spatially homogencous case
can be obtained from the evolution operator of the stochastic dynamics in phase space
by means of specific averaging over the space of positions. It was shown that in the
framework of the stochastic dynamics the functional-average of spatially homogeneous
observables over distribution functions with spatially homogeneous initial functions di-
verges as volume of system tends to infinity. After some specific averaging over the space
of positions we obtained the functional-average of spatially homogeneous observables
over spatially homogeneous distribution functions. This functional defines the operator
of evolution of spatially homogeneous distribution functions and the infinitesimal gener-
ator of the obtained operator of evolution coincides with that proposed by Kac.

We showed that this infinitesimal generator of the operator of evolution in the spatially
homogeneous case can also be obtained from the infinitesimal generator (in phase space)
of the evolution operator of the stochastic dynamics by the same specific averaging over
the space of positions. The equation for spatially homogeneous distribution function was
derived. It was shown that Kac's results in mean field approximation can be obtained by
simple modification from our functional-average.

By using the equation for spatially homogeneous distribution functions, the hierarchy
for spatially homogeneous correlation functions was derived. In mean field approximation
obtained hierarchy coincides with that derived by Kac. The operator that deternmines the
spatially homogeneous hierarchy can be obtained by averaging over the space of positions
from the corresponding operator of the stochastic spatially inhomogeneous Boltzmann
hierarchy.

Solutions of the spatially inhomogencous stochastic Boltzmann hierarchy and the spa-
tially homogeneous hierarchy can be represented by series of iterations. For the stochastic
Boltzmann hierarchy (spatially inhomogeneous) the series are uniformly convergent, on
compacts in the phase space and on finite time interval for initial data that belong to
the space of sequences of functions bounded with respect to positions and exponentially
decreasing with respect to momenta,

The series of iterations of the spatially homogeneous hierarchy can be obtained by
simple replacement of the stochastic evolution operators by the spatially homogeneous
evolution operator. From these representations one can see that spatially inhomogeneous
and homogeneous correlation functions do not possess the chaos property, i.e., are not
products of one-particle correlation function, even if the initial correlation functions sat-
isfy condition of chaos. But the one-particle spatially inhomogeneous and homogeneous
correlation functions are solutions of the spatially inhomogeneous and homogeneous
Boltzmann equations respectively.

We have also the chaos property or propagation of chaos in the following sense.
If one considers solutions of the stochastic spatially inhomogeneous Boltzmann hierar-
chy with spatially homogeneous initial correlation functions that satisfy the condition of
chaos Fo(0,xy,...,2,) = Fo(0,p,...,p:) = F1(0,p1)... F1(0,p,) then outside all
hyperplanes Vi;, 1 < i < j < s, the correlation functions do not depend on positions
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SPATIALLY HOMOGENEOQUS BOLTZMANN HIERARCHY ... 81

Fo(t,zy,....x:) = Folt,pr, . ... ps) and satisfy the condition of chaos (or propagation
of chaos), ie.

-Fa{tllpls'“spr} =7 Fi“._ﬂl}. ' -Fa'['rupa}~

The one-particle correlation function F, (¢, p, ) satisfies the spatially homogeneous Boltz-
mann equation (Sect. I'V),

In this meaning the mean field approximation is obtained by neglecting the fact that
the correlation functions F, (i, x,, ..., x,) depend on positions on the hyperplanes Vi;(g;—
—gi =71lpi—-p)0 <7 <1),1<i<j< s Forarbitrary fixed (py....,ps)
we identify them on the hyperplanes Vi; with their value outside hyperplanes Vi; where
Fy(t.zy,...,x4), 5 = 1,donotdepend on positions, 1e. Fy(t, 2y, ...,2:) = Fu(t,p1....

.« s *s ) and coincide with solutions of the spatially homogeneous hierarchy in the mean-
field approximation,

I. Stochastic dynamics for the space-homogeneous stochastic Boltzmann
hierarchy.

1. System of N particles. Consider N particles with unit mass in three-dimensional
space R? and denote by ; = (q1.m),....Tx = (qn,pn) their phase points. The
stochastic dynamics of this system is defined as follows: Particles move as free ones
until the positions of two arbitrary particles with numbers ¢ and j coincide at time —7:
g; — BT = q; — p;7. Then these two particles collide, their momenta become

Pi =Pi — Myt (i = Ps)y P5 =Py g s (i — ps)s
[l =1, w#ij{pi—ps)20,

at time —t their phase points are x,(—t) = (g — piT — p{(t — 7). p}), z;(—t) = (g; —
—p;7 — pj(t — 7). p; ), and they move freely until the next collision. The vectors rj;; are
random and uniformly distributed on the sphere || = 1. If iy € 55 . nieipe—p) £ 0,
then particles continue move freely. We neglect the case when three or more particles
collide at the same point.

Consider an infinitesimal time — At and introduce the following functional [3, 4]

(Sn(-At)fn,on) =
= frin c-dry fnlg - prAtpy, . g — P AL PN SN (1 PL - gL PN ) +
N FuX
-+ Z fﬂ‘i‘l ...dINf d'rf dge; iplpi = pi) 0lgi — pym — 5 + 7))
i< j=1 o ‘q‘;

x [I.wl[m — APy, 4 — T — PHAL = 7),50,...

@ = PT = P (At = T), Pl an = pnOt,py) —
~fnlg — b py, - g0 — pilSE ..
L) -pJ&!!FJl"'1Qﬁr_pn'ﬁ'ﬁ:1pﬂ} ';.".V{.E.Irl1pls'--1q.ﬂ'~pf';} (1.1}

that is equal to the average of the observable ¢y (), . . ., 25 ) Over the state
Sn(=at) fu(zy,...,xn) = [Nz (=At), ... . on(—AL)).

As usual, it is supposed that [ is real symmetric differentiable normalized function
and <y is real symmetric test function.

MNore thar in the average (funciional) (1.1 the contribwtions from the hypersurfaces
Gi=q; =7(pi—p;), 0= 7 < At 1 <i<j< N,oflower dimension, where the
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82 M. LAMPIS, D. YA. PETRINA

stochastic particles interact, are taken into account. These contributions are equal to the
second term in the right-hand side of (1.1).
MNow consider the case when the functions f; and ¢ do not depend on positions

fr(gup,-.-gn,pw) = fu(pr, .- copw),
én(a,P1y N PN) = EN(PL o PN,
fnlg —prAt,py, .. g8 = pe&Lpx) = fn(pra. .. PN,
ful@ =t py g — i — P (AL=T) P
-y = p§T = P (AL = 7)., P}, .. qn — prALpN) =
= fu(Pry-- -1 Bis - Piee - - PN)-
In this case the functional (1.1) is divergent, the first and second terms are proportional

to V¥ and V¥ =1 respectively (V is the volume of R*). Instead of functional (1.1) we
introduce the following functional

(Sni(=At)fn,én) =
= lim - ftf*;*]fd.ﬂ; fﬂfq”fdPNfN{Ph pn)eN (L, - PN) +

+ Jim oy Zqulfffpt qu-fdp:-~-

a.-:f‘i—

--ﬁjmjfﬁj-r-ﬂwwfdpmfﬂatdrx

x[ dr; 5 (pi — p3) 8(gi — pim — qj + piT) %
51
!I[IN{PI.-HPE,- c«Pjree s PN) -fN[P1+--=r.ﬂia--sF;s-uPN]]fﬁN{Plu- .PN) =

=fdm---lfpnr,fnriphmpmim.f(ph---,FNZI+

+Ad Z fdpl dpﬁ,rj‘; s Mg (pi — pj) %

i<i=1

x[fN{Pll"-P;n'-ﬁF;w-wPN} N fh'f_Ph.. ! rPi----P;l-n-PN}}&N{PI;-*-FHJ-
(1.2)

We denote by A; and A; the spheres with centers in the points —p; 7, —p;7 respec-
tively and with volumes V(A;) = V(A;) = V. The sphere A has the center in the origin,
V(A) = V. Functional (1.2) was obtained from functional (1.1) by averaging over space
of positions (configurational space) and is average of the state S™(=At) fw(p1,....PN)
over the observables ¢y (p;,...,px). Formula (1.2) defines the operator of evolution
Sn(—At) of states fiy(pi,...,pw) in spatially homogeneous case. The second term is
associated with the contribution from the hypersurface gy —q; = 7(pi=p;). 1 =i < j =
< N, where the stochastic particles interact.

It follows from (1.2) that the operator of evolution Sy (—At) of the state of N-
particle system in the spatially homogeneous case is defined by the following formula for
an infinitesimal time — At
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SPATIALLY HOMOGENEOUS BOLTZMANN HIERARCHY ... R3
Sn(=At)fn(pr,.-..pn) = In(Atpr,...,pN) =

i)
= fx(preoow) + 88 3 [ gy (oi—py) x
icjml ¥ 53

x[le:pl,...p.'-',...pj,...,pm} T ...,pj,...p,-..r]]. (1.3)

In (1.3) the state Sy (—A8) fvlpry. .., pav) is averaged over the random vectors 4,
i = j = N. For the fixed random vectors 1j;; we have

Sn(=At)fn(pry...,pN) = (Dt p1,...,PN) =

N
= fn(Proe-pn) + AL D midpi — p;)O ((mij-(pi — py)) %

icim]

X[Iu 1y Bl By PN) = SN P pN)|s (L)

where B(a) = 1,a > 0,8(a) = 0,a < 0. In (1.4) we used the same denotation for the
states fy (At py,....pn) and operator Sy(—At) with fixed n;; as for those averaged

with respect to ;.

The probabilistic interpretation of formulae (1.3)—(1.4) is obvious,

We do not know how to construct the functional [:§N{-tjfg.,-,¢yj directly for ar-
bitrary time ¢ and NV > 3. Therefore we will define this functional using the following
procedure. We suppose that function fy(t,p1,....pn) = EN(—t}fN{p.,.,,,;;N} is al-
ready defined. We also suppose that the operator Sy (—t) satisfies group property and is
defined formally as follows: Sn(—t) = limp—o [T1n) Sn(—A%), i, At; = t where
Sy (—At;) for infinitesimal At; is already determined by (1.3). By using the group prop-
erty of the operator of evolution

Sn(—t — At) = Sny(—At)Sx (1) = Sn(-t)Sn(-At)
one can define function

.rHr:t + ‘.l!'rpl-' " .P,n.'} = f-r,\r{—.ﬁt:lf,u{t,plr. . --PN}

and obtain the functional equal to average of the state .f"-;.r{ —&t) fait,pry....pn), Over
the observable ¢y (p;....,pn) with respect to the random vectors n;; that appear on
interval (—¢, —¢ — At) with an infinitesimal Af.

The average (.E'N[r-ﬂt}fn(t},nﬁ,\r) of the state Sy (—At)fx(t,p1,...,pn) over

the observable dx(py, ..., pa) is determined by formula (1.2) if one puts the function
fN{Espl1---1PN'} instead of.rﬁtph"'rpfl'}

(Sn(—At) fu(t), dn) = fdm coodpy fnit,py, .. oondon(pr,. . PN)
N
+ At Z fﬂ:ﬂl---dﬂﬂf digi; B (pi — Pi) %
i pm] ‘5;

X [fN[trPI--“P;:“-P;'r--‘Pn'} - .f."l{'fw.il'-'lr----Ftrr-1Pj1~-rPN]]@‘N(PquPNL
(1.5)

It follows from (1.5} that
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Sn(=At)fn(t,pr,...,pn) = Sn(=ADSk(~t) fn(p1,....pN) =

= fn(t+ At,py,...pn) = (L1, p~1+m2f dy iy (s = p3) X

i y=1

X[IN (P Bl B W) = SN (PL P PPN (6)

2. Equation for fy(t,p1, ..., px). We obtain from (1.6) the following equation for
the function fx (¢, p1,... py)

afult, Ph-” Zf iy i (0 = py) X

i<j=1

* fHH-FI----P:..---F}q---.PN} _INH:FIH- " rpt~--1PJ1---PN:']1
(.M

futprepn)| = In(pe . pw).

In equation (1.7) the right-hand side is averaged with respect to the random unit vec-
tors 15, 1 < i < j < N, that appear on infinitesimal interval (t,¢ + At).

From (1.7) it follows the equation for the state fr (f, py, ..., pa) with fixed random
VECIOTS 74

a By, N
vt 135 pN) _ Z g (i = 9) © (g (o = y)) ¢

i<i=1

x[_fnr{t,ph...p;,...p;,...,,pnn} — vt Py pi ...,pj,...py}],
(1.8)

f,\ri:i,ph s 1FN,}|I=0 o ,er,Ph e rP.N:I-

It can be obtained if in functionals (1.1, (1.2), (1.5) integration with respect to the
random vectors 15 is omitted and consequently is omitted in {1.6), (1.7).

The function fa(t,p1,...,pxn) from equation (1.7) does not depend on any random
vectors if the initial function f(py, . .., px ) does not depend on them, while the function
from equation (1.8) depend on random vectors fij, 1 < i< j < N. We preserve for both
functions the same denotation.

Thus we have obtained equation (1.7), (1.8) for evolution of stare that does not depend
on position — in the case of spatially homogeneous state — starting from the stochastic
dynamics in phase space and by averaging the functional (1.1) over the configurational
space.

Many authors [6-8] postulate analogical equation for explanation of phenomenon of
propagation of chaos but with mean field multipliers 1,/V in the right-hand side. Their
equation

ﬁ.ﬁ""{t'rpil"'
it o _ Z f d"}l: Hiz P:L .F"_r:] X

n:_f 1

X [N (t,P1se e R B PN) = IN(L D1 P B3P,
(1.9
fN{hph"ﬂPHH;,n = IN{PLH"'*P'H}*
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can also be obtained from the stochastic dynamics if one puts the multiplier 1/N in the
second term of functionals (1.1),(1.2), (1.5).

We will also need the operators Sy (¢) and equation (1.7) for positive t. To obtain
them it is sufficient to replace in (1.6) and (1.7) 55 by 55 (ni; |mi;-(p — p;) < 0) (details
about the stochastic dynamics and the evolution operators Sy () for ¢t = 0 can be found
in [3,4]).

1. Derivation of the spatially homogeneous hierarchy.

1. Sparially homogeneous hicrarchy in framework of canonical and great canonical
ensemble. Consider N -particle system with normalized state fi (¢, py, . .., pa ) that satis-
fies equation (1.7} and introduce the following sequence of reduced correlation functions

Fi¥)¢, (p),) = F¥Nt,m,....0,) =
M

= mfdpa+1---dPh'fN“-Ph---:!’anHl:----.PN]'r 1<s< JI""II_-lr
(2.1)

FV ) = F e, oon) = 15 (601, PR)D)s = (P1y- - -, Pa)-

By intcgrating the left and the right-hand side of (1.7) over momenta pagq, ..., P taking
into account that S (E, g1, ..., pav ) is symmetric with respect to py, ..., v, and Jacobian
of transformation (py, pj) — (p},p]) is equal 1o one, we obtain the following hierarchy
(see derivation of spatially inhomogeneous hierarchy in [1, 2]).

(N} =
OF, {t:;:h-“p.j = z '[s‘r ﬂrﬂi;ﬂu'[ﬂ: _pJ'J =
1<i=1 2

x If'f""}{t.pl,,..p:.,..p;...".p,} - ff‘f”’{t.p,.”..p....1pj.,.,p,._]] +

L
=
+ Z]dpa-Hj dipi aset ﬁr.4+]'[}’| = Pag1) X
f=] g;

KIF::'IEI”&PIPHPEP '-pn-"'rp;q-t} - f'ffii‘:hplu---:-}“i "-1Pa|.pd+11|]| {221

l<s=<N-1, Ffm{t..pl,..._.p,}j!=ﬂ = F™(p1....,p)

Note that FLN] (t.p1,--.,pn) satisfies equation (1.7).

As known, in greal canonical ensemble system can be in states f (L py, ..., pn)
with arbitrary N = 0,1 ..., with certain probability. Functions fax (¢, p1, ..., px) are not
normalized in this case.

The infinite sequence of reduced correlation functions are defined as follows

11
ant, fP]'.] == Z e} fdpa+'l- w dl.i'-'||+r| f,+n|:5:.Ph- coe sy Paglyeas -.J"a+'n:|'| L E ]1
-1 ! n:
(2.3)
where grand partition function = is equal to

= Z ;:_!deﬁ oo tpn fu(t,pry oo pa) =

=L}

=Zﬂ&jhi'm---dﬂnfnfrln--upn]', i

In the last equality we used the fact that

|

||
—
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86 M. LAMPIS, D, YA. PETRINA

[dpl...dpnf,.{t,pl,...,pn}=fdp1 -dpn fa(P1y-- .1 Pn)

that follows directly from (1.7). It is easy to check that sequence (2.3) satisfies hier-
archy (2.2) with 1 < s < eco (see analogical calculation for spatially inhomogeneous
casein [1,2]).

In order to derive the corresponding hierarchy in the “mean field” case one should wse
equation (1.9) and the functions F,(f,p1,...,p.) defined according to (2.1) but without

1
factors ﬁ . The corresponding hierarchy looks as follows

aF M, p,.
- {mpl = Zf dni; miz-(pi — py)
Hfj 1

x[F.{”’{t,pl.---.p.-‘1---1p}.---.p.]| = E{m{!.p-.-.-11:r.-,--.1pj...-.p.ll] +

N L -
SZIdF:+1f A e41 Miat1° (Pi — Pasr) %
i=1 S;-

+

[ .-+|_(t Ply-- -F::---1p11~--1p.+|]" .+j{t p11“-spis"-1palpd+l_}:|s {2.4}
1 E & E Nf F.{N}{t1pl1~“1pl}|:-n = FEN}{PI1-“ rP:}-

Performing formally the thermodynamical limit N — oo in (2.4) and taking into
account that the first term on the right-hand side of (2.4) tends to zero as N — oo, one
gets the limiting hierarchy

OF,(t,p1,...pa)
T‘ ;f‘fmﬂf A as1Mi a1 (i = Pas1) X

X[FS"']“!P]!'"1P:l"'lplv"'rp:+1} = Fl-H“rPt:--~-sP¢'----1PsrP:+!]].- ':2'4;}
321! F‘l{tﬁph"'|.p-l}|=_n=FJ{p1r"'!pl:|'

(The corresponding limit hierarchy for (2.2) is the same as (2.2), but s = 1 and instead of

F™(t,py,...ps) one should put Fy(t, py, .. ) = limy—oo F¥(t, 1, . .-Ps)-)
The “mean field” hierarchy (2.4") has the following characteristic property: it pre-
serves the chaos property, i.e. if the initial functions

Fi(p1,....ps) = Fi(p1) ... F1(ps) (2.5)
have the chaos property then functions F,(t, py, . .. ps) have also the chaos propenty
Fy(t,p1y....p) = Fi(t,p1) ... Fi(t, ps) (2.6)

and function Fi (¢, p,) satisfies the nonlinear Boltzmann equation

BF(t
TG = [don [ annon = p [ PR CR) ~ it pF(.92)]
2.7
This property follows directly from hierarchy (2.4') because it permits the separation
of variables if initial data satisfy (2.5). It is also supposed that solution of equation (2.7)
exists,
2. Hierarchy with fixed random vectors. In hierarchy (2.2) the functions
F}m{pl....,pu} do not depend on any random vectors. This hierarchy was derived
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SPATIALLY HOMOGENEOUS BOLTZMANN HIERARCHY .. 87
from equation (1.7). We will also need the hierarchy with fixed random vectors. It can be

derived from the state fa(t, pi,....pa) that satisfies equation (1.8) and for the sequence
of the reduced correlation functions defined as follows

N, (p)a) = FEN(t,pr, .. pa) = mm) fdp.ﬂ b

n (=)
* H +dﬂi‘;fﬁr{t1pll-":palpn+lr'--5p.~',}s
icj=1 <3

(2.7
FM @, (Iw) = F (t,pry - - ) = (b, pry- - W),

where [T '*), means that the pairs (i, j) with 1 < i < 5,1 < j < s are excluded. Note
for jum ] Pﬂ.

that only these random vectors #;; that appears on interval [t, ¢ + At] and are present in
equation (1.8) are considered,
As before, we preserve for functions (2.7) the same denotation as for functions (2.1).

It follows directly from equation (1.8) that sequence (2.7) satisfies the following hier-
archy
3!‘—‘}”][1@ ,-1-]'3.-1} :
= = > nie(pi = p;) Omi-(mi — ps)) X
i<j=l

x[f"j”;“sphlnbp:!“wp;!“ wpa:l_ FEN:{I1PI1' --rPu--ust- '-1pa_]] +

A
+Zfl'ip.+1 fs+ ar, a1 ija+1-(Pi — Pag1) #
i=1 2

N . - N
x [F£+|1'I{_11p1.“ v |P{s----|PuP,+:|]' . F{- ]Etwplr“'.-Plr--~~Pa:~Pa+]}]l {23}

1€s< N=1, FOED o atdlig = FMDL <0 i)

Obviously that function Fﬁ,”]{t, Pi.-...Pa) satisfies equation (1.8).

We did not indicate that functions (2.7) depend on random vector. Later we will
discuss how they depend on random vectors,

The “mean field” version of hierarchy (2.8) can be easy obtained if one omits the sign
of integration with respect to ;4 in the first term on the right-hand side of (2.4). The limit
“mean field” hierarchy is the same as (2.47).

III. Representation of solutions of the spatially homogeneous hierarchy.

1. Representation of solutions of the spatially homogeneous hierarchy through
series of iterations, Represent hicrarchy (2.8) with 1 £ 5 < oo and omitted (V) in
abstract form. Denote by F(t) sequence of functions Fu(t.p,... . ps)

F{E] = (qu[_'t:.pl}s"-1F3|:LFl1' "1pa]1'- *) ‘EJ}

and by H and A the operators defined by the first and correspondingly second term of the
right-hand side of (2.8)
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(ﬁF{t:l)'{P]|~"1pa} =R|E'[t1pluuwpu,} - Z ﬂu'[rla _pj}e{]hj'{p‘l 'p.T:I]x

1< 1=1

x[FEEt1P1r'-~rP|":-'-:p;- --1Pa.]—}1“,ffl-----i-"t """ Piyeas p-l}]-
(3.2)

(AF®) G- p) = (AF@O)LGr-...20) =

I
- z-[dpl-i-]f ‘b?l.l+ln|.d+1'|;_3jl = .|'J.§-+I:| b
i=1 57

X[Fa+l{tsph---1P;r---rPnP:+1_} i F;+1ft.ﬂ], Y TR p-lhp-'l-l-']]'
Then hierarchy (2.8) has the following abstract form

d_ﬁ” = AF(t) + AF(t) = £F(t), F(t)lemo = F(0). (33)

Recall that the operator H, is the infinitesimal generator of the operator S,(—t) that
for an arbitrary ¢ is defined formally as follows S, (—t) = [T, S.(-At), i, At =
— t and for infinitesimal At;, &, (—At;) is defined by (1.4).

As known solution of (3.3) can be represented by the following series of iterations

oo 4 tn=1 . N . ~ o
F(t) =.‘E.,ufﬂ :ul..-L dt S(—1)8(t))AS(—t)) ... 8(t,)AS(—t,)F(0) (34)
where S(—t) is the direct sum of the operators S, (—t)

S(-t)=>_EPS.(-1).

s=1

From (3.4) one gets

oo o Bt ) ~
Rt =Y £ dty-- £ dtns(=t, (2)2)Ea(t1, (P)a) X

n=0

&
® o) J[ dn; {(py — 1
E_{ Psi1 st Tia4-1 Th s 41 {P: Pss1)

% [~§¢+1{—¢u (Phas1) = 5_-+1|:—¢1-{P:1=+|:1] o

1
vo s Fpien=1(tn=1, {p}l+n-1:| E fdpa+n f+ d’!l,a+nﬂ1.n+n‘[Fl = Patn) ¥
i=1 5

X [Setn(—tn: (P)ien) = Sinl—t, @hesn) | Fasn(0. @hisn) (34
where for the sake of simplicity we use the denotation
[Setn—tos (P)34n) = Senl=tms (Blasn) | (0, (P)ein) =
= Supnl=tn, (P)s4n) Forn(0,(P)i1n) = Setnl—tn, (Platn) Fasn(0, (P)asn)

and {p):-Fﬂ- = {pll' . !P':! reey Padn—1 sp:q.n_} in terms with number 4,

We have defined the operator Sy (—At) for infinitesimal At > 0 by formulae (1.2)-
(1.4). For arbitrary ¢ > 0 the operator Sy (=t} is formally defined by using the group
property
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Sn(~t) = nil.n;uil;[ls”[—m,}, gm. =t, (3.5)
but we do not prove existence of this limit.

The operator Sy (—t) can be defined as the group of operators with the infinitesimal
generator M, determined by (1.7), but again only formally because we did not give
AZOrous meaning o ‘ﬁ';v.r as an operator in some functional space.

The operator Sy (—t) can also be determined by the corresponding stochastic process
m(—t), ..., pw(—t) by usual formula of the operator of shift along the “trajectory™

Sn(=t)fn(prs-- - on) = In(er (1), ..., pa(-1)),
Pi(t)le=0 = p1, ..., N (~t)e=0 = PN
where the stochastic process is such that the function

IN{!I.F‘[!"'TPN} =‘§N{_”L‘f{p|!' "!PN}

satisfies equation (1.8). But this approach is not elaborated yet.

To define the operator Sy (At) with At > 0 it is sufficient to replace 53 by 53 in
formulae (1.5), (1.6) and for arbitrary ¢ > 0 1o use (3.5) with Sy (At,).

Now obtain representation for Fy(f, (p).) using solutions of the spatially inhomoge-
neocus hierarchy. It also can be represented in the following abstract form

% =HF(t) + AF(t),
(3.6)
F&) = (Fi(t,z1)s. .., Bu(t, (@), )y F(D)lemo = F(0)
or componentwise [3, 5]
BF'“ Ih“‘ Zpla t Lls !zall'l'
fm]
+ D 6lgi = g;)mis-(pi = p3)O(mis- (i = p3)) %
i<i=I
K{E{t1mlr"-1$::"-1r;h k :Ic:i Et TlyeueyLiye -sI_as"w:Ei}]
+Zqu1+|5 -—-:r.+1}fdp.+1 f$+ dnfia1 a1 (Pi = Pas1) X
im] ]
X [Fa+l{i'13[1 see !--I:w -Ls-rah-r:q.j} = F,+|{1,I|,. R T P -II|II+]}]1 (3.6")

F,“,I‘]-.---,I’g}l[,:ﬂ=-F.-EI|.|----|I:;].| 521'

The functions from (3.6") depend on the random vectors M. 1 < i< j = s, where the
operator H and A are defined by the first and correspondingly the second terms in the
right-hand side of (3.6"). Solution of (4.6) can be represented as the foliowing scries of
iterations

F) =Y / s j; "7 AtnS(~)S(8)AS(=1) ... S(ta) AS(~ta) F(0) (37)

n=0

or component-wise
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L £ Em =1
Re@) =Y [an [T isi- @050, @0

n=0

&
b zfﬂxsﬂﬁff}i —q,+1]'f i sp1 a1 (B — Pasa) X
53

im]
x [5,4.1{‘—3;,{:5};4_,} - Safl[-h-{-ﬂ.-}-!]‘] . -J'S.ar+n—1“=1—lu{1:}n+n—t} x

a+n—

1
b Z dmi-l-—ﬂﬁ{fh = 'tl'.l-iuﬂ:' difi s4n T.i'r.sH-L'{Pf - pa-l--:} =
§=1 LA

x [sm{—zm:r)_;ﬂ.J ~ Sern(~tn; (2)ern)| Fosn(0-(2)asn).  BT)

Recall that S.(—t) is the operator of evolution of s stochastic particles, H, is its
infinitesimal generator and S5{—¢) is the direct sum of S5,(—t). The rest of the notation is
the same as in (3.4). The operators S,(—¢) are rigorously defined as the operators of shift
along trajectories in the phase space [3].

As known [3] series (3.7') is uniformly convergent with respect to (), on finite time
interval [—tg, tg] if sequence of initial functions F(0) belong to the space E; with norm

A 2
|F©)] = sup £ =1 sup | F, (0, (x).)|
oz1 £ {=)e

where £ > 0, @ = 0 are fixed numbers and #; is certain constant depending on (£, ).

It is an open problem whether series (3.4), (3.4°) is also uniformly convergent with
respect to (p), on the time interval [—tg, £g] if sequence of initial functions (0, (p)s).
5 = 1, belong to E:. In this case series (3.4), (3.4") would represent the mild solution of
the spatially homogeneous hierarchy (3.3).

2. One-particle distribution function Fy(t, p1) is solution of the Boltzmann equa-
tion. Consider again series (3.7") and denote by Vi; the set (hyperplanes) ¢ — g; =
= 7(p; — p;) withall 0 < 7 < ¢. It is well known from the prool of the existence of the
Boltzmann—Grad limit for system of hard spheres [2] that if phase points xy,..., T, are
outside all the set Vi;, 1 < i < j < s, then all the operators S,..(=t) can be replaced
by the operators of evolution of the free systems S7,,(+t) and representation (3.7°) is
reduced to representation of solutions of the Boltzmann hicrarchy

honcd f bn=i
Fut,(2)) =Y fn - [] b, SO(—t, (£)2) 82 (11, (2),) X
'N=0

x Zfdr.ﬂri{qf ~~<;,+|II_[S+ i o41 Ths 41 (Pe = Pas1) X
F

=]

® [SE+;|'[_£I1 ':-'E}:H} = 534.1(—5!»{1}:1-!}] . -'5_E+"_||:tn—h (T)e4n—1) X
atn=1

b Z fdilf-+n§|:'-‘1'i e q;+n_}j;+ dﬂl.ﬂ{-h i'h..a+n'|:ﬂs = Pa+ FI-} X
=] 2

% [Shen(=tns (@)i4n) = SPun(—tn: (Fain) | Fain(0,(@Dasn)- BB

For s = 1 series (3.8) represents Fy (t, z;) in the entire phase space of one particle
and coincides with solution of the Boltzmann eguation
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aF]_{i.,I[} L g i
S T Plaq] Fi(t,x,) +

+ [don [ dmama-(n - p) [Pt =B (05) - B z0Fi 2] G9)
2

if initial functions F,(0, x, ..., T,) have the chaos property
Fo(0,zy,...,2) = F1(0,21) ... F1(0, z,). (3.100
The functions F,(t, (z),) determined by series (3.8) have also the chaos property
Fyt,z1,...,5) = Fi(t,z1)... Fi(t, z,) (3.107)

for time on interval [—tg, to) and F'(0) € E;. This fact is considered as a rigorous deriva-
tion of the Boltzmann equation.

Note that the functions Fi(t,z,)...Fi({f, z,) do not coincide with solutions
Fy(t, (x)s) of the stochastic hierarchy (3.6), (3.6") given by (3.7) in the entire phase
space of s particles, i.e.

Ftzy,...,z.) # Filt,zy).. . Fi(t,z,),..., s>1,

if g — q; = 7(pi — p;) for some 0 < v < ¢ at least for one pair (7, 7). It can be proved
as follows. In the entire phase space of s particles representation (3.7') is reduced to the
following one

F,{c,{z}.}=Zj; ml...fu'_' dtnSe(—t,(2)s)Ss (t1,(2)s) x

n=0

KZ/ﬁulﬂm = Fa+l]|j_;+ dfi a1 Tios1-(Ps — Pasg1) %

=]
< [( S-S ) (@41) ~ Ss(~0)S2 =) (@us)] ...
e (S;{tn-l}'sn_[{!n- 1}) “I:IJ-I-H—'l} X

s4n—1

X ; fd-'ra+n'5|:% = ‘i‘a+ﬂ:| .[5'; dfjl.l'+ﬂ ﬂhs+u"lrp. — Dapn) X
x [(Ssi—t,.]SE{—tn)) ([I]:-{-n} = {S,l[—:njsﬂ{_;n]) f(zlsﬂ}}ﬂﬂ (0,(2)550)
(3.11)

where the denotation (S,(—#;)50(—#:)) ((x)2,,) means that the operator S,(—t;) acts on
the first s phase points of the set ({x)},;) and the operator S —t,,) acts on the rest i phase
points of the set ((z)3,,). The same denotation is used for (S,(—£;)S(—t;)) ((z)s4:)-
Recall that S,(%t;) is the operator of evolution of the stochastic particles and S?(£t,;)
is the operator of evolution of the free particles. On the hyperplanes Vi; the operators
S,(=£t;) do not coincide with the operators SY(+¢,) and, thus,

Folt,z1,...,55) # Fylt, ) .. . [t z,), s>1,

even if initial functions Fy (0, z;,...,x,) satisfy (4.10).
Suppose that all the initial functions Fy4,, (0, ()4, ) are spatially homogeneous ones

Fosn {ﬂr {I}J-l-ﬂ] = Fyin |:['1 {p}a+ﬂ]'
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Then it follows from (3.11) that the functions F, (¢, (x),) depend on position (g), only on
hyperplanes V;; because outside all the hyperplanes Vj;,1 < i < j < s, the operators of
the stochastic and free evolution coincide S,(+t;) = SJ(+t;) and result of action of the
operators S¢(+t;) on spatially homogeneous functions are again spatially homogeneous
functions and S2(+t) = I, S7(+t) = I.

If we have S,(=£¢;)S?(+t,)((z)],;) with some z}, 1 < k < s, then the correspond-
ing Viu, 1 =1 # k £ s, should be excluded from consideration because pj, depends on
certain momenta from the set (py41,.. ., Pass) and one can neglect Vi as hyperplanes of
lower dimension in Lebesgue integrals with respect to (pat1,. ..\ Pati)-

Thus, the functions F, (t, (), ) depend only on momenta (p), almost everywhere with
respect to positions (g), if the initial functions do not depend on positions. The function
Fy(t, ) does not depend on qy, ie. Fi(t,z1) = Fi(t,m).

Now consider (3.11) with (z), outside the all ¥j;,1 < i < j < s. Then in the
spatially homogeneous case representation (3.11) is reduced to the following one

R =3 [ [ de

n=0

S i'[‘f?-+1 j;+ dn 417041 (P — P-+1][IEEP}:+1J‘ - f':':F}-H:']

i=1
s4n=1
x[1(@)40) = H(@)ssn)| Fasn(0, Blasn). Ga1

For Fy(t, py) one gets the following representation:

o 1 " s
Fi(t,m) = E f dtl"'f dt, E fdmﬂf dni 141 Mi141- (P — Pre1) %
n=0+0 1] 5‘;’

i=1
14+n-=

|
I[I({PHHJ “”P]J+l]] ; fdpl-l-n-/‘;?dﬂi.l+n B 14n (B — Pran) X
® [”(P};q.u] "f'[{P]Hn]]FH-n(ﬂ.fF}Hn} (3.12)
where the following denotation is used

[[ff{P]':H} = ff[P}-H]]F-H{U. (Ploi) = Fori(0, (P)544) = Fasi(0, (P)ass) -

Representation (3.117), (3.12) follows from (3.11) because S,(£t) = SY(+t) outside
of Vijui.j € (1,...,8) and 82, ,(%t) = I if Fypn(0, (Z)s4n) = Fein(0, (P)s4n). If the
initial functions satisfy the chaos property (3.10) then series (3.12) represents solution of
the spatially homogeneous Boltzmann equation

IR(t,p1) _
at

= [dn: [ dmama-or - p2)[Fitt,pD) - Fatt.p3) - Filtor) - Fi(ti93)]
(3.9
as it follows from (3.9).
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Note that functions (3.117) have also the chaos properties because functions (3.8) have
these properties outside the all V,; . 1 <i < j < 5.

Thus, we have the chaos property or propagation of chaos, withour framework of
rmiean field approach if we consider the functions F,(t, (x),) outside the hyperplanes Vi;,
1 < i < j < s, because for spatially homogeneous initial functions F,(0, (z),) this
property have series (3.117).

Remark that series (3.117), (3.12) are convergent uniformly with respect to (p), and
time 0 < t < #y if initial functions F,(0, (p).) = Fi(0,m) ... Fi(0,p,) belong to the
space E; because series (8 4) are convergent in this case [2].

There is another methad of ebtaining the propagation of chaos without the mean-field
approach. Namely consider the fullowing average of the functions F,(t, (z),) (3.11) over
the space of positions

Jim 7o [do [ wFap. o ap) =BOEN) 613

where the Lebesque mtcg,ml is used and behaviour of functions F,(t,(x),) (3.11) on
hyperplanes Vi;‘. 1 = 1 = 3 < s,is neglected. It is obvious that obtained func-
tions F,(t,(p)s) (3.13) coincide with those defined by (3.11') and if initial functions
F,(0,(x).) have the chaos property (3.10) and do not depend on (g). then functions
(3.13) have also the chaos propenty and Fy(t,py) satisfies the spatially homogeneous
Boltzmann equation (3.9'),
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