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PROPERTIES OF A SUBCLASS OF AVAKUMOVIC
FUNCTIONS AND THEIR GENERALIZED INVERSES®

BJIACTHUBOCTI OJIHOI'O MIJIKJIACY
OYHKIIIH ABAKYMOBIYA TA IXHIX
V3ATAJIBHEHUX OBEPHEHUX OYHKIITH

We study properties of a subclass of ORY functions introduced by Avakumovié and provide their
applications for the strong law of large nombers for renewal processes.

Bupuamorecd BaacTHBOCT] ogioro niakaacy ORY dwiknifi, oinaueHny ABIKYMORIYEM, T3 HABOLATh-
cAH ,U.Cliﬁi ﬁ'lﬁ'DL'}'H-iIIIIIH FLO MOCHRCHO D JAKOHY BCSJIHEH X YMcen LA np-ouccin Bi.ﬂHO'BJ'Iﬂlllﬂ

1. Introduction. In the paper [1] the relationship between the strong law of large
numbers for sequences of random variables and its counterpart for renewal processes
constructed by these sequences is studied. Namely, given a sequence of random

variables {Z,, n2 01}, the generalized renewal processes are defined as follows
L) = sup{n20:Z,<1},
M(1) = sup{n=0: max(Zy, 7,.... Z,) 1},

N = Y KZ,s1),
nw=|
i.e. L(r)+1 is the last-exit time of {Z,. n20} from (-=.r], M) + 1 is the
first-passage timeof {Z,, nz0} from (-e.r], and N(1) is the wotal time spent
by {Z,. n20} in (—es,1], respectively. If the sequence {Z,. n20} increases,
then all the three functions coincide. Otherwise they are different and further “natural”™
definitions of renewal processes can be given.

Under some mild conditions, it is proved in [1] that. if lim,_, . Z /a, = 1 almost
surely (a. s.), then
. L) . M . Nin
lim —— = 1, lim —p= =1, lim —— =1 a.s,
il (1 P B ) r=ad (1)

where a,=ain), a_l[-} is the inverse 1o al-), and a(-) i$ a conlinuous increasing
unbounded function. The main assumption posed on the function  a(-) in [1] is that
cither g(-) = a(-} or g(-) = a”'(-) or both of them (the choice depends on a result
desired) satisfy the following condition:

lim lim M—ll= 0. (1.1}
clor==| pg(f)

Mote that every regularly varying function gi(-) satisfies this condition.

A natural further step is to prove the converse, namely if the strong law of large
numbers is satisfied for renewal processes, then so does the strong law of large
numbers for the original sequence of random variables. Such results are obtained in [2]
for the partial case of sequences of random variables formed by sums of nonnegative
independent identically distributed random variables.

Another interesting problem is 1o obtain similar relationships for the scheme, where
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the starting point is a stochastic process {Z(r), =0} instead of a sequence
{Z,. n20}.

Both of these problems require further properties of normalizing functions  ai-)
and their inverses @ '(-). As it will be seen later most of those properties are
consequences of the main assumption (1.1).

Prof. E. Senecta kindly informed the authors that property (1.1) is related to the
notion of the so called ORV functions and provided us with the references [3 — 5]
which helped us o discover the origin of and 1o prove some basic results for functions
possessing property (1.1), 1t wrns out that the functions  g(-) sanisfying (1.1) form a
subclass of functions introduced by V. Avakumovi¢ [3] and which are natural to call
Avakumovic functions. More detail concerning the Avakumovié functions is given by
Karamata [6] and Aljanéi¢ and Arandelovié [4] where those functions are called O-
regularly varying (ORV) functions. Bari and Stechkin [7] independently studied
Avakumovi¢ functions and discussed their applications in the theory of function
approximation.

The main aim of this paper is 10 obtain some key properties of functions satislying
(1.1). Applications of these results to limit theorems of the probability theory are
planned to appear elsewhere, however in this paper we indicate some of possible
applications to the relationship between strong laws for sequences of random variables
and corresponding renewal processes.

2. Definitions and preliminaries. We assume throughout the paper that real-
valued functions g(-)={(g(s). 1 20) are measurable and positive for sufficiently large
arguments.

Definition 2.1. A function g(-) is called regularly varying (RV) if the limit

k() = lim &L
f—se glI)
exists for afl ¢ >0,

For any RV function g(-), ®i{c)= ¢® for some number @ € B = (—es, =) which
is called the index of the function g(-). Definition 2.1 is due to Karamata [8] who
gave in [9] an account of properties of regularly varying functions. Note that RV
functions of zero index are called slowly varying (SV) functions.

A generalization of RV functions is due to Avakumovié [3] and it was Karamala [6]

who obtained characieristic properties of such functions. For given function g(-).
introduce

ric) = limsup‘e—{ﬂ. c =0
rsee S0}

Definition 2.2. A function g(-) is called O-regularly varying (ORV) if
rc) < o= forall c = 0.

It is obvious that any RV function is an ORV function. Some subclasses of ORV
functions are known in the literature. For example, Drasin and Seneta 5] studied the
so-called OSV funciions.

Definition 2.3. A function g(-) is called O-slowly varying (O5V) if it is an
ORV function such that

supric) < e,
el

It is clear that any 5V function is an O3SV function.

. Another property of r{-) has been used in [1]. Used in [1] the PRV notion, is
introduced here in a somewhat different way which makes it unified with the preceding
definitions. For any RV function g(-). we have ®(c)= ric) = 1 as ¢ — 1. Inorder
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to generalize this property to a wider class of functions we introduce the following
definition.

Definition 2.4. A function g{-) is called pseudo regularly varying (PRV) if
limsupric) = 1. (2.1}
=1l
Remark 2.1. We do not assume in Definition 2.4 that the function g(-) is ORV.
But this property is easy to show by (2.1), since otherwise there exists ¢ =0 for which

r(c) = e=. Using the property r(c) s {r(ﬁ}}z we get  r(+fc) = e, Repeating this

. - .
procedure we oblain a sequence ¢,= clf? tending to 1 as n — = and such tha

r(c,) ===, which contradicts (2.1). Therefore any PRV function is an ORV function,
For a given function  g(-), we also introduce

I'EEE, c >0

fic) = limin
= £ r
It is easy 1o see that condition (2.1) coincides with the following one:
liminfl{e) = 1. (2.2)
c=1

since He)=1/r{l/¢) if we agree that (1fex)=0 and (1/0)=es.
It tums out that PRV propenty (2.1) coincides with condition (1.1} which can be
rewriten in an equivalent form:

lim limsup|=——
e=l oy

Further, the PRV property (2.1) can be enpresscd only in terms of lim instead of
lim sup. that is

*‘ } 1| (2.3)

lim ric) = 1. 2.4)

c—=l

Finally, the PRV property (2.1) can be expressed in terms of one-sided limits,
namely either

lime(e) = limle) = 1 (2.5)
cdl ol

or
limr{c) = limie) = 1. (2.6)
cTi ceTl

We summarize all of these equivalences in the following result,

Proposition 2.1. Conditions (2.1), (2.2), (2.3}, (2.5), (2.6), and (2.4) are
equivalent,

Proof of Proposition 2.1, By (2.2) w¢ have
[m R ./ |

g( -]'_ l| = limsup lim sup max W (1) J

c—+1 ==

limsup limsup
=1 I = =

= limsupmax{ric)=L1=le)} = max{ limsupric)— 1. 1—Iiminﬂ|‘c]} =

=1 c—=+1 e=+1

=1

= mu{ limsuprici—1: 1- |: limsupr{t}] }
=+ -1

S0, conditions (2.1}, (2.2), and (2.3) are equivalent. Also, by (2.2), we have (2.5) <

(2.6) = (24) = (2.3).
Now let (2.3) hold. Then (2.1) and (2.2) hold and
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1 = liminfi{c) < liminfr(c) < limsupric) = 1.
=1 =+ =4
Therefore lim, _, ,r(c)=1, hat is (2.4) holds. Thus (2.3) = (2.4) and Proposition
2.1 is proved. )
Remark 2.2, We often make use of the following result: a function  g(-) 15 not
PRV if and only if there are two sequences {e¢,} and {7, } suchthat ¢, =1 and
t, —+e= as # — oo, buleither

. i
hn‘nm.u:-M =1

nvee Blln)
or
lim inl‘M < L.
L R g ;ll}
It is also worth mentioning that the preceding two conditions can be weaken in
some extend, namely a function g{-) is not PRV if and only if there are two sequences
{c,} and {1, } suchthat ¢, — 1 and 1, o as n —» oo, bul either

limsup8iafa) 4
nsw &)

L R EFH

Remark 2.3. Proposition 2.1 also given another characterization of the PRV
property, namely a function g(-) is PRV if and only if its function r(-) is continuous
at the point ¢= 1,

An important case of PRV functions is presenied by nondecreasing functions,
where the PRV property (2.1) can be expressed only in terms of one-sided limits of
either r(-) or I},

Corollary 2.1. A nondecreasing function g(-) is PRV if and onfy if

limric) = 1. (2.7)
cdl
The same statement holds for ¢ T |, namely: A nondecreasing function g(-) is
PRV if and only if
Iimric) = 1. (2.8)
eTl
Example 2.1, The function gir)=2+ D'} is ORV, but is not PRV,
Example 2.2. Let @ be areal number. ihe [unction

0 for r=0;
£} = {IucxP{HIIHHF}} for >0,
is PRV and is not RV,
Example 2.3. The function
1 for 1e[0,1);
gy =12 for 1e[22,2#4), k=002

/22 for 1e[2%Y,2344D), k=0,1,2,...,
is PRV, butis not RV.
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3. Functions preserving equivalences. [n this section, functions w(-)} and v(-)
are nonnegative and positive for sulficiently large arguments.
Definition 3.1. Two functions o) and v(-) are called equivalent if

. )
tim 40 - |, (3.1)
I =p o [if!'}
The equivalence of funciions is denoved by n ~ v,
v is mawia! (o study the functions  gi-)  preserving this relation, in other word, to
investigale which functions  g{-) satisfy the following condition
!
lim ‘-'ﬂ-t!t}! = ]

D (3.2)
£ = =0}

tor ali cyinvalont Tunctions wi-} e -3 W wlry— wp as -+ =, then so does
el-). manely e - g as 1 -+ oo 100 then clear that any function  gi-). continuous
al wy. preserves equivadence of those wl-) and of-). Varying wy and considering
corresponding  «f ) and v(-) we prove that g ) should ke coniinuous on the semi
axis in order (o preserve (3.1). A different case arises if

lim u{r) = == and  lim wi) = oo, {3.3)

o= I = o

There are other cases, where wi-¢ and o) do not have limits but vary in an agreed
way such that (3.1) holds. Hewcever snowhat follows we restrict ourselves to the case
{3.3).

Defimition 3.2, A function pi-) preserves the equivalence of funcrions if (3.2)
frofels for ofl cgwivatent froretions wi-y amd o0 3 sevisfying (3.3). In orher words, a
function i) preserves cquvalence of fimciens i gonu ~ g e v for afll w(-) and
vl-) such then =~ v oand (3.3) hoteds

Liv o similar way, one can introduce the notion of funcuons  g-)  preserving
eyuivalence of sequences. Al the sequences Ju,. w20} and {v,. n20} below
are assumed 1o be noanegative and prositive foe sufficiently large indices,

Definitio: X3 Twe sequeaces (u,. 020} and {v,. n20} are called
couivadent if

lim = = |, (3.4)
n—ywll,
Equivalent sequences {u,. n20} and {v,, 020} are denoted by u ~ v,
Delinition 3.4. A funcrion gli-) prescroes equivalence of sequences if

lim 80) _ (3.5)
LI

for all equivalent sequences {u,. n20} and {v,, n=20} such that

lim u, = e and limup, = oo, (3.6

One of the inost important properties of PRY functions is that they and only they
preserve equivalence of both Tunctions and sequences.

Theorem 3.1, The following three conditions are equivaleni:

(a} a function g{-) preserves equivalence of functions;

ih) a funcrion g(-) preserves equivalence of sequences;

{c) a funcrion g() is PRV,

Remark 3.1, Ali the conditions of Theorem 3.1 are equivalent 1o the following
one (which secms o be the most uselul in applications):
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(d) a function g(-) preserves equivalence of continuous increasing to infiniry
Sfunctions.

Proof of Theorem 3.1. The equivalence (a) < (b) is trivial.

If (b) does not hold, then there exist two sequences {s,, n=20} and {1,, n20}
suchthat 5, — =, 1, ==, and ¢, =(s5,/1,) = 1 as n — o=, but cither

limmpg—"l-{s ) = lim:?.1|.||:-"'*)--—-—m";"']I |
n=te & "] ] 3“:.]

O
liminf88) = jiming 8l o |,
n=s e BlUa n=te Bl

By Remark 2.2 this means that condition (¢) does not hold, whence the implication
{c) = (b) follows.

Mow if (c) is not satisfied and (b) holds, then by Remark 2.2 there exist two
sequences {c,. n20} and {1,. n20} suchthat ¢, = 1 and 1, e as n = =
but either

limsupE&ln) & 1 or liminf8Cn) 4y,
LT R'!u Al = = R IIJ'I

On the other hand lim,,_, (¢ 1, )1, = 1 and by (b) lim,_, . g(c,r, )/ 2(r,) = L.
This contradiction shows that (b) = (¢). Theorem 3.1 is completely proved.

4. Representation theorems. There are two basic result on RY functions, namely
the representation theorem and the uniform convergence theorem, As it is pointed [10]
these results are in fact equivalent. Several proofs for RV functions are known in the
litcrature (sce, for example, [11]).

For ORY functions the representation theorem is proved in [6] (also see [4]) and the
uniform convergence theorem has been obtained in [4], Our current goal is 1o obtain a
representation for PRV functions in the manner of Karamata®s theory of RV lunctions.
We recall the representation theorem for RV [unctions: a function  g(-) is RV if and
only if

i
gty = cxp{u{r} ¥ Jﬁ{ﬂﬁ} (4.1}
.I'“ ¥

for some ty>0 and all t 2 ty, where of-) and Bi(-) are bounded functions such
that the limits

lim ce(ry amd  lim Bl1)

| o= I i
CXISL.

For 5V functions, onc additionally has lim, _, . Bir) =0,

In the case of OSV funciions it is proved in [5] that they also have the
characterization representation (4.1), where of-) and Bi-) arc bounded functions
such that lim, _, . Bty = 0.

ORV functions also have the same characterization representation (4.1, where
-} and B(-) are bounded Nunclions (see [6] or [4]).

MNote that all of these representations are nol unigue., For example, one can siarl
from a discontinuous function [B(-) and oblain the same representation with other

functions @{-) and |-3{-], where fi{-} is continuous or even differentiable as many
limes as one wants,
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The proofl of the representation of PRV funciions is based on that for ORV
functions (see [4]).
Theorem 4.1. A function g(-) is PRV if and only if it has represemation (4.1),
where af-) and B(-) are bounded functions such that
lim limsup|oict) —a(t)]| = 0. (4.2)

=2 P4

Remark 4.1. Condition (4.2) characterizes the so-called sfowly oscillating
functions {sce [11]). Using this notion, Theorem 4.1 can be stated as follows: a
Suncrion g~y is PRV if and only if it has representation (4.1), where -} is
bannded and slowly oscillating and Bl-) is bounded.

FProof of Theorem 4.1. Let gi-) be a PRV function. Since it is an ORV function,
represcatation (4.1 holds for it, where af-) and (i) are bounded. It only remains
to show that condition (4.2) is satisfied. Note that

;.l,-; = In(ciesssup|pir)).

=T

whenee in view ol the boundness of B(-)

‘[ Bfﬂ

lim limsup

¢ =1 Pk

If (4.2) is not satisfied, then there are a sequence ¢ } suchthat ol 1 as k> o
and &= 0 lor which

limsup|a(c ) —alr)] 2 & forall k.
P =b on

This means that for any k. there exists a sequence {1; } such that 1 Teasi—oe
and cither

ﬂ{ﬁ'ﬁf&.‘} s !'I{F;’J E’ g |0¢' ﬂ" -l-‘ {4.3}
or
i) )
eyt ) — i) = =5 forall i (4.4)
Condition (4.3) and representation (4.1) imply that
; : Cyly
Gty = exp § - jﬁf:)— —exp{8/2} as L k—eo,
R“H}

which contradicts the PRY property {2,11. Similarly, (4.4) also contradicts (2.1), which
compleics the proof of (4.2).

On the other hand. any function  g(-) possessing representation (4.1), where  o-)
and 3} are bounded and (4.2) holds, is a PRY function. Indeed

% expf afe,r) - u{:}}cxp{'[ﬁ{a'}—}

and the second factor tends o0 1 as ¢ — == and then ¢ — 1, in view of the
boundedness of ). The first factor approaches 1 as 1+ — = and then ¢ = 1 by
condition (4.2). Theorem 4.1 is proved.

Another representation for PRV functions is based on that for RV functions,
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Theorem 4.2. A funcrion g(-) is PRV if and only if
i
g2 = ex;!{ alr) + J' b{u}du} (4.5)
i

for some 15> 0 and all 1 2ty where the functions al-) and bi(-) are such that
the limit lim, _, . a(r) exisis, lim,_, . bir) =0, and
of
lim lim iup_[ Blr)dn = lim liminf | B(u)du = 0
c=l r=bs e=p] 1=

Proof. Leta function g(-) be PRV. Then g(ln(-)) is a slowly varying function,
that is, a RV function of zero index. We use representation (4.1) for  g(In(-)):

[]
ds
elln(e)) = exp{u{t] + _[B{s:l?}.
i ’
where the limit  lim, _, o) exists and  lim, _, .. f(r) = 0. Thercfore representation
(4.5) holds with a(r) = aie’) and bir) = Ple’). It is easy to see that the functions
al-) and b(-) satisfy the conditions of Theorem 4.2,

The converse statement is also easy o prove.,

Remark 4.2. The key point in the proof of Theorem 4.2 is the property that g = In
is SV for any PRV function g(-). The example g(r) = exp{+/r} shows that the
converse 1o this property is not true. Also g = In is not necessarily SV il gi-) is PRV
(see gi-) of Example 2.1). However one can prove that g = In is OS5V in this case.
Again the converse is not true (confer the Tunction gir) = cxp{ T, }},

5. Uniform convergence theorem. We use the method introduced in [10] for RV
functions and applied in [4] for ORV functions.
Theorem 5.1. Let g(-) be a PRV function. Then

lim limsup sup g

(5.1
all 1=bae 12csa g“j

Proaf. Condition (5.1) can be given in an equivalent form in lerms of the function
ai -} involved in the representation (4. 1), namely

lim I|m~iu sug |[etlcty— )| = (5.2)

atl 17*

Here we prove (5.2). Set a(r) = a(e'). Then aix + p) - alx) = ofede”)—ale”)
and

lim limsup |a(x +p)—aix)| = 0. (5.3)
plo r—vem
We show that
Ilmllmsup sup |alx+p)—alx)| = (5.4)

ed x=e ppse

Otherwise, there exists 8 > 0 and sequences {x,} and {p,} suchthat x, Te
and W, L0 a5 n— e, and

|alx, +u,)=alx,}] 2 & forall n (5.5)
By condition {(5.3) there is Wy >0 such that
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limsup |a(x + Q) —a(x)| < g forall 0 = B = W,. (5.6)
x—dma

Define sets

i, = {ue[ﬂ.uﬂ]:|a{xk+u}—a{x*}|<g for all kan}. (5.7)

V, = {leiﬂ,uu]:lafx* +1; +A)—alx; +uk}f-:§ for all kén}. (5.8)
Now U, T|0.pg] and V, T[0,py] as n— . Moreover
meas (U,) = %u{, meas (V,) = 3“0 forall n 2 ny. (5.9

Sct V, =V,+,. sothat meas(V,)=meas(V,) and assume p,€ [O.pny/2] for

r 3
1= ng. Mote that meas (V) = meas(V,) = Euﬂ. and

U,c[0pg] =[0.305/2] forall n,
V, c[Opg]+p,c[0.3up/2] forall nzng.

So, in view of (5.9), U, N V, #@. Thus thereis p, € U, such that p, —p,e V,.
Mow by (5.7) and (5.8)

|a(x+u))—alx,)] < g |alx+p)—alx, +1,)| < g

By the triangle incquality, this implies |a(x + 4, )—a(x,)| <& which contradicts (5.5).

6. Quasiinverse functions satisfying the PRY property. We have mentioned in
the Introduction that the PRV property is sometimes required for inverse functions 1o
study relationships between limit theorems for sequences of random variables and
those for their corresponding renewal processes. One can express the PRV property for

an inverse function by putting g~ '(-) into condition (2.1). However, it is useful to
reformulate this condition in terms of the function g(-) itself. In doing so we take
nondecreasing functions into consideration, oo, Since the inverse function is not
necessarily exists for nondecreasing g(-). one has 1o consider a generalized inverse
function in this case,

Let F''(R,) be the space of real-valued functions f(-)={f(t), + =0) such that:

(i) supge, <7 flr) < = forall T =0;

(ii} limsup,_, . fl1) = ==

(iii) therc exists a number 55 =355(f) 20 such that M, = {120: f(n =5} =+
forall 5=z 5.

Also we intraduce the following notations: C''(Ry) for the space of real-valued
continuous Tunctions (F(ry, 1 =0) such that limsup, | . flf) =< CT(Ry) for the
space of real-valued continuous functions (f(r), r=0) such that lim, _, . f(r) ==
Crec{Rg) for the space of functions f(-)e C'™'(Rg) such that functions f(-) is
nondecreasing for large 1: Ch.(Ry) for the space of functions f(-)€ C"™"(Ry) such

that functions f(-) is sirictly increasing for large 1.
Mow we introduce the notion of quasiinverse functions which is suitable for our
goal.
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Definition 6.1. Ler f(-)eF™'Ry). A function f""(y=(f""(s). 520} is
called quasiinverse function for f{-) if

(i) f "D{-} is mondecreasing;

(it} ff"”{s} —» oo, (A5 § —F o]

(iii) there exists g number 55 20 such that fl: f"”:‘_:}] =g forall 525y

For any fi-)e C‘“’{R“}, a quasiinverse function exists and, possibly, it is not
unique. If  f(-) e Cip.(Ry) then there exists the inverse function  f "I{-} such that
f{f"{.-;]) =5 and f‘l{f{r}j:r for sufficiently large 5 and ..

Example 6.1, Let x(-)e C™)(Ry). Put & "(s)=min{r=0: x(t)=s} for 5=
= sy =x(0), and put x{""(s)=0 for 0<s5<sq if 50>0.

The function .ri'”{-} = [.rl_l{s}, 5= ﬂ] is a quasiinverse for x(-),

Example 6.2. Let x(-)eC™(Ry). Put 25 "(s)=max{rz0: x(t)=5s} lor 52
=55=x(0), andput x5 =0 for 0 5<5q if 50>0.

The function x5 ()= (x—‘;”{s}. 5= U} is a quasiinverse for (-). Observe that
A V)< 5V(s). 50>0. andin general vV () 2250,

Lemma 6.1. Let g(-)eF™"(R,). Then its quasiinverse funciion gV s
PRV if and only if

=0
i £ el
limlimsup=——— = 1. (6.1)
E T g N

Proof. This lemma follows from Corollary 2.1.
Proposition 6.1. Let g(-)e Cry (Ry) and g'7"() be a quasiinverse function
for gl-). If

Iimini’M =1 forall ¢ > 1, (6.2}
t—+e 21

then the functicn g[_”{-} is PRV,
Proof. First we assume that condition (6.2) holds and (6.1) is not satsfied. If
(6.1} is not satisfied, then there exist a number >0 and sequences {e, } and {5, }

suchthat ¢, L1 and s, Tee as n—r e and

(=1}

g "5, > 1+8)g""(s,) for n = 1.

In its turn condition (6.2) implies that for the above & (here exists a number § > |
such that

e(il+8&)) > welr) for sufficiently large 1.

Therefore for sufficiently large »

e = 8(8e,5,)) 2 g(1+8)87(s,) > ve(e's) = s,
whence ¢, = ¥ = 1. This contradiction proves the implication (6.2) = (6.1),
Therefore Proposition 6.1 is proved by Lemma 6.1,

Theorem 6.1. Ler gi-)e Co(Ry). Then its inverse function g~ '(-) is PRV if
and only if condition (6.2) holds.

Preof. By Proposition 6.1, (6.2) implies that _g"'{-} 15 PRV.

I53N 00416053, ¥up. seanm. sypn., 2002, e, 54, N° 2



PROPERTIES OF A SUBCLASS OF AVAKUMOVYIC FUNCTIONS ... 159

Mow we assume that g"{-} is PRV. If nevertheless (6.2) is not satisfied, then
there exists a number ¢ > 1 such that liminf, _,  glcgr)/ g(t) =1, whence we get

that there exisis a sequence {1, } suchthat t, Teo as n—3 e and
n—t o g{f,tj
This implics that the sequences u, = glcgr,) and v, = g(1,) arc equivaleni and

satisfy condition (3.6). By Theorem 3.1 g~'(-) preserves equivalence of sequences
and therclore

1= lim g:l‘:“"} = lim S
nbe@ (U,) LT
This contradiction proves (6.2). Theorem 6.1 is proved.

Remark 6.1. The above theorem allows for a characierization of inverses ol RV
functions. Namely let g(-) be a RV function of an index c. Then gz~ '(-) is PRV if
and only if =0,

Corollary 6.1. Let g(-)e Co (Ry). Then it is PRV if and only if

=-E'D}|..

-1
liminfE=2 > | forall ¢ > 1.
o= & (1)
The following results shows that the limit behavior of the ratio of inverse functions
is the same as that of the original functions,
Proposition 6.2. Assume that v(-)eF'™(Rg) and g(-)€ Ci(Ry). Moreover
ler condition (6.2) be savisfied. If
x(r)

lim —— = a forsome ae (0.e=), (6.3)
1= 8l1)

then for any quasiinverse function x'~V(-) we have

=1
; i5)

1 6.4
,I.T..g"‘[ﬂﬂ} o

-1

FProgf. Since x'7 () is nondecreasing and unbounded. by (6.3) we have

: _1.{_.'._‘.—”{5}]

i )

A=1)
lim g!a {:}!

—re X0

and thus
= ],

By Proposition 6.1 and condition (6.2) we obtain

o)

saw & (sl/a)
Therelore

A=1) 'l[g{_,;l'“{,] ]
li X (5) - 4 =i
.T..s"(sfﬂ} .'_r.".. g (s/a) :
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Proposition 6.2 can also be proved for zero and infinite limits. Howewver, an
additional condition is required in this case.
Proposition 6.3. Ler g(-)e Cpn.(Fy) and

)
timinf £ 5 4 ©6.5)
= £ (1)

for some cg > 1. Assume that x(-)e ™" (Ry) and V() is its quasiinverse. If
condition (6.5) halds, then the following relavions are satisfied:

(=1
lim 28 = oo = i 22 = g, (6.6)
= g1} smpee & (5}

L=10

im2@ e 0= im P ® - 6.7)
l—l"'.g“:. e B (—5}

Proof. Firslt we prove that
;ILm...”""} = = and rlenr[r} = 0, (6.8)

where ()= lim inf, _,_,_{g"l[r;}f g"{r}} and  F(e) =lim sup,,,.,{;: Tery/ ,::"{f}].
Indeed
2 -
L = timinti() = timinti() > (lminti)) = i2
C =4 = C = ==
and the first relation in (6.8) follows by condition (6.5). The second one follows by
Fle)=1/1(1/¢).
Put ai(r)=x(r)/glry for ¢=>0. Then for sulficiently large 5> 0

g"{d{x"“(s_llg{x""m}] )

25
~L{gf -] y-u (=13
L) o)
V5 g (5)

It follows from (6.6) that

g (a(+""(5))e(x""(5)))

-1
lim inf . > limint§ 0080 _
5= o kY {.!‘} P I
-1 -1
= Ilminrs—M > lim Iiminngm],
1= 8 U c—ba f=he B 1
By (6.8)
=1
lim timinf$ =< = o
coe e £ U
Therefore

=1 =1} =
- (a(x="())e(+' "(s))
PR K5

and in view of (6.9)
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=1
lim sup'r_lﬁl =

Thus (6.6) is proved.

Similar reasonings prove (6.7).

For RY Tunctions. the above resulls specialize as follows.

Corollary 6.2, Let an increasing continuous RV funciion  g(-) be of a positive
index o and «-ye PRy, If

vir})

lim — = ge[0,ee],
= 201}

then
lim .‘.f—l]{-s} = (l)”G
f—do g_i{sl i
for any guasiinverse function x""(-). Here we assume that (1/=) = 0 and
(1/0) = &=,

The preceding results allow us to describe the class of increasing unbounded
functions  g(-) for which the following relation holds:

x() = g() = V)~ g7 (6.10)
for x(-)eF™"R,).
Theorem 6.2. Ler gi)e C::';{Eﬂ}, Then relation (6.10) holds if and only if
condition (6.2) ix satisfied,
Proof. Let relation (6.10) hold. Consider the function Hiy=¢. ¢t =20, Let ul(-)

and ©f-) be cquivalent continuous increasing unbounded functions.
Then

H~v &S pov =] ﬁuau"ug—g.

By (6100 this implies that

{Weorv I o;;}-l-g'-] t::ag_l n!ho:r_l-g_l c:&g_1¢tlmg_lbu.
This means that _r:']{-} preserves equivalence on the space of continuous increasing
unbounded functions. By Remark 3.1 and Theorem 3.1 this implies that the function

g"{-} is PRV and by Theorem 6.1 condition (6.2) holds.
The converse statement is proved in Proposition 6.2.
Theorem 6.2 can casily be converted for the following relation:

x(-)~ g7y = V) ~ gl (6.11)

for x(-) e F*™"(Ry).
Theorem 6.3, Let 2()e CrARg). Then relation (6.11) holds if and only if
gl-) is PRV. Another criteria for (6.11) is

lim in
L

-1
(2D oy pralt ¢ > 1.

= ]}

As we have seen above condition (6.2) plays an important role in obtaining
relations of the form (6.10). For a RV function, it means that the index of the function
is positive. We use condition (6.2) 1o introduce the class of PRV functions similar to
the class of RV functions of positive indices.
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Definition 6.2. A PRV function g(-) is said to have positive order of variation
POV ifit satisfies condition (6.2).

Any slowly varying function g{-) is not POV, so does any lasily increasing
function, say g(r)=¢'. On the other hand, any RV function of a positive index is
POV, Example 2.3 above presents a PRV Tunction which is not RV and is not POV,
Example 2.2 gives a PRV function which is not RV but is POV,

Just for the sake of completeness we give the lollowing characierization result.

Theorem 6.4. Let g = g~} be a comtinuous increasing nnbounded function,
The following five conditions are equivalent:

(a) g is POV

(b) =" is POV;

(c) both g and g" are PRV

(d) both g and g~" preserves equivalence of functions;

(e} refations (6.10) and (6.11) fold,

Theorem 6.4 follows from Theorem 3.1, Theorem 6.1, Theorem 6.2, Theorem 6.3,
and Lemma 6.1,

7. Piecewise linear interpolations and their applications,

Definition 7.1. The function

) = ([e]+1=0)x,y + =[xy, 120,
is called the piecewise linear interpolation of the sequence { x,.n=0].
Definition 7.2, The function
o = ([e]+1=0u(e]) + (e[ Dxle ]+ D). r 20

is called the piecewise finear imerpolation of the funcrion  x(-).
Lemma 7.1.

(a) Ifa function g(-) is PRV, then 2(-) alsois PRV and g - §.
(b} Ifa funcrion g(-) is POV, then §(-) also is POV and g - §.
Proof. Let g(-) be PRV. Since it preserves cquivalence of functions (sec
Theorem 3.1).
tim 81D _ i 821D _
= g{f} I =t o g{f}

Moreover
’@ 1| < 80D || +|’3—'”‘]+” - I‘,
&(t) gl glr)
Therefore

lim |ﬂ - 1| =0,
¢ —s | Q1)

that is £ - g, and therefore

Iimsuplimxup@ = limsup Ijmsume =
=] P o 3 =1 [— == n’:“}

This means that g{-) is PRV,

Statement (b) follows form (a).

Lemma 7.2, Let {x,.,n20} and {g,.n=0} be two sequences with g, = 0
Sorlarge n. The following equivalences hold:

T G G .. S
no—t o B ;—tmg{f}
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= {0,

lim 22 = =0 & lim=—
e :--g{!]

lim %2 = o0 e lim 22 "("I‘I
n— e Ly 1w B0)
Proof. Implications ,,«<=" are trivial.
Implications ,,=»" follows from the estimates:
i) 1 _ |, Pream _ 1|_
2(r) Elrl 3|r|+1

mm{f{_l f[_]_} 50 {J_l :u..}
Bl B 3(‘3 ] il

Theorem 7.1. Let a continucus increasing unbounded function g(-) be POV and
{x,.n20} be a sequence such that limsup,_, _x, = o. Assume that iV isa
quasiinverse funcrion 1o the linear interpolation %) of the sequence {x,.n=z0}.
Then the following staternents hold:

+

-1| s

-1
T e i, .1
n—sm @ ﬂ]‘ f—pem @ (£)
i i !—I]{ﬂ - [72
.rr—bn-xlrnj s af m } = le-g {SIE} ' ’ j
{-1)
lim i = oo = lim .T_I_I:S:I = 0, [73]
T L] s £ (5)
X i""[.s']
lim == =10 li = s, 74
Eeepl) o ey 8

Proof. To prove (7.1) we note that its left hand side implies by Lemma 7.2 and

Lemma 7.1
x[.r]'
lim = |,
£t -g{:}

Proposition 6.2 yields

whence (7.1) follows. Similar reasonings prove (7.2), (7.3), and (7.4).
Corollary T.1. Let a continuwous increasing unbounded funciion g(-) be POV
and {x,..naﬂ-} be a sequence such thar  limsup, .. X, = . Assume that

i{' "'( ) and X ”( ) are two guasiinverse functions to the linear interpolation ()
of the sequence {x,, nz20} and wi-) isafunction such that
H ) = ay(9) < wis) £ ") + ax(5) (7.5)

for sufficiemtly large 5, where ap(*) and ay(-) are two nonnegative functions for
which

lim a_':ﬂ =0 and lim @
s—mg (5) s—wmg (5)
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Then the following statements hold:

o 2 =] = G YEL - (7.6)
n—=gln) =t (5)
..'E"..;_:: = ae(0,) = ,Ii.m..ﬁf{%ﬁ =1, 1.7
H'".ﬁ == lleﬁgirfi—L = 0. (18
nlinﬂgx: =0= Jli.m“g—lfii—i) = oo, (1.9)

8. Generalized renewal sample functions and processes for continuous
functions and processes. Given a real-valued continuous function x(-) such that
lim ,_, . x(t) = ==, the generalized renewal sample functions are defined as follows

feiy(8) = miu[uaﬂ: max x{1) 2 s] = min{uz0: x(r)=5}.
LI L4 £ 4]

My (8) = max{uaﬂ: max ax{i) = sl,
Osigu

Toy(5) = meas{r20: x(1) <5} = jf{x{:}g s)dr,
i}

ly(s) = max{rz0: x()=5}

for s 2 x(0), and we put  fi . (8)=m, ,(5) =T, ()=l ,(5)=0 for 055 <x(0)
ilf x(0)=0.

If the function x(-) is continuous increasing and unbounded. then all the four
functions fi (), mg (), Tyo(), and [,(-) coincide. Otherwise they are
different and

Fur(8) £ my (8) S T,4(5) £ Lyy(s) (8.1)
for s 2 0. Observe also that the functions f,.,(+) and m, ,(-) are well defined for
() eC"™(R,) and are quasiinverse functions for x(-) (see Example 6.1).

Moreover, if x(-)e C™(Rg), then the function [, ,(-) is a guasiinverse functions for
x(-) (see Example 6.2).

Propositions 6.2 and 6.3, Theorem 6.1, and formula (8.1) yield the following
statements,

Proposition 8.1. Assume that x(-)e C™(Ry). g(-)e Co(Ry). and the function

g ') isPRV.If

Iim'ﬂf—] = g forsome ae(l)e),
l-illg{f}
then
fn.,':-” B . m_.-[.}{'] & _'.tu.p{'] & _j_u.d'.!’_.

lim ——— = lim = |im = lim -
s e g " sla) -.--,_'r{.s.fﬂ] --rng_1{sffr} samg (s/a)

Proposition 8.2. Assume that x(-)e CT(Ry). g(-)e Co (Ry) and relation
(6.5} holds. Then the following statements hold:
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ooxin
lim 2 o,
(a) if .-.l."lg(;] then
. Say(8) comgy(s) L Tg(8) L ly(s)
1 g == P = R T = ] = ﬂ;
bargel g () ol g () Faral g (s broed g (s)
o X(E)
(b) if :E“-g{-r} = 0, then

TP 0 LC N 70\ 70 C) B /51 C) B

li —_— e
r—ses g (5) =g (5)

:—-—g"I(.r} f—be 3"1(3}
For RV functions these results become as follows.
Corollary 8.1, Let an increasing continuous RV function g(-) be of a positive
index « and x(-)e C”(Ry). If

lim i‘l} = ae[0, =],

= -g(f]
then

bim =—y— =D =r—
s=em g (5) 1= g (5) s—+e g (5} f—mp (S

Here we assume that (1/e) =0 and (1/0) = oo,
Let {£, %. P} be a probability space, and X = (X(w,2), we, 1=0) be real-
valued stochastic process. Put X(w)=(X(w, ), r=0), mefl.
Given a real-valued stochastic process X such that X{w) € C™(Ry) almost
surely, the generalized renewal processes are defined as follows
Fe(,5) = frw(s),  My(,5) = myg)(s).
Ty(w, 5) = Txu(s), Ly, 5) = lyg(s),

for mef} and s=0.
Propositions 8.1, 8.2 yield the following theorems.

Theorem 8.1. Let X be a stochastic process such that X e CT(Ry) a. 5.

m SO0 | gy MO0, TG g egld [1)”“.

i

Assume that g(-) € Cine(Rg) and the function g~'(:) is PRV. If lim Kn(:.}.‘ o
f=pem 2

a .5 for some a € (0, ), then

1imfli,“”;”j= Hm"-ﬁ%: umﬁfé‘-‘&ﬂf |im5f‘”*—’;=1 as.
sra

sug (sla) 1= g (sla)  so=g'(sla

Theorem 8.2. Ler X be a stochastic process such thar X e C™(Ry) a. 5,
() ECL.Ry) and relation (6.5) holds. Then the following statements hold;

(a) if lim X@.0) ee, then

r=sem QU
(w, 5) . My (w,5) o el 8 (.5) _ :
IS S e S = S =0 e
X, 1)

by if lim — = 0, then
® ¥ J'lrn &)

lim D23 o gy M) | o, (0D |, @),

il B f )] =e g s) = gmU(s) F3m gmNE)
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Corollary 8.2, Let X be a stochastic process such that X e C"(Ry) a. s

and let an increasing continuous RV function g(-) be of a positive index o. If

il X{w, 1)
t—ssa 2(F)

T lioe
f!iim)_ _’i_} ll{_['.}_.‘fl lim _{m“” - [—]-) a. §.

:—--g (s/a) ;—;-3 (s/a) :—n-g (s/a) so=g (s/a) a

Here we assume that (1/ee) =0 and (1/0) = oo,
Example 8.1, Let X(r), ¢ 2 0, be an almost surely continuous process with

independent increments such that EX(1) =a > 0. Then X{1)/r — a a. s. and by
Corollary 8.2

5= - 5 = o .r g=te 5 s—%oa §

= g a.5 forsome ae[0,00], then

Example 8.2. A number of examples can be given for additive functionals of
stochastic processes. Let Y(f)=(Y{w.1), we ), re E be a strictly stationary

measurable stochastic process such that E|Y{0) '* < oo for some € > 0 (this

guarantees that X(-) is a. s. continuous) and E[¥{0)/F]=a >0 a.s., where F is
the o-algebra of shift invariant events. Put

I
X = X(w.1) = [Y(o.u)du, 12 0.
0
Then by the ergodic theorem

X(0)

lim —— = g a.s., (8.3)

Jepu |

whence (8.2) follows by Corollary 8.2,

Mote that @ is nonrandom if ¥(.) is ergodic.

Example 8.3. Assume that the process Y(-) is second order stalionary,
measurable (this guarantees that X(-) is a. 5. continuous), and such that EY{0) = a >
= 0. MNecessary and sufficient conditions for (8.3) are given in [12] in this case. We
use a weaker form of those conditions which also is given in [12]. If R(-) is the

correlation function of the process  ¥(-), then the (“best possible™ sufficient) condition
is as follows:

the iniegral j' R” toglngrdr Converges.

Thus the latter condition implies {3.3}. whence (8.2) follows by Corollary 8.2,

9. Generalized renewal sample functions and processes for nonrandom and
random sequences. Given a real-valued sequence {z,.n20}, =z(0)=0, the
generalized renewal sample functions are defined as follows

fi:,1() = min{n20: max(z,z.....2,) 25 }.
my . }{s} = sup{n = 0: max(zy, 7y,.... 2, ) =5},

#.10) = ¥ Iz, s9).

m=]

I,y 8) = supfn=20:z, s},
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If lim, _, .z, ===, then fr (s}, my, o(s), # (s), I, 4(5) are well defined
for 520, and we can replace sup by max. If the sequence {z_} increases, then the
three functions my 1) #{,_}{-}, f{,"}{-] coincide. Otherwise they are different
and

Sz ) S mp, () S #, 4(8) S I, 4(8) {9.1)

for s20.

Along with a sequence  {z, } we consider its piecewise lincar interpolation ()
(see Definition 7.1) and two quasiinverse functions  f;,,(-) and [;,(-) for the
function Z(-) (see Section 7).

It is clear that

Fiy(®) S fo )., 1(8) S Ug(8) (9.2)

forall s=>0.
From Corollary 7.1 and inequalities (9.1) and (9.2) we obtain the following result.
Proposition 9.1. Ler a comtinuous increasing unbounded function g(-) be POV
and {z,.nz0} be a sequence such that lim,_, .z, =. Then the following
statements hold:

(a) i lim . a € (0, =), then
Jl-'ru,E{ﬂ'}

- R 8 !
tim L2 i Pl 2 i el W s i 21 oy
srng (s1a) ~ smng (s/a)  smmg (sla)  smmg(sla)

(b) if lim <A = oo, then

n— o (1)

IimM: Iimfif—'i—ﬂ: Iimﬂﬁrﬂ= limiiﬁ=ﬂ:

1= .E- (5) 5= v g' (5) g =5 - g- (5) 5= s g_ (5)

(© if lim =% = 0, then
ﬂ—iug{ﬂ'}

. fi:_lliﬂ i m{;_lis} L= #Iz_tl‘.s} = "I 149
:Il—-mw el =Iirm-* SO :]E“* ‘RO J]Lm“ gl E
Let {2, % P} bea probability space, and Z = (Z,(w), meQ, n=0) be a real-
valued random sequence. Put {Z,(w)}={Z (0),n20}, weQ.
Given a real-valued random sequence £ such that 2, = 0 and
lim,_, .7 (w)=9= almost surely, the generalized renewal processes are defined as
follows

FEIW.J} = ,ﬁz"{m}(ﬂ. Hz{l‘.!.'l.ﬂ = m{ Z‘{{ﬂ}}{"“}*
Nir{fﬂ,!} = #[z-{m}}{.!'}.. Lz{tﬂ..!‘] = "[Z..I“”{'ﬂ'

for wef}, s=0.
From Proposition 9.1 we obtain the following result.
Theorem 9.1. Let a continuous increasing unbounded function g(-) be POV and

let & be a random sequence such that lim,_, Z (W)= a. 5. Then the
Jollowing statements hold:
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Z,(w)

(a) if lim = g a. 5 forsome a0, =), then

=4 o [ }

Fzlw, 5} (w, 5) Ny (w, ; L (w, 5)

_Zi_"_ = i Mz@.5) —il— m—4—=— =1 a5
i P e o M T ol e
(b} if Imz" }=¢ﬂﬂ.5.,fﬁfﬂ

o= g{nfl
(., 5 (o, 5 Nz, 5) 5)
'LI_ im 2228y 222 -5—1—
1o (5) o= g (5) s @ (5) PR
Z_ ()

(c) if lim ==— = 0 a.s., then

A= = {H’}

(m, 5 (e, 5) . W, 5) 5)
I—FE_H_ —Ill-_gz_j_ —iﬂm T—iﬂ_z_iﬁ

Corollary 9.1. Let & be a random sequence such thar lim, _, ¥ (0)== g,
5., and let an increasing continuous RV function  g(-) be a positive index «. If

m L) _ a a. 5 for some ae|0,02], then
1 —b o g[ﬂ]
. Fp(w, s) (), 5) @3 _ o L. |y
lim o= = —Z-|— -l'—,— = |-
i 7 e R T Tl b e ) G) e
Here we assume that (1/==) =0 and (1/0) ===,
Example 9.1, Let X, =(X,(w), we), n = ....~1, 0, +1.... . be a sirictly

stationary sequence of random variables such that E| X | <o and E[ Xy/F | =a >0
a. 5., where F is the g-algebra of shift invariant events.
Put Zy=0, z,,(m}=}“_:_l X, (w), n=1. Then

lim Za{®

= - H

= a{w) a.s.

and by Corollary 9.1
G SR S). ey MERES) ey TR, g L0 L
FETT R | P 5 PR | F—pe 5 ali)

Example 9.2. This is an extension of Example 3.2 in [1]. We use the same

notation as in Example 9.1. Further let &(-) be a positive continuous function such
that

{i) bi{-) isPRV,
(ii) /b(r) is increasing and unbounded,

[§i1Y] llmsupb{ ) < ¢ forall ¢ > 1,
| e e
Put Z5=0, and
Zw) = — » X(w), n2z2l.
b(r ;,7:1 .

Then
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m M - a. 8.
r—pn{ﬂ]’bfﬂ]} '

The first-passage time for this scheme
M)+ 1 =inf{n:Z,>1} = inf{n: S, >b(n)}

is of some stalistical imponance and plays a key role in what is called the nonlinear
renewal theory.,

It is clear that the function g{f)=t/B{r). ¢+ > 0, is continuous increasing
unbounded and moreover this function is POV, Thus by Theorem 9.1

tim SO |y Mp(®0) Jimfﬁ{‘“—‘”‘;= o 4T

s=mg (sfa) somg (sfa) sow=g7'(s/a sawg Wsla)
More examples for the discrete scheme can be found in [1].
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