O. V. Kosyak (Inst. Math. Nat. Acad. Sci. Ukraine, Kyiv)

ELEMENTARY REPRESENTATIONS OF THE GROUP $B_0^{\mathbb{Z}}$ OF INFINITE IN BOTH DIRECTIONS UPPER-TRIANGULAR MATRICES. I

ЕЛЕМЕНТАРНІ ЗОБРАЖЕННЯ ГРУПИ $B_0^{\mathbb{Z}}$ НЕСКІНЧЕННИХ В ОБИДВА БОКИ ВЕРХНЬОТРИКУТНИХ МАТРИЦЬ. І

We define the so-called "elementary representations" $T_p^{R,\mu}$, $p \in \mathbb{Z}$, of the group $B_0^{\mathbb{Z}}$ of finite, infinite in both directions upper-triangular matrices using quasi-invariant measures on some homogeneous spaces and give a criterion of irreducibility and equivalence of the constructed representations. We give also a criterion of irreducibility of tensor product of a finite and infinite number of elementary representations.

Визначено так звані елементарні зображення $T_{\rho}^{R,\,\mu},\,\,\rho\in\mathbb{Z}$, групи B_0^Z фінітних нескінчентих в обидва боки верхньотрикутних матриць з використанням квазіінваріантних мір на деяких однорідних просторах і наведено критерій незвідності та еквівалентності побудованих зображень. Дано також критерій незвідності тензорного добутку скінченного та нескінченного числа елементарних зображень.

- 1. G -action, quasiinvariant measures, and representations. The following construction of the unitary representations of a topological group G is well known. Let us have some measurable space X with a probability measure μ on which the group G acts, i. e., we have a group homomorphism $\alpha: G \to \operatorname{Aut}(X)$ such that
 - 1) $\alpha_e(x) = x \quad \forall x \in X$, where $e \in G$ is the identity element;
 - 2) $\alpha_{t_1}(\alpha_{t_2}(x)) = \alpha_{t_1t_2}(x) \quad \forall t_1, t_2 \in G, x \in X.$

Let μ^{α_t} , $t \in G$, be images of the measure μ with respect to the action α , i. e., $\mu^{\alpha_t}(\Delta) = \mu(\alpha_{t^{-1}}(\Delta))$. If $\mu^{\alpha_t} \sim \mu \quad \forall t \in G$, one can define the unitary representation $\pi^{\alpha,\mu} : G \to U(L^2(X,d\mu))$ of the group G by

$$\left(\pi_t^{\alpha, \mu} f\right)(x) = \left(\frac{d\mu^{\alpha_t}(x)}{d\mu(x)}\right)^{1/2} f\left(\alpha_{t^{-1}}(x)\right), \quad f \in L^2(X, d\mu).$$
 (1)

2. An analog of the regular representations of infinite-dimensional groups. The regular representation of a locally compact group G is well known (see, for example, [1]). It uses existence of a G-invariant measure on the group G, the Haar measure, and is defined by formula (1) with X = G and α being the right or the left action of the group G on itself.

For a group G that is not locally compact, it is impossible to define a regular representation, since there is no G-invariant measure on the group G [2], nor is there a G-quasiinvariant measure either [3].

An analog of the regular representations of some infinite-dimensional noncommutative groups, current groups, were constructed and studied firstly in [4-7].

An analog of the regular representation for any infinite-dimensional group G, using G-quasiinvariant measures μ on some completions \tilde{G} of the group G is defined firstly in [8-10]. It uses the formula (1), where $X = \tilde{G}$ and α is the right or

the left action of the group G on \tilde{G} . More precisely, let $H_{\mu} = L^2(\tilde{G}, d\mu)$. We define an analog of the right $T^{R,\mu}$ and the left $T^{L,\mu}$ regular representations of the group G in the space H_{μ} .

$$T^{R,\mu}, T^{L,\mu}: G \rightarrow U(II_{\mu}),$$

in a natural way,

$$\left(T_t^{R,\mu}f\right)(x) = \left(\frac{d\mu(xt)}{d\mu(x)}\right)^{1/2}f(xt), \tag{2}$$

$$(T_s^{L,\mu} f)(x) = \left(\frac{d\mu(s^{-1}x)}{d\mu(x)}\right)^{1/2} f(s^{-1}x).$$
 (3)

Obviously $\left[T_t^{R,\mu}, T_s^{L,\mu}\right] = 0 \quad \forall t, s \in G$, hence the right regular representation $T^{R,\mu}$ is reducible if $\mu^{L_s} \sim \mu$ for some $s \in G \setminus e$ or the measure μ is not G-right ergodic. Let μ be a G-right quasiinvariant measure on \tilde{G} , i.e., $\mu^{R} \sim \mu \quad \forall t \in G$.

Conjecture 1. The right regular representation $T^{R,\mu}: G \to U(H_{\mu})$ is irreducible if and only if

- μ^{L_s} ⊥ μ ∀ s ∈ G \e;
- 2) the measure μ is G-right ergodic.

Remark. This conjecture was formulated by R. S. Ismagilov in 1985 for the group $B_0^{\mathbb{N}}$ of finite, infinite in one direction real upper-triangular matrices with unities on the principal diagonal and any Gaussian centered product measure μ_b .

In this case the conjecture was proved in [8, 9]. For the same group $B_0^{\sharp,\downarrow}$ and for any product measure $\mu = \bigotimes_{k < n} \mu_{kn}$, this was proved in [11] with some technical assumption. In [12] the conjecture was proved for the group $B_0^{\sharp,\downarrow}$ of finite, infinite in both directions upper-triangular matrices for some Gaussian centered product measures. In [10] a criterion was proved for groups of the interval and circle diffeomorphisms and the Wiener measure.

3. An analog of the regular representations of the group $B_0^{\mathbb{Z}}$. Let $B_0^{\mathbb{Z}}$ be the group of finite, infinite in both directions upper-triangular matrices with unities on the principal diagonal. $B^{\mathbb{Z}}$ be the group of all such matrices (not necessarily finite).

$$B_0^{\mathbb{Z}} = \left\{ I + x = I + \sum_{k < n} x_{kn} E_{kn} | x \text{ is finite} \right\},$$

$$B^{\mathbb{Z}} = \left\{ I + x = I + \sum_{k < n} x_{kn} E_{kn} | x \text{ is arbitrary} \right\},$$

where E_{kn} , $k,n\in\mathbb{Z}$, are matrix units of infinite order. Let us denote by R and L the right and the left action of the group $B^{\mathbb{Z}}$ on itself: $R_s(t)=ts^{-1}$, $L_s(t)=st$, s, $t\in B^{\mathbb{Z}}$. Let μ be some probability measure on the group $B^{\mathbb{Z}}$. If $\mu^{R_t}\sim\mu$ and $\mu^{L_t}\sim\mu$ $\forall t\in B_0^{\mathbb{Z}}$ we can define, by formulas (2) and (3), an analog of the right $T^{R,\mu}$ and the left $T^{L,\mu}$ regular representations of the group $B_0^{\mathbb{Z}}$ in the space $H_{\mu}=L^2(B^{\mathbb{Z}},d\mu)$, $T^{R,\mu}$, $T^{L,\mu}:B_0^{\mathbb{Z}}\to U(H_{\mu})$.

$$(T_t^{R,\mu}f)(x) = \left(\frac{d\mu(xt)}{d\mu(x)}\right)^{1/2} f(xt),$$

$$(T_t^{L,\mu}f)(x) = \left(\frac{d\mu(t^{-1}x)}{d\mu(x)}\right)^{1/2} f(t^{-1}x).$$

For the generators $A_{kn}^{R,\mu}\left(A_{kn}^{L,\mu}\right)$ of the one-parameter groups $I+tE_{kn}$. $t\in\mathbb{R}^{1}$. k< n, corresponding to the right $T^{R,\mu}$ (respective, left $T^{L,\mu}$) regular representation, we have the following formulas:

$$A_{kn}^{R,\mu} = \frac{d}{dt} T_{l+tE_{kn}}^{R,\mu} \Big|_{t=0} = \sum_{r=-\infty}^{k-1} x_{rk} D_{rn}(\mu) + D_{kn}(\mu). \tag{4}$$

$$A_{kn}^{L,\mu} = \frac{d}{dt} T_{I+iE_{kn}}^{L,\mu} \Big|_{t=0} = - \left(D_{kn}(\mu) + \sum_{m=n+1}^{\infty} x_{nm} D_{km}(\mu) \right), \tag{5}$$

where

$$D_{kn}(\mu) = \frac{\partial}{\partial x_{kn}} + \frac{d}{dt} \left(\frac{d\mu(x(I + tE_{kn}))}{d\mu(x)} \right)^{1/2} \Big|_{t=0}.$$

For an arbitrary product measure $\mu = \bigotimes_{k \le n} \mu_{kn}$, we have

$$D_{kn}(\mu) = \frac{\partial}{\partial x_{kn}} + \frac{\partial}{\partial x_{kn}} \left(\ln \mu_{kn}^{1/2}(x_{kn}) \right),$$

where $d\mu_{kn}(x) = \mu_{kn}(x) dx$, $x \in \mathbb{R}^{1}$. Denote

$$M_{kn}(p) = \int_{\mathbb{R}^1} x^p \mu_{kn}(x) dx, \quad \tilde{M}_{kn}(p) = \left(\left(i^{-1} D_{kn}(\mu) \right)^p \mathbb{I}, \mathbb{I} \right)_{L^2(\mathbb{R}^1, d\mu_{kn})}, \quad p \in \mathbb{N}.$$

Let us define the Gaussian measure μ_b on the group $B^{\mathbb{Z}}$ in the following way:

$$d\mu_b(x) = \bigotimes_{k < n} (b_{kn}/\pi)^{1/2} \exp(-b_{kn}x_{kn}^2) dx_{kn} = \bigotimes_{k < n} d\mu_{b_{kn}}(x_{kn}),$$

where $b = (b_{kn})_{k < n}$ is some set of positive numbers. In this case we have (see, for example, [13], formulas (6) and (7))

$$D_{kn}(\mu_b) = \frac{\partial}{\partial x_{kn}} - b_{kn} x_{kn},$$

$$M_{kn}(2) = \frac{1}{2b_{kn}}, \quad M_{kn}(4) = \frac{3}{(2b_{kn})^2}, \quad M_{kn}(2m) = \frac{(2m-1)!!}{(2b_{kn})^m}, \quad (6)$$

$$\tilde{M}_{kn}(2) = \frac{b_{kn}}{2}, \quad \tilde{M}_{kn}(4) = 3\left(\frac{b_{kn}}{2}\right)^2, \quad \tilde{M}_{kn}(2m) = (2m-1)!!\left(\frac{b_{kn}}{2}\right)^m.$$
 (7)

For an arbitrary Gaussian product measure $\mu_b = \bigotimes_{k < n} \mu_{b_{kn}}$ it is easy to verify the equivalence $\mu_b^{R_t} \sim \mu_b$ and $\mu_b^{L_t} \sim \mu_b \ \forall t \in B_0^{\mathbb{Z}}$. Three following lemmas are proved in [12].

Lemma 1.

$$\mu_b^{R_t} \sim \mu_b \ \forall t \in B_0^{\mathbb{Z}} \Leftrightarrow$$

$$\Leftrightarrow S_{kn}^R(\mu_b) = \sum_{r=-\infty}^{k-1} M_{rk}(2) \tilde{M}_{rn}(2) = \frac{1}{4} \sum_{r=-\infty}^{k-1} \frac{b_{rn}}{b_{rk}} < \infty \ \forall k < n.$$

Lemma 2.

$$\mu_b^{L_t} \sim \mu_b \ \forall t \in B_0^{\mathbb{Z}} \Leftrightarrow$$

$$S_{kn}^L(\mu_b) = \sum_{m=n+1}^{\infty} \tilde{M}_{km}(2) M_{nm}(2) = \frac{1}{4} \sum_{m=n+1}^{\infty} \frac{b_{km}}{b_{nm}} < \infty \quad \forall k < n.$$

Lemma 3. For $k, n \in \mathbb{Z}$, k < n, we have $\mu_b^{L_{I+tE_{kn}}} \perp \mu_b \quad \forall t \in \mathbb{R}^1 \setminus 0 \Leftrightarrow S_{kn}^L(\mu_b) = \infty$.

4. Elementary representations of the group $B_0^{\mathbb{Z}}$. Let us consider the subgroups X_p , $p \in \mathbb{Z}$, and $X^{\{p\}}$ in the group $B^{\mathbb{Z}}$, where $\{p\}$ is a finite or infinite subset of \mathbb{Z} . For infinite in both directions $\{p\}$ we have $\{p\} = (p_k)_{k \in \mathbb{Z}}$, $p_k < p_{k+1} \forall k \in \mathbb{Z}$,

$$X_{p} = \left\{ I + x \in B^{\mathbb{Z}} | I + x = I + \sum_{n=p+1}^{\infty} x_{pn} E_{pn} \right\},$$

$$X^{\{p\}} =$$

$$= \prod_{p_{k} \in \{p\}} X_{p_{k}} = \left\{ I + x \in B^{\mathbb{Z}} | I + x = I + \sum_{p_{k} \in \{p\}} \sum_{n=p_{k}+1}^{\infty} x_{p_{k}} n E_{p_{k}} n \right\}.$$

Obviously, the right action of the group $B_0^{\mathbb{Z}}$ is well defined on the groups X_p and $X^{\{p\}}$.

For $B_0^{\mathbb{Z}}$ -right quasiinvariant measure μ on X_p (respectively $X^{\{p\}}$), we define a representation $T_p^{R,\mu}$ (respectively $T^{R,\mu,\{p\}}$) by the formulas

$$(T_t^{R,\mu}f)(x) = \left(\frac{d\mu(xt)}{d\mu(x)}\right)^{1/2} f(xt), \quad f \in H_p(\mu) := L^2(X_p, d\mu),$$

$$(T_t^{R,\mu,\{p\}}f)(x) = \left(\frac{d\mu(xt)}{d\mu(x)}\right)^{1/2} f(xt), \quad f \in H^{\{p\}}(\mu) := L^2(X^{\{p\}}, d\mu).$$

For a particular case $\{p\} = (1, 2, ..., q)$ we denote

$$X^q = X^{(1,2,\dots,q)}, \quad T^{R,\mu,q} = T^{R,\mu,(1,2,\dots,q)}, \quad H^q(\mu) = L^2(X^{(1,2,\dots,q)}, d\mu).$$

Definition 1. We will call the representations $T_p^{R,\mu}$, $p \in \mathbb{Z}$ by the elementary (see also [14]).

5. Irreducibility and equivalence of elementary representations. For the Gaussian measure $\mu = \mu_b$ and its projections $\mu_{b,p} = \bigotimes_{n=p+1}^{\infty} \mu_{b_{pn}}$ we have the following theorem.

Theorem 1. 1. The representation $T_p^{R,\mu}$ is irreducible if and only if the measure μ on the space X_p is $B_0^{\mathbb{Z}}$ -right-ergodic.

2. Two irreducible representations $T_{p_1}^{R,\mu_1}$ and $T_{p_2}^{R,\mu_2}$ are equivalent if and only if $p_1 = p_2$ and $\mu_1 \sim \mu_2$.

Since $T_p^{R,\mu}$ (respectively $T^{R,\mu,\{p\}}$) is the restriction of the representation $T^{R,\mu}$ to the subspace $H_p(\mu) = L^2(X_p, d\mu_p)$ (respectively $H^{\{p\}}(\mu) = L^2(X^{\{p\}}, d\mu^{\{p\}})$) of the space $H_\mu = L^2(B^\mathbb{Z}, d\mu)$, we have

$$A_{\rho, kn}^{R, \mu} = \begin{cases} 0, & \text{if } k < p; \\ D_{pn}(\mu), & \text{if } p = k < n; \\ x_{pk} D_{\rho n}(\mu), & \text{if } p < k < n, \end{cases}$$
(8)

$$A_{kn}^{R,\,\mu,\,q} := A_{kn}^{R,\,\mu,\,(1,\,2,\,\ldots,\,q)} = \sum_{p=1}^q A_{p,\,kn}^{R,\,\mu} =$$

$$= \begin{cases} 0, & \text{if } k < 1; \\ \sum_{r=1}^{k-1} x_{rk} D_{rn}(\mu) + D_{kn}(\mu), & \text{if } 1 \le k \le q, \ k < n; \\ \sum_{r=1}^{q} x_{rk} D_{rn}(\mu), & \text{if } q < k < n, \end{cases}$$
(9)

$$A_{kn}^{R,\mu,\{p\}} := \sum_{p_m \in \{p\}, p_m \le k} A_{p_m,kn}^{R,\mu} =$$

$$= \begin{cases} 0, & \text{if } k < p_{\min}; \\ \sum_{p_m \in \{p\}, p_m < k} x_{p_m k} D_{p_m n}(\mu) + D_{k n}(\mu), & \text{if } k \in \{p\}, k < n; \\ \sum_{p_m \in \{p\}, p_m < k} x_{p_m k} D_{p_m n}(\mu), & \text{if } k \notin \{p\}, p_{\min} < k < n, \end{cases}$$
(10)

where $p_{\min} = \min\{p_m | p_m \in \{p\}\} \in \mathbb{R}^1 \cup \{-\infty\}.$

Proof. See proof of the Theorem 5 in [14]. 1. Let a bounded operator A on the Hilbert space $H_p(\mu)$ commute with representation $T_p^{R,\mu}: \left[A, T_{p,t}^{R,\mu}\right] = 0 \quad \forall t \in B_0^{\mathbb{Z}}$. We prove that A is trivial, $A = \lambda I$, $\lambda \in \mathbb{C}^1$. To prove this, we consider the commutative set of generators $\left\{i^{-1}A_{p,\,p^n}^{R,\,\mu}\right\}_{n=p+1}^{\infty}$. By formulas (8) we have $i^{-1}A_{p,\,p^n}^{R,\,\mu} = i^{-1}D_{pn}(\mu)$. Since the family of operators $i^{-1}\mathbb{D}_p(\mu) = \left\{i^{-1}D_{pn}(\mu)\right\}_{n=p+1}^{\infty}$ has a common simple spectrum in the space $H_p(\mu) = L^2(X_p, d\mu)$, any bounded operator A on the space $H_p(\mu)$ commuting with this family is some essentially bounded function of this family,

$$A \ = \ a \Big(i^{-1} \mathbb{D}_p(\mu) \Big) \ = \ a \Big(i^{-1} D_{pp+1}(\mu), i^{-1} D_{pp+2}(\mu), \ldots, i^{-1} D_{pn}(\mu), \ldots \Big)$$

To complete the proof we use some Fourier – Wiener transform defined in [13]. Let us denote by F_{kn}^b the one-dimensional Fourier transform, corresponding to the measure $d\mu_{b_{kn}}(x_{kn}) = (b_{kn}/\pi)^{1/2} \exp(-b_{kn}x_{kn}^2) dx_{kn}$,

$$F_{kn}^b: L^2(\mathbb{R}^1, d\mu_{b_{kn}}) \to L^2(\mathbb{R}^1, d\mu_{b_{kn}^{-1}}),$$

given by the formula

$$\Big(F_{kn}^b f\Big)(y_{kn}) \ = \ \exp\bigg(\frac{y_{kn}^2}{2b_{kn}}\bigg) \sqrt{\frac{b_{kn}}{2\pi}} \int_{\mathbb{R}^1} f(x_{kn}) \exp(iy_{kn}x_{kn}) \exp\bigg(-\frac{b_{kn}x_{kn}^2}{2}\bigg) dx_{kn}.$$

Obviously, $F_{kn}^b \mathbb{1} = \mathbb{1}$, where $\mathbb{1}(x) = 1$.

Let us define, for any $p \in \mathbb{Z}$, the Fourier – Wiener transform $F_p^b = \bigotimes_{n=p+1}^{\infty} F_{pn}^b$. The operator F_p^b is an isometry between two spaces, $F_p^b \colon H_p(\mu_b) \to H_p(\mu_{b^{-1}})$, where $H_p(\mu_b) = L^2(X_p, d\mu_{b,p})$, $H_p(\mu_{b^{-1}}) = L^2(X_p, d\mu_{b^{-1},p})$. We have (see [13])

$$F_{\rho}^{b}(i^{-1}D_{\rho n}(\mu_{b}))(F_{\rho}^{b})^{-1} = y_{\rho n}, \quad p < n,$$

$$F_{\rho}^{b}(x_{\rho n}i^{-1}D_{\rho m}(\mu_{b}))(F_{\rho}^{b})^{-1} = i^{-1}D_{\rho n}(\mu_{b^{-1}})y_{\rho m}, \quad p < n < m,$$

$$F_{\rho}^{b}A(F_{\rho}^{b})^{-1} = F_{\rho}^{b}a(i^{-1}D_{\rho \rho+1}(\mu),...,i^{-1}D_{\rho n}(\mu),...)(F_{\rho}^{b})^{-1} =$$

$$= a(y_{\rho \rho+1},...,y_{\rho n},...).$$

$$(11)$$

The one-parameter group $\tilde{T}_{I+tE_{nm}}^{R,\mu_b} = F_p^b T_{I+tE_{nm}}^{R,\mu_b} \left(F_p^b\right)^{-1}$ corresponds to the generator $i^{-1}D_{pn}(\mu_{h^{-1}})y_{pm}$ in the space $H_p(\mu_{h^{-1}})$, so it acts by the formula

$$\begin{split} & \left(\tilde{T}_{I+tE_{nm}}^{R,\mu_b}f\right)\!(...,y_{pn},...,y_{pm},...) = \\ & = \left(\frac{d\mu_{b^{-1},p}\!\left(...,y_{pn}+ty_{pm},...,y_{pm},...\right)}{d\mu_{b^{-1},p}\!\left(...,y_{pn},...,y_{pm},...\right)}\right)^{1/2} f\!\left(...,y_{pn}+ty_{pm},...,y_{pm},...\right). \end{split}$$

So the commutation $\left[\tilde{A}, \tilde{T}_{I+t\tilde{E}_{nm}}^{R, \mu_b}\right] = 0 \quad \forall t \in \mathbb{R}^1$, where $\tilde{A} = F_p^b A \left(F_p^b\right)^{-1}$, gives us

$$a(y_{pp+1},...,y_{pn}+ty_{pm},...,y_{pm},...) = a(y_{pp+1},...,y_{pn},...,y_{pm},...) \quad \forall t \in \mathbb{R}^{1}$$

Indeed, it is sufficient to compare two equations,

$$\begin{split} & \big(\tilde{A} \tilde{T}_{I+tE_{nm}}^{R,\mu_b} f \big) \big(..., y_{pn}, ..., y_{pm}, ... \big) = a \big(..., y_{pn}, ..., y_{pm}, ... \big) \times \\ & \times \left(\frac{d \mu_{b^{-1},p} \big(..., y_{pn} + t y_{pm}, ..., y_{pm}, ... \big)}{d \mu_{b^{-1},p} \big(..., y_{pn}, ..., y_{pm}, ... \big)} \right)^{1/2} f \big(..., y_{pn} + t y_{pm}, ..., y_{pm}, ... \big), \\ & \big(\tilde{T}_{I+tE_{nm}}^{R,\mu_b} \tilde{A} f \big) \big(..., y_{pn}, ..., y_{pm}, ... \big) = \left(\frac{d \mu_{b^{-1},p} \big(..., y_{pn} + t y_{pm}, ..., y_{pm}, ... \big)}{d \mu_{b^{-1},p} \big(..., y_{pn}, ..., y_{pm}, ... \big)} \right)^{1/2} \times \\ & \times a \big(..., y_{pn} + t y_{pm}, ..., y_{pm}, ... \big) f \big(..., y_{pn} + t y_{pm}, ..., y_{pm}, ... \big). \end{split}$$

By ergodicity of the measure $\mu_{b^{-1},p}$, the function

$$a = a(y_{pp+1}, \dots, y_{pn}, \dots)$$

is constant and the operator A is trivial, $A = \lambda I$.

2. Sufficiency is obvious. Let $T_p^{R,\mu} \sim T_{p'}^{R,\mu'}$, we prove that p = p' and $\mu \sim \mu'$. Let us assume that $p \neq p'$, for example, p > p' and consider the restrictions $T|_G$ of the representations $T = T_p^{R,\mu}$ and $T_{p'}^{R,\mu'}$ to the subgroup $G = X_{P,0} = T_{p'}^{R,\mu}$

 $=\left\{I+x\in B_0^{\mathbb{Z}}\,|\, I+x\in X_p\right\}. \text{ The spectral measure }\mathbb{E}_p^{\mu} \text{ of the restriction } T_p^{R,\mu}\,|\, \chi_{p,0}$ is the spectral measure of the commutative family of self-adjoint operators $i^{-1}\mathbb{D}_p(\mu)=\left\{i^{-1}D_{pn}(\mu)\right\}_{p=n+1}^{\infty} \text{ and the spectral measure }\mathbb{E}_p^{\mu'} \text{ of } T_{p'}^{R,\mu'}\,|\, \chi_{p,0} \text{ is trivial (sec (8)), so } p=p'. \text{ In this case, the spectral measures }\mathbb{E}_p^{\mu} \text{ and }\mathbb{E}_p^{\mu'} \text{ are equivalent, so } \mu\sim\mu'.$

Indeed let use the Fourier – Wiener transform F_p^b . We denote by $\mathbb{E}_p^{\mu_{b^{-1}}}(y)$ the spectral measure of the family of operators of multiplications by independent variables $(y_{pn})_{n=p+1}^{\infty}$ in the Hilbert space $H_p(\mu_{b^{-1}})$. Since the spectral measures \mathbb{E}_p^{μ} and $\mathbb{E}_p^{\mu'}$ are equivalent so using (11) we see that spectral measures $\mathbb{E}_p^{\mu_{b^{-1}}}(y)$ and $\mathbb{E}_p^{\mu_{(b')^{-1}}}(y)$ are equivalent. Moreover, we have

$$\left(\mathbb{E}_p^{\mu_{b^{-1}}}(y)(\Delta)\,\mathbb{I},\,\mathbb{I}\right)_{H_p(\mu_{b^{-1}})} \,=\, \mu_{b^{-1},\,p}(\Delta).$$

Finally,

$$\begin{split} &\mathbb{E}_{p}^{\mu} \sim \mathbb{E}_{p}^{\mu'} \iff \mathbb{E}_{p}^{\mu_{b^{-1}}}(y) \sim \mathbb{E}_{p}^{\mu_{(b')^{-1}}}(y) \iff \mu_{b^{-1},p} \sim \mu_{(b')^{-1},p} \iff \\ \Leftrightarrow &\prod_{n=p+1}^{\infty} \frac{4(b_{pn})^{-1}(b'_{pn})^{-1}}{\left((b_{pn})^{-1} + (b'_{pn})^{-1}\right)^{2}} > 0 \iff \prod_{n=p+1}^{\infty} \frac{4b_{pn}b'_{pn}}{\left(b_{pn} + b'_{pn}\right)^{2}} > 0 \iff \mu_{b,p} \sim \mu_{b',p}. \end{split}$$

6. Tensor product of a finite number of the elementary representations and irreducibility. Let $\{p\} = (p_1, ..., p_m)$ be a finite subset of \mathbb{Z} .

Theorem 2. 1. The representation $T^{R,\mu,\{p\}}$ is the tensor product of the representations $T_{p_k}^{R,\mu_{p_k}}$, $1 \le k \le m$,

$$T^{R,\mu,\{\rho\}} = \bigotimes_{k=1}^{m} T^{R,\mu_{\rho_k}}_{\rho_k}.$$
 (12)

- 2. The representation TR, u, {p} is irreducible if and only if
- i) $S_{p_{k}p_{n}}^{L}(\mu) = \infty, 1 \le k < n \le m,$
- ii) the measure μ on the space $X^{\{p\}}$ is $B_0^{\mathbb{Z}}$ -right-ergodic.

Proof. We prove the theorem for $\{p\} = (1, 2, ..., q)$. For other finite $\{p\}$, the proof is the same. We will show that by using the generators $A_{kn}^{R,\mu,q} := A_{kn}^{R,\mu,(1,2,...,q)}$, k < n, it is possible to approximate the operators of multiplication by independent variables x_{kn} , $1 \le k < n \le q$, and the set of operators $D_{kn}(\mu)$, k < n, $k \le q$. Indeed, according to (9) we have

$$\begin{split} A_{1n}^{R,\,\mu,\,q} &= D_{1n}(\mu), \quad 1 < n, \quad A_{2n}^{R,\,\mu,\,q} = x_{12}D_{1n}(\mu) + D_{2n}(\mu), \quad 2 < n, \\ A_{3n}^{R,\,\mu,\,q} &= x_{13}D_{1n}(\mu) + x_{23}D_{2n}(\mu) + D_{3n}(\mu), \quad 3 < n, \\ A_{kn}^{R,\,\mu,\,q} &= \sum_{r=1}^{k-1} x_{rk}D_{rn}(\mu) + D_{kn}(\mu), \quad k \leq q, \quad k < n, \\ A_{kn}^{R,\,\mu,\,q} &= \sum_{r=1}^{q} x_{rk}D_{rn}(\mu), \quad \text{if} \quad q < k < n. \end{split}$$

The proof of approximation is the same as in [9]. It is based on the Lemma 6 in [14].

Let us denote by $\mathfrak{A}^{R,\mu,\,q}(B_0^{\mathbb{Z}})$ the von-Neumann algebra, generated by the

representation $T^{R, \mu, q} \colon \mathfrak{A}^{R, \mu, q} \Big(B_0^{\mathbb{Z}} \Big) = \Big(T_t^{R, \mu, q} \Big| t \in B_0^{\mathbb{Z}} \Big)^{"}$. Let also $\langle f_n | n = 1, 2, ... \rangle$ be the closure of the linear space, generated by the set of vectors $\{ f_n \}_{n=1}^{\infty}$ in a Hilbert space H.

Definition 2. Recall [15] that a not necessarily bounded self-adjoint operator A on a Hilbert space H is affiliated to the von-Neumann algebra M of operators on this Hilbert space H (denoted $A \eta M$) if $\exp(itA) \in M$ $\forall t \in \mathbb{R}^1$.

Lemma 4 [14]. $\{x_{kn}\}_{1 \le k < n \le q} \eta \ \mathfrak{A}^{R,\mu,q}(B_0^{\mathbb{Z}}) \text{ if } S_{kn}^L(\mu) = \infty, k < n \le q. \text{ In this case we also have } D_{kn}(\mu) \eta \ \mathfrak{A}^{R,\mu,q}(B_0^{\mathbb{Z}}), k < n, k \le q.$

Finally we have $\{x_{kn}\}_{k< n\leq q}$ η $\mathfrak{A}^{R,\mu,q}(B_0^{\mathbb{Z}})$, $\{D_{kn}(\mu)\}_{k< n,k\leq q}$ η $\mathfrak{A}^{R,\mu,q}(B_0^{\mathbb{Z}})$, so the commutant $(\mathfrak{A}^{R,\mu,q}(B_0^{\mathbb{Z}}))'$ of the von-Neumann algebra $\mathfrak{A}^{R,\mu,q}(B_0^{\mathbb{Z}})$ coincides with essentially bounded functions from the family of operators $i^{-1}\mathbb{D}^q(\mu)=\{i^{-1}D_{kn}(\mu)\}_{k\leq q\leq n}$.

Let now a bounded operator $A \in L(H^q(\mu))$ commute with $T_t^{R, \mu, q}$, $t \in B_0^{\mathbb{Z}}$. Then this operator A is an operator of multiplication in the space $H^q(\mu)$ by some essentially bounded function, $A = a(\{i^{-1}D_{kn}(\mu)\}_{k < n, k < q})$.

As in the proof of the Theorem 1 we use here an appropriate Fourier – Wiener transform to prove irreducibility. Let us denote $F^{b,q} = \bigotimes_{p=1}^q F_p^b$. This operator is an isometry between $H^q(\mu_b)$ and $H^q(\mu_{b^{-1}})$. Obviously, $\tilde{A}F^{b,q}A(F^{b,q})^{-1} = a(\{y_{kn}\}_{k \leq q < n})$ and the operator $\tilde{T}_{I+lE_{kn}}^{R,\mu,q} = F^{b,q}\tilde{T}_{I+lE_{kn}}^{R,\mu,q}(F^{b,q})^{-1}$ acts by the following formula

$$\begin{split} \left(\tilde{T}_{I+tE_{kn}}^{R,\mu,q}f\right) & \begin{pmatrix} y_{1q+1} & \dots & y_{1k} & \dots & y_{1n} & \dots \\ & \dots & & \dots & & \dots \\ y_{qq+1} & \dots & y_{qk} & \dots & y_{qn} & \dots \end{pmatrix} = \\ & = \left(\frac{d\mu_{b^{-1}}^{q}(\tilde{R}_{I+tE_{kn}}(y))}{d\mu_{b^{-1}}^{q}(y)}\right)^{1/2} f(\tilde{R}_{I+tE_{kn}}(y)) := \\ & := \left(\frac{d\mu_{b^{-1}}^{q}(\tilde{R}_{I+tE_{kn}}(y))}{d\mu_{b^{-1}}^{q}(y)}\right)^{1/2} f \begin{pmatrix} y_{1q+1} & \dots & y_{1k} + ty_{1n} & \dots & y_{1n} & \dots \\ & \dots & & \dots & \dots \\ y_{qq+1} & \dots & y_{qk} + ty_{qn} & \dots & y_{qn} & \dots \end{pmatrix}, \end{split}$$

so the commutation $\left[\tilde{A}, \tilde{T}_{l+tE_{nm}}^{R, \mu, q}\right] = 0 \quad \forall t \in \mathbb{R}^1$ gives us as in the proof of the Theorem 1, the equality

$$a \begin{pmatrix} y_{1q+1} & \cdots & y_{1k} & \cdots & y_{1n} & \cdots \\ & \cdots & & \cdots & & \cdots \\ y_{qq+1} & \cdots & y_{qk} & \cdots & y_{qn} & \cdots \end{pmatrix} =$$

$$= a \begin{pmatrix} y_{1q+1} & \dots & y_{1k} + ty_{1n} & \dots & y_{1n} & \dots \\ & \dots & & \dots & & \dots \\ y_{qq+1} & \dots & y_{qk} + ty_{qn} & \dots & y_{qn} & \dots \end{pmatrix} \quad \forall \, t \in \mathbb{R}^1, \quad \forall q < k < n.$$

By ergodicity of the measure $\mu_{b^{-1}}^q$ this means that the function $a(\{y_{kn}\}_{k \leq q < n})$ is constant, a(y) = const.

7. Regular representations as infinite tensor product of the elementary representations.

Theorem 3. 1. The representation $T^{R,\mu}$ is the infinite tensor product of the representations T_p^{R,μ_p} , $p \in \mathbb{Z}$,

$$T^{R,\mu} = \bigotimes_{\rho \in \mathbb{Z}} T_{\rho}^{R,\mu_{\rho}}. \tag{13}$$

- 2. The representation TR, µ is irreducible if:
- i) $S_{kn}^L(\mu) = \infty \ \forall \ k < n$;
- ii) the measure μ on the group $B^{\mathbb{Z}}$ is $B_0^{\mathbb{Z}}$ -right-ergodic;

iii)
$$\sup_{n,n>k} \frac{S_{kn}^R(\mu)}{b_{kn}} = C_k < \infty \quad \forall k \in \mathbb{Z}.$$

Proof. The irreducibility is proved in [12]. The representation (13) follows from (4) and (10).

8. Tensor product of an infinite number of elementary representations and irreducibility. Let $\{p\}$ be an infinite subset of \mathbb{Z} with only finite number of negative integers.

Theorem 4. 1. The representation $\bigotimes_{p_k \in \{p\}} T_{p_k}^{R, \mu_{p_k}}$ is irreducible if and only if:

- i) $S_{p_k p_n}^L(\mu) = \infty \ \forall \ p_k < p_n, \ p_k, p_n \in \{p\};$
- ii) the measure $\bigotimes_{p_k \in \{p\}} \mu_{p_k}$ is $B_0^{\mathbb{Z}}$ -right-ergodic.
- 2. In this case, $\bigotimes_{p_k \in \{p\}} T_{p_k}^{R, \mu_{p_k}} = T^{R, \mu, \{p\}}$, where $\mu = \bigotimes_{p_k \in \{p\}} \mu_{p_k}$.
- 3. $T^{R,\mu,\{p\}} \sim T^{R,\mu',\{p'\}}$ if and only if $\{p\} = \{p'\}$ and $\mu \sim \mu'$.
- 4. The tensor product of two irreducible representations $T^{R,\mu,\{p\}} \otimes T^{R,\mu',\{p'\}}$ is irreducible if and only if $\{p\} \cap \{p'\} = \{\emptyset\}$ and $S^L_{p_k p'_n}(\mu \otimes \mu') = \infty$ $\forall p_k \in \{p\}, p'_n \in \{p'\}.$

Proof. The irreducibility and equivalence for $\{p\} = \{p'\} = (p_n)_{n=1}^{\infty}$, $p_n = n$ follows from the Theorem 1.1 and Theorem 3.1 in [9]. For another infinite $\{p\}$ with only a finite number of negative integers, the proof of parts 1 and 2 is the same.

Let us prove the part 3 for a general $\{p\}$. Sufficiency is obvious. Necessity is based on the Theorem 1 part 2 and Theorem 3.1 in [9]. Let $T^{R,\mu,\{p\}} \sim T^{R,\mu',\{p'\}}$, where $\{p\} = (p_1, p_2, ...)$, $\{p'\} = (p'_1, p'_2, ...)$. We prove that $\{p\} = \{p'\}$ and $\mu \sim \mu'$. Let us assume that $p_1 \neq p'_1$, for example, $p_1 > p'_1$ and consider the spectral measures $\mathbb{E}_{p_1}^{\mu}$ and $\mathbb{E}_{p_1}^{\mu'}$ of the restrictions of the representations $T^{R,\mu,\{p\}}$ and $T^{R,\mu',\{p'\}}$ on the subgroup $T^{R,\mu',\{p'\}}$ on the subgroup $T^{R,\mu',\{p'\}}$ is the spectral measure

of the commutative family of self-adjoint operators $i^{-1}\mathbb{D}_{p_1}(\mu) = \left\{i^{-1}D_{p_1n}(\mu)\right\}_{n=p_1+1}^{\infty}$ and is not trivial but the spectral measure $\mathbb{E}_{p_1}^{\mu'}$ is trivial (see (9), (10)). This contradicts $T^{R,\mu,\{p\}} \sim T^{R,\mu',\{p'\}}$, so $p_1 = p_1'$. In this case the spectral measures $\mathbb{E}_{p_1}^{\mu}$ and $\mathbb{E}_{p_1}^{\mu'}$ are equivalent, so $\mu_{p_1} \sim \mu'_{p_1}$ and $T^{R,\mu_{p_1}}_{p_1} \sim T^{R,\mu'_{p_1}}_{p_1}$. Since, by formula (13), we have

$$T^{R,\mu,\{p\}} = T_{p_1}^{R,\mu_{p_1}} \otimes T^{R,\mu^{\{p_2\}},\{p_2\}}, \quad T^{R,\mu',\{p'\}} = T_{p_1}^{R,\mu'_{p_1}} \otimes T^{R,\mu'^{\{p'_2\}},\{p'_2\}},$$

and the equivalence $T^{R,\mu,\{p\}} \sim T^{R,\mu',\{p'\}}$ holds, we conclude that $T^{R,\mu^{\{p_2\}},\{p_2\}} \sim T^{R,\mu'^{\{p_2\}},\{p_2'\}}$, where $\{p_2\} = (p_2,p_3,...)$, $\{p_2'\} = (p_2',p_3',...)$, and

$$T^{R,\mu,\{\,\rho_2\,\}} \;=\; \otimes_{\,\rho_b\,\in\,\{\,\rho_2\,\}}\,T^{R,\,\mu_{\,\rho_b}}_{\,\rho_b}\;, \qquad T^{R,\,\mu',\,\{\,\rho'_2\,\}} \;=\; \otimes_{\,\rho_b\,\in\,\{\,\rho'_2\,\}}\,T^{R,\,\mu'_{\,\rho_b}}_{\,\rho_b}\;.$$

Analogously we conclude that $p_2 = p_2'$ and $\mu_{p_2} \sim \mu_{p_2}'$. Finally, $\{p\} = \{p'\}$ and $\mu_{p_k} \sim \mu_{p_k}' \quad \forall p_k \in \{p\} = \{p'\}$. For finite $\{p\}$, $\{p'\}$ the proof is finished since in this case we have $\mu = \bigotimes_{p_k \in \{p\}} \mu_{p_k} \sim \mu' = \bigotimes_{p_k \in \{p'\}} \mu'_{p_k}$. In the general case (for infinite $\{p\}$, $\{p'\}$), the equivalence $\mu_{p_k} \sim \mu'_{p_k} \quad \forall p_k \in \{p\} = \{p'\}$ does not imply $\mu = \bigotimes_{p_k \in \{p\}} \mu_{p_k} \sim \mu' = \bigotimes_{p_k \in \{p'\}} \mu'_{p_k}$. For the particular case $\{p\} = (p_k)_{k=1}^{\infty}$, $p_k = k$, $k \in \mathbb{N}$, the equivalence of the measures $\mu \sim \mu'$ follows from the Theorem 3.1 in [9]. For general $\{p\}$ the proof is the same.

4. Sufficiency follows from parts 1 and 2, since in this case we have

$$T^{R,\mu,\{p\}} \otimes T^{R,\mu',\{p'\}} = T^{R,\mu\otimes\mu',\{p\}\cup\{p'\}}$$

where $\{p\} \cup \{p'\} = \{p_k, p'_n | p_k \in \{p\}, p'_n \in \{p'\}\}\$. Let now $\{p\} \cap \{p'\} = \{p''\}$ be finite, $\{p''\} := (p_1, ..., p_k)$. For infinite $\{p''\}$ the proof is the same. In this case we have $\{p\} = \{q\} \cup \{p''\}$ and $\{p'\} = \{q'\} \cup \{p''\}$, so $\{p\} \cup \{p'\} = \{q\} \cup \{q'\} \cup \{p''\}$ and we have

$$T^{R,\mu,\{p\}} \otimes T^{R,\mu',\{p'\}} = T^{R,\mu^{\{q\}} \otimes \mu^{\{p''\}} \otimes \mu'^{\{q'\},\{q\}} \cup \{p''\} \cup \{q'\}} \otimes T^{R,\mu'^{\{p''\}},\{p'''\}}.$$

So the proof that the last tensor product is reducible is similar to the proof that the following tensor product

$$T^{R,\mu,q} \otimes T^{R,\mu',q+k}$$

is reducible.

Consider the essentially bounded function $a: X^q \ni x \mapsto a(x) \in \mathbb{C}^1$ and let A_0 be the operator of multiplication in the space

$$H^q(\mu)\otimes H^{q+k}(\mu') \,=\, L^2(X^q,d\mu)\otimes L^2(X^{q+k},d\mu') \,=\, L^2(X^q\otimes X^{q+k},d\mu\otimes \mu')$$

by the function $a_0: X^q \times X^{q+k} \ni (x, y, z) \mapsto a_0(x, y, z) = a(yx^{-1}) \in \mathbb{C}^1$. We show that the representation $T^{R,\mu,q} \otimes T^{R,\mu',q+k}$ commutes with the operator A_0 . Indeed, for any function $f(x,y,z) \in L^2(X^q \otimes X^{q+k}, d\mu \otimes \mu')$, using the property that for any $(y,z) \in X^q \times X^k = X^{q+k}$ in $B^{\mathbb{Z}}$, (y,z) = zy holds, we have

$$(T_t^{R,\mu,q} \otimes T_t^{R,\mu',q+k} A_0 f)(x,zy) = (T_t^{R,\mu,q} \otimes T_t^{R,\mu',q+k} a_0 f)(x,zy) =$$

$$= \left(\frac{d\mu(xt)}{d\mu(x)}\right)^{1/2} \left(\frac{d\mu'(z\,yt)}{d'\mu(z\,y)}\right)^{1/2} a((yt)(xt)^{-1}) f(xt,z\,yt) =$$

$$= a(yx^{-1}) \left(\frac{d\mu(xt)}{d\mu(x)}\right)^{1/2} \left(\frac{d\mu'(z\,yt)}{d\mu'(z\,y)}\right)^{1/2} f(xt,z\,yt) =$$

$$= \left(A_0 \left(T_t^{R,\mu,q} \otimes T_t^{R,\mu',q+k}\right) f\right)(x,zy).$$

- Dixmier J. Les C*-algèbres et leur representations. Paris: Gautirs-Villars, 1969. 400 p.
- Weyl A. L'intégration dans les groups topologique et ses application. Paris: Hermann, 1951. -222 p.
- Xia-Dao-Xing. Measures and integration in infinite-dimensional spaces. New York; London: Acad. Press, 1978. – 382 p.
- Albeverio S., Hoegh-Krohn R. The energy representation of Sobolev Lie group. Univ. Bielefeld, 1976. - 20 p. - Preprint.
- Ismagilov R. S. Representations of the group of smooth mappings of a segment in a compact Lie group // Funktion. Anal. i Prilozh. − 1981. − 15, № 2. − S. 73 − 74.
- Albeverio S., Hoegh-Krohn R., and Testard D. Irreducibility and reducibility for the energy representation of a group of mappings of a Riemannian manifold into a compact Lie group // J. Function. Anal. - 1981. - 41. - P. 378 - 396.
- Albeverio S., Hoegh-Krohn R., Testard D., and Vershik A. Factorial representations of path groups // J. Funktion. Anal. - 1983. - 51. - P. 115 - 131.
- Kosyak A. V. Irreducibility criterion for regular Gaussian representations of group of finite uppertriangular matrices // Funktion. Anal. i Prilozh. − 1990. − 24, №3. − S. 82 − 83.
- Kosyak A. V. Criteria for irreducibility and equivalence of regular Gaussian representations of group of finite upper-triangular matrices of infinite order // Selecta. Math. Soviet. – 1992. – 11. – P. 241 – 291.
- Kosyak A. V. Irreducible regular Gaussian representations of the group of the interval and circle diffeomorphisms // J. Funkion. Anal. – 1994. – 125. – P. 493 – 547.
- Kosyak A. V. Criteria for irreducibility of regular representations corresponding to product measures of group of finite upper-triangular matrices // Methods Function. Anal. and Topology. – 2000. – 6, No 4. – P. 43 – 56.
- Kosyak A. V. Irreducibility of the regular Gaussian representations of the group B₀^Z // Ibid. 2001. – 7. № 2. – P. 42 – 51.
- Kosyak A. V., Zekri R. Regular representations of infinite-dimensional groups and factors. I // Ibid. - 2000. - 6, № 2. - P. 50 - 59.
- Kosyak A. V. Elementary representations of the group B₀^N. I // Ibid. 2001. 7, No 1. P. 33 44.
- Dixmier J. Les algèbres d'operateurs dans l'espace hilbertien, 2^e édition. Paris: Gautirs-Villars, 1969. – 367 p.

Received 25.10.2001