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ELEMENTARY REPRESENTATIONS
OF THE GROUP ﬁ OF INFINITE IN BOTH
DIRECTIONS UPPER-TRIANGULAR MATRICES. I

EJIEMEHTAPHI 30BPAXKEHHSH I'PYITH Bg

HECKIHYEHHHX B OBH/IBA BOKH
BEPXHLOTPHKYTHHX MATPHIIb. 1

We dcfine the so-called “elementary representations™ T:' ¥, pe Z, of the group Bﬂz of finite, infinite

in both directions upper-triangular matrices using quasi-invanant measures on some homogencous
spaces and give a criterion of irmeducibility and equivalence of the constructed representations. 'We give
also a criterion of irreducibility of tensor product of a finite and infinite number of elemenuaw y
representations.

B siaseno Tak mani cAeMEiTapHi wobpaseiia T:"', pe I, rpynu b‘,f fHBITHHX HECKIHMCH HE b

ol B GOKI BEPXIILOTHKYTHI L MATPillh 3 BHKO PHETANNAM KBaSHIR pLAHTHHE Mip 18 18 ARHX 0o
PUIHHMX NPOCTOPAX | HABCACHD K PHTCPU HEIBUIHOCT] Ta CKBIBANEHTHOCTE NoGYROBAHHE J00PAMCIib.
Jlano Tako® KpHTEPIl HEIBUHOCTE TEHIOMIONs Ao0vTRY cRIEHRHOTD T4 HOCK IHYEHNOMD UHCAa ehe-
MEHTIPHN X J08pakclib

1. & -action, quasiinvariant measures, and representations. The following
construction of the unitary representations of a opological group & is well known,
Let us have some measurable space X with a probability measure @ on which the
group @ acts, i ¢ we have a group homomorphism @ & = Aut (X)) soch that

1} e dx)=x Yxe X, where ¢ € (G is the identity element;
2) (o, () =0, (x) V.€G. ve X

Let p.“‘, r € {7, be images of the measure W with respect to the action o, i. ¢..
uu, (A)= p(ﬂr. .{:}.}). 1f uﬁ’ =W Wreli, one can define the unitary representation

™" G U(L7(X.dn)) of the group G by

, dp® )" 2,
(n?‘“f}(_;] = {m] f{[t.r.|l.r}}.. fCL {_h,l’ﬂvl-]- {I]

2. An analog of the regular representations of infinite-dimensional groups.
The regular representation of a locally compact group & 15 well known ysce, for
example. [1]). Tt uses existence of a G-mvanant measure on the group &, the Hagr
measure, and is defined by formula (1) with X =& and o being the right or the left
action of the group G on itself,

For a group G that is not locally compact, it is impossible to define a regular
representation, since there is no (-invariant measure on the group G 2], nor is there
a (-guasiinvariant measure either [3].

An analog of the regular representations of some infinite-dimensional
noncommutative groups, current groups, were constructed and studied firstly in [4 = 7).

An analog of the regular representation for any infinite-dimensional group G,

using G -quasiinvariani measures | on some completions G of the group G is
defined firstly in [8 — 10]. It uses the formula (1), where X= G and o is the right or
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20 0, V. KODSYAK

the left action of the group G on G . More preciscly. let H, = L*(G.dw). We define

an analog of the right T*Y and the left TLY regular represemations of the group
G in the space H .

TR ThE: G Uly),

in a natural way,

12
. fuixr)
TR Yy = ‘—] ). (2)
(124 F)o) [dui.r} fx)
142
duis™'x) -
[EL.Hf](_l'] = [ﬁ] f{s 'r}. 3

Obviously '[T;R'“.T;L'“] =0 %r.ye(;. hence the right reeular representmion

%" is reducible if pL‘ ~ W for some s & (e or the measure Jo s ot G-right
ergodic. Let p be a (-right quasiinvariant measure on (5. i.c.. |.:H B Wiedls.

Conjecture 1. The right regular representation TV . G = ¢ iHyy s
irreducible if and only if

) pub Lp Vse Ghe:

2y the measure W is G-right ergodic,

Remark. This conjecture was formulated by B, 5. Ismagilov i 1955 for the group
By’ of finite. infinite in one direction real upper-triangular matrices with unitics on the
principal diagonal and any Gavssian centered product measure [,

In this case the conjecture was proved in |8, 9]0 For the same group B, and lm
any product measure | = & MW, this was proved in [1T] with some wechnical
assumption, In [12] the conjecture was proved for the group 8y of Tinite, infinite in
both directions upper-triangular maitrices lor some Goussian centered produci

measures. In [10] a critenion was proved for groups of the interval and carcle
diffeomorphisms and the Wiener measure.

3. An analog of the regular representations of the group Hﬁv. Let B{,— be the
group of finite, infinite in both directions upper-triangular matrices with unitics on the
principal diagonal, B” be the group ol all such matrices (nod necessarily finite).

By = {f #x =1+ Y 5By isfinite }

ken

A - x
B" = {.‘ +x =1+ E,-Ta.uEM-" IS:ll'thr:jl':u"}.
ben
where FEp,. kone 2 are matrix units of inlinite order. Let us denote by £ and L

the right and the left action of the group BT onitself: Rry =5, Liry=si. 5.

re B, Lel p be some probability measure on the group B, I uR' — K and
|.l."" - W ¥re By we can defing, by formulas (23 and (33, an analog of the right L
and the lefi T%¥ regular representations of the group ||E"¢‘,.T in the space H |, =

= L}(B%.dn), TR, TV BY S U(H,).
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ELEMENTARY REPRESENTATIONS OF THE GROUP B,f OF INFINITE IN BOTH ... 207

g _ (duixr) i
(% ) = (L) 1,

=1 112
- (824

AI""} of the onc-parameter groups [+ (E,,. ‘e . k < n,

For the gencraters ARP (AL
corresponding w the night 7 R.p {respective, 1ot y gl regular representation, we

have the Tollowing formulas:
R u d o = ’
SOk E;?} +.'J'-.'1-|r=rL = z XD (W) + Dgu(l). (4)
Lp 4o, T . \
Aknu = mﬁﬂt“.}.lmﬂ = —[Dg,,"-‘-] ¥ 2 'MD‘*‘"‘F“:J' 5)
NELES |

r=i 3

where
12
D) = _E.I'__ + i[du—.._.ﬁ._.["“ +1E "}}]
’.}Tj:,‘ i dlr“x:?
For an arbitrary product measure | = @&y . g, . we have

i . —‘:-}-{ln THEEARR

2. Denote

where dp,, (x)= Mg, (xhdy, xe B
My, (p) = }.r"‘:.lh,(_r}ri.t. M, (p) = ((r‘u&,,{m]”':, E)Em'q, . peli.
B kn

&l

Ly

Let us define the Gaussian measure Wy, on the group BY inthe lollowing way:
142
dpyx) = @y o (bea /) exp(=by a8, )d g, = @ diy,, (13,),
where b= (b, )., i5some set of positive numbers. In this case we have (sce, Lor
example. [13]. formulas (6) and (7))

2 bt

() = E
A

M (2) = —. M, (4) = ——. M (2m) = —, (G)
' 2, ' (264,,) ' (204.,)

- My
M;,,JZ:I = l*T

For an arbitrary Gaussumn product measure [y, = & . Mg 1008 casy 10 verify the

,‘;* -y Vi= B,f Three following lemmas are proved in

2 Ll
. f;fkm(‘d} = 3[{’;‘"—;—'] ) ﬁkmlzﬂﬂ = [Em—l}!![%] . D

cquivalence pf" ~ Wy and 1
[12].
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208 0. V. KOSYAK

Lemma 1.
Wi ~py VieB]
kel . =
< Shkg) = Y My (M, (2) = 2 5 f <w Vk<an
F=—— F=— rk
Lemma 2.

L,
W iy Vi B

- = 1 = b,
Selity) = Y, M, (M, (2) = 3 5 E‘— < o Yk <n

m=n+l m=n+] ™M

Lemma 3. For k.ne & k <n, we have ui""f"" Ly, Vie R\ e
& S (ly) ==,

4. Elementary representations of the group qu . Let us consider the subgroups
Xp. pe Z, and X7} inthe group B®. where {p} is a finite or infinite subset of
Z. For infinite in both directions {p} we have {p} = (Plier. Pe < Pis
YkeZ,

X, = {." +xeB1+x=14+ ¥ .rp,,E,,,J».

n=p+l

xirl =

-]

= I, etr1 % = {fweazu ¢

s ¥ ¥ .xn,,Em,,}.

peelpla=p ¢l
Obviously, the right action of the group B{ is well defined on the groups X, and
xl. P }

For B{F-right quasiinvariant measure L on X, (respectively X e ”}. we define a
representation T,f"' (respectively T%# 171} by the formulas

172
(T ) = [%J fxt).  fetyw) = (X, du).

/2
TRwAP) ). =(d‘mm'] Puy = (x4, ay).
(% o = Zey) fo0. se it = 2{x1) )

For a particular case { p}=(L 2.....q) we denole
x9 = xl].z ..... 1']. Tﬁ’...ll.r} - TR'H'“'Z"""?'. l”-q{u} - Lz[x[l..z ..... ql.d“}‘

Definition 1. We will call the representations i’;f'“, p e & by the elementary

{see also [14]).
5. Irreducibility and equivalence of elementary representations. For the

Gaussian measure | = p, and its projections ., = @:zpﬂubh we have the
following theorem.

Theorem 1. 1. The representation ]’f‘" is irreducible if and only if the measure
W on the space X, is B.‘g'-rfgh.'-rrgodh:.

ISEN 0041 -6053. ¥up. sam. sypee., 2002, m. 54, N° 2



ELEMENTARY REPRESENTATIONS OF THE GROUP Hrf OF INFINITE IN BOTH ... 209

2. Two irreducible representations ]"",f'“' and T;i""? are equivalent if and only
if py=pa and Py~ .

Since '.ff'“ (respectively T"‘""‘“"Zli.-;lhe restriction of the representation y
to the subspace H,(u) = L*(X,.dp,) (respectively H'Pl(u) = £2(x1P} duirt))
of the space |, = LE(B?‘du], we have

Q, if k<p:
AlE = 1 D). it p=k<n: ®)
(), if p<k<n,
. g
A:‘:]F'J' tem Aﬁ-y..l........rf] — EAFan -
p=1
0. if k<l
= ¥ D)+ Dy (). i 1SkSq k<n: ©)
[Z:ﬂ-mﬂm{m. il g<k<n,
Rpdrl ._ I _
A""F o & Z A_ﬂ_fllﬂr =
Po€lphpusik
0. it k< pyin:
Ep elolh po <k Pk Dpn)+ D). if ke{p} k<m (10)
j Ep‘.ﬁ {rhpm<k Yom 1D_¢' ulH). if ke{ph puin<k<n.

where P = min{ﬂmlﬁm = { p}} € |.I'I'-" U {_w}‘
Proof. Sce prool of the Theorem 5 in [14]. 1. Let a bounded operator A4 on the
Hilbert space M (i) commute with representation IR g EA J'” “l=0 vieBi.

We prove that A is trivial, =, e C. To prove this, we consider the
i . =14 Rp 17 ey Lo
commulative set of gencralors { Ao i By formulas (8) we have 7 A, 0

il

== "D (). Since the family of operators u"’DP{p} = {i"1DP,,{j.1}}:_Pﬂ has a

common simple spectrum in the space H ,(U) = Li{.lf F.du}. any bounded operator A
on the space I ,(p) commuting with this family is some essentially bounded function
of this family,

A= :?fr_'U,.ﬂ-l}] = frl[f_lﬂwml—l}. i"‘DpNz{l-l}.-...i"1Dp,,{H}----}

To complete the proofl we use some Fourier — Wiener transform defined in [13].
Let us denote by Fﬁ, the one-dimensional Fourier ransform, corresponding 1o the

measure dity, (g, )= (b, / x)'? cxp{—bh.tfn‘ld.rh .
Rl PR dyy, ) > PR dp,0).
given by the formula

TSN OO w53, Vg, samm. sypn., 2002, m. 54, N 2
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210

2
(Fnf Y i) = “p(z.&h ]J_ Ifthlﬂxp{lfhxh}ﬁlp[ gﬂfﬂ]dxk,.,

Obviously, Fi,1=1, where 1(x)=1.
Let us define, for any p € Z. the Fourier - Wiener transform ,|'-","@I =@up+1 P:',,

The operator F: is an jsometry between two spaces, Fj‘ s Hp(up) = Hp(l ),

where H, () = L(X,.dity ). Hpy )= L(Xpodiy ). Wehave (see [13])

p<an, (11)

F (D) E) " = Yoo

F2(%pni " Doy FE) " = i7" Dbty )Y e

o X
FEAREY" = Fea(iT'Dyy (e i Dpi). Y FE) ™ =

p<n<m,

A | W, T |
The one-parameter group f}f,ﬁ-:_ = F:?}'E}E:_[F; ] corresponds 1o the generator
[ub_1 )¥pme in the space Hrmr'}- s0 it acts by the formula

{f}t‘,ﬁ:‘f]{....:.rp,‘.....}',m....] =
12
d""b"_,,{"" L DAL 7 FA— J’,m----}
= [ dl.lb_L_P['-.-.er...-.-.}'mw-] ;) L R I S B
I:ﬂ Vie B!, where ﬁ=F:A[F:]_1, gives us

] vie R'.

So the commutation [ A.T;55*
a[yﬂ_,ﬂu... Ypn +rym,....J'P,..*--~] = ﬂ[yppﬂi"“'ypn'“"‘ypm"

Indeed, it is sufficient to compare two equations,

[ .f+I'E fk "}rpn" I'J'rp.rut ] = ﬂ{ FP"""‘}IM""}x

12
ity (oo Yon * Dpmoeeos Ypmoe+-)
2 Flaves Yo Fi¥omzeves Yomresa)s
[ dub_.J[....yF".._., me....:l e Ypn + 195 prv--)

(R0 & N gmi] o [ Bt Ton D Yy o
1+iE,., sror ¥pureeor Fompesos dub'ilplj""rﬂ"‘""}lpﬂ”"]

0 Wy s oo P M
By ergodicity of the measure | 51, p° the function

@ = & Foosiuenis Fpusevs)

is constant and the operator A is trivial, A =& [.

2. Sufficiency is obvious. Let Tf"' ~‘I‘::'“'. we prove that p=p” and P~ p”
Let us assume that p# p’, forexample, p > p’ and consider the restrictions T|; of
the representations T = Tpﬂ'“ and T;""d to the subgroup G = Xpp =

ISSN 0041-6053. ¥up. sam. smypu., 2002, m. 54, N 2



ELEMENTARY REPRESENTATIONS OF THE GROUP B: OF INFINITE IN BOTH ... 211

= {J' +xeBY| T + xe R’F}, The spectral measure E}, of the restriction Tf'“lxpn
is the spectral measure of the commutative family of self-adjoint operators

l"'DFEI-U = { E"Dp,,{u]}:_uﬂ and the spectral measure E*;' of Tf.'“ll X, I trivial

iscc (8)). so p =p’. Inithis case, the spectral measures E; and IE": are equivalent, so
[Ty

Indeed let use the Fourier = Wiener transform F;f . We denote by [E:"_I (¥} the
spectral measure of the family of operators of multiplications by independent variables
(¥pu)nepsr i the Hilbert space H,(u,.,). Since the spectral measures Ef and [E’;'

—— XIf = [T l'[’.:-l
are Cqu?\-f.ll{.‘nl: so using (11) we see that spectral measures E* (y) and Ej (¥}
are equivalent. Morcover, we have

(Et*-tf}']m}‘i. ‘i} = W, (A)
Hylp, 1) P
Finally.
s El" = E"r' (v) E“w'r‘ (
r~ Tp e =K ¥) & Myt p = Higo , &
= Aiby) " B! = "
I P—l w_l > 0 e Hgﬂrﬂ_{}ﬂﬁ““ﬁumr
n=p+l([bﬂ} +{bﬁﬂ} ] i.ll=p+l }

6. Tensor product of a finite number of lhe elementary representations and
irreducibility. Let {p}=(p.....p,) be afinite subset of Z.

Theorem 2. 1. The representation T®"1P} s the tensor product of the
representations T;:' bee 1<kem,
rReir} _ e, T *l"ptL (12)
2. The represemation TRWAPY s irreducible if and only if
Sk, )=, lSk<nsm,

i) the measure W on the space xted g Bg-righ:-ergodir.
Proof. We prove the theorem for {p}=(1.2,....q). For other finite {p}. the
prool 15 the same. We will show that by using the generators

Aﬂ'“"‘:: Aﬁ;"'“'z""‘ 9k < n, it is possible to approximate the operators of
multiplication by independent variables x,,. |1 £k <n =g, and the set of operators
Dy (1), k<n, k<gq. Indeed. according to (9) we have

Aptt =Dy, len, ARM = DG+ D). 2<a,
Ak,p.q = a0 + xasDy () + Dy (p), 3 < n,

Al g Ex,in,,{m + D)., ksgq k<n

r=1

L
"‘ﬁfl.u‘q = Errle{u}' if g < k< n.

ra|
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212 0. V. KOSYAK

The proof of approximation is the same as in [9]. It is based on the Lemma 6 in [14].
Let us denote by %" "{Bg } the von-Neumann algebra, generated by the

representation T%H-9; ‘H‘*""*’{Eg] = [?;*"‘""I.- € Bﬂ . Letalso {f,Jn=12...)
be the closure of the linear space, generated by the set of vectors { f, }., in a Hilben

space H.
Definition 2. Recall [15] thar a nor necessarily bounded self-adjoint operator A

on a Hilbert space H is affiliated to the von-Neumann algebra M of operators on
this Hilbert space H (denoted AN M) if expl(itA)e M Yie r'.

Lemma 4 [14). {xi}cpcns, M UFM9(BT) if SEW =, k<nsSgq. In
this case we also have Dy (L) " '5‘1*'“"'{.&62}. k<n, k<gq.

Finally we have { %}y cpeq 1 XM 9(BE). { D)}y cppey n ARP(BT),

s0 the commutant {'ﬂﬂ'"'*{ﬂgf }} of the von-Neumann algebra '91”""““{5{}]
coincides with essentially bounded functions from the family of operators

D) = { i_lﬂ*"m}}k Sqen’

Let now a bounded operator A € L{H"{u}} commute with T,7"9 ;¢ B.f. Then
this operator A is an operator of multiplication in the space H%(W) by some
essentially bounded function, A = a({ B 'D,_.,{mh T sq).

As in the proof of the Theorem 1 we use here an appropriate Fourier - Wiener

transform to prove irreducibility. Let us denote F™9 =@%_, F;'. This operator is an

is metry between H7(u,) and HY(,,). Obviously, AF*9A(F™¥)"!

= a{{ Yin ki 5 .,u} and the operator ‘f}f‘,E‘tf = F""'f}f‘,gl‘fiF"'"’}" acts by the
following formula

Mg+l Yue ¥ia
(71 5) ’
.qu-]_ vea -FQ* Fon }fq"
= 12
@Ry, ) o
g () e
= 2 oy +I s W
o d“g-l{ﬂfﬂfh{}'}} Ng+1 Y1k ¥ Dia Fin
W)
}IW'I o _F# o F‘FW A }'qrn

so the commutation [E,ﬂ"i‘,ﬁj] =0 VreR' gives us as in the proof of the
Theorem 1, the equality

Figei o« ¥k een MV

}Iw-ﬁ-l e J"q'l e yqn
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.Ptq'+| M *I-I'_'!-'L“| - ¥in
= a .| YieR!, ¥Wg<k<n

Yaq+l Yak +'.F¢n wue Yan

By ergodicity of the measure W7, this means that the function a[{ Yin i s qﬂ:l is

constant, ai v) = const
7. Regular representations as infinite tensor product of the elementary
representations,

Theorem 3. 1. The representation TRY s the infinite rensor product of the
. R,
representanions IF e pe &,

TRE = @, T, (13)
2. The representation TRE g irreducible if
i) SE(u) = oo Vken:
il) the measure W on the group BY s B,;‘F-:'i'gh:-er'gﬂdic:

R
iii}  sup Sia (i) =C, <o Yhkel

U S b&:n
Proof. The irreducibility is proved in [12]. The representation (13) follows from
{4} and (10).
8. Tensor product of an infinite number of elementary representations and
irreducibility. Let {p} be an infinite subsct of L with only finite number of
negative integers.

Theorem 4. | .The representation @, :_'};':' oo is irreducible if and only ift

i) Spp () = Vp<p, ppe{ph

i) the measire @, efp)Mp, 5 H‘f ~right-ergodic.

Tt = TRBAPY here p= @

2. In this case, @, 17T,

relpiba,
3, rRedel L pRWARY randoniyif {pY={p'} and p~p’.

4. The tensor product of two irreducible represemations Thuirl g pRWAP]
is irreducible if and only if {p}N{p'}={S} and S;'”,: HBEN )=
Vepelp) paelr'}.

Proof. The irreducibility and equivalence for {p}={p'}=(p, ozt P, =n
follows from the Theorem 1.1 and Theorem 3.1 in [9]. For another infinite { p}  with
only a finite number of negative integers, the proof of parts 1 and 2 is the same.

Let us prove the part 3 for a general { p}. Sufficiency is obvious. Necessity is

based on the Theorem 1 part 2 and Theorem 3.1 in [9]. Let TR #1rt _ pR¥.1e}

where {pl=(p.ps....). {P }=(p P5....). Weprovethat {p}={p'} and p -
~ W’ Let us assume that p, # p;, for example, p; > p{ and consider the spectral

measures EY  and E‘;I of the restrictions of the representations 7571 and

TRWAPY o the subgroup X, 0. The spectral measure [E"':,1 is the spectral measure

ISSN 016053, Yop sane. svpw., 2002, m. 54, N0 2



214 0. V. KOSYAK

of the commutative family of self-adjoint operators i"’[lpliu',i: {i’“ l4!3’,;.,"{#} }n-r. +l

and is not trivial but the spectral measure E:. is trivial (see (9). (10)). This
contradicts TR®APL _ pRWAFT oo po= pr. In this case the spectral measures

r . . - Ty .
I-IﬁL and [E'J"‘,1 are equivalent, so W, ~ pj, and T, fn I, Hr | Since, by formula
(13), we have

Tﬂ-il-lﬂ‘} = T'R"-"ﬁ @TR-HI"J-Ihl TF-F‘-{P']' = T"‘-‘u:ﬂ @'{‘KFJF&]-{F&}
4] 3 ly x

¥ @ . {rzl
and the equivalence TR 1P} _ pRWAPT holds we conclude that 7% el _
Ars) p g
= TR Ghere {p}=(pa. pand {65 )= (05 ph..). and

R {e2} _ ® -_,.R. e, )

Rupfp} _
T =@ reelpil i

PeElp) ?;:Fh ’
Analogously we conclude that  py = p5 and p, ~u, . Finally. fei={p} and
W =M, Ypee {pl={p'}. Forfinite {p}. {p'} the proof is finished since in
this case we have U=@, (M, ~ “JZE'F*EIP'I u;,*. In the general case (for
infinite {p}. {p'}). the equivalence p, ~p, Ypie [pl={p} does nol
imply u=®hEIPIuh - B o= ®F;E‘.'P'iu;"a‘ For the particular case
{pY=(p iz, pe=k ke M, the equivalence of the measures -~ p°  follows from

the Theorem 3.1 in [9). For general {p} the proof is the same.
4. Sufficiency follows from parts 1 and 2. since in this case we have

Thulel gpRuwdel _ pRagp'{plUle)
where {ptU{p'}={p.pilpelp) pielp’}}). Lanow {p}n{p'}={p”}
be finite, { p™} = (pj..... pe ). Forinfinite { p™} the proof is the same. In this case

we have {p}={q}lU{p”} and {p'}={g’tU{p"}. so {p}U{p’} =
={qlU{q’"}U{p”} and we have

Tﬂ_u.lp} @T.ﬁ_"'.{p‘} - TR_HIH@“Ir"FQH-H'I.[H«--IP"]UH'I ® ?_HIF-IP"J.{ FH],
S0 the proof that the last tensor product is reducible is similar to the proof that the
following tensor product
TR.u.r} @T'ﬁ' Wk
is reducible,

Consider the essentially bounded function a: X 5y al(x)e C' and let Ag be
the operator of multiplication in the space

HI) ® H7 (') = L2X9,dp) & LAXT* dp’) = X% @ X9 dp @y’
by the function ag: X X9 3 (x,y.2) = aglx.y.2) = alyx~") € C'. We show
that the representation 759 @ T¥-9"% commutes with the operator A,. Indeed,

for any function f(x.y.z)e [X(X7 ® X9** du ® ). using the property that for any
(v.2)e X% X't= X7+ in Sz, { v.2)=zv holds, we have

(T;R,H.-I' @?}R'th.kﬂﬂ f]{.r. 2y) = {T}R.Jl.qr ® }'}R‘"'- qrﬂﬂ'ﬂ f}{x. ) =

ISSN 0041-6053. ¥up. san, sypn., 2002, m, 54, N 2



ELEMENTARY REPRESENTATIONS OF THE GROUP B‘: OF INFINITE IN BOTH ... 213

_ [duun)”‘[du'iz »)
di(x) d'u(zy)

12 1/2
- —fdpar)) T dp(z y-'}] .
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