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MALLIAVIN CALCULUS FOR FUNCTIONALS
WITH GENERALIZED DERIVATIVES AND SOME
APPLICATIONS FOR STABLE PROCESSES”

YHUCJIEHHA MAJLITSABEHA JL/18 OYHKIITOHAJIB
13 ¥3ATAJIBHEHHUMH HNOXJIHUMH
TA JIESKI 3ACTOCYBAHHS /10 CTIMKHX 1POILIECIB

We give the definition of gencralized derivative of a functional on a probabalily space with respect 1o
some formal differentiation. We prove a sufficient condition for the exisience of the density of
distribution of the functional in terms of its generalized derivative.  This result is wsed to obtain the
smoothiess of distibition of local time of a stable process.

Bacaeno nonsTTa yviaramsnenoi noxiniod deyikitionana na iisonipiiciosy mpociopi simocno G-
MAMLHOrS M epeHiBoBaHI A, OTPHMAHD HOCTETIIG YMOBY WCIYRIINA ILIRHGCTD Posnefiiny Jeyik-
uioHana y TepMiHax foro yaaramnensd noximed. 11 pesy Jram BrEopic i LA JoRcehin A Il
KOCT pOMIOAILTY JOKATRHONS Wacy Bt cTillko o nponecy.

1. Imtroduction. Inthis paper we give the result which provides the regularity of the
distribution of a functional over a space with a smooth probability measure under wide
conditions on the existence and nondegeneracy of its derivative.

The well known Malliavin®s approach, based on a stochastic calculus of variation
and introduced initially in order 1o obtain the existence ol the smooth density for the
solution of the SDE driven by Wiener process (see |1]). can be developed (or o more
wide classes of functionals and probability spaces in the (ollowing manner. First, one
have to construct some differentiation structure on the given probability space such that
the initial probability measure is smooth with respect o it. Then one is 1o construct the
corresponding Sobolev spaces and stochastic (Sobolev) derivative and prove some
Malhavin-type theorem which gives the exisience of a smooth density for a functional
which is infinitely stochastic differentiable and has derivative which is nondegenerated
in some sence. And, at last, one have 1o check that, under some conditions, the
obtained theorem can be applicd to a cerain class of functionals on the initial space.
such as integral funciionals, solutions of the SDEs, local times cic.

In some cases such a programme can be completely worked out, the most important
example is the Malliavin-type calculus for the SDE with jumps which is driven by
random Poisson measure with smooth Levy measure. 11 was starled by K. Bichteler
(see [2] and bibliography there) and developed by 1. Jacod. R. Leandre, J. Picard, T.
Komaisu and others (see [3] and bibliography there). But there exists a lot of other
cases in which there arise difficultics, caused by nonregularity of the initial differential
structure or of the functionals under investigation, Such situation appears for example
for time-stretching differentiation w. r. 1. Poisson processes with an arbitrary Levy
measure constructed in [4)] and differentiations w, r, L stalionary and scmistable pro-
cesses constructed in [5]. In the mentioned cxamples the values of the initial process
are not stochastic differentiable by themselves. Thercfore the usual technique which
gives one opportunity 1o obtain, say. that in Wicner case the solution of the SDE is
mfinitely differentiable. does not work and the problem 1o check Tor the given
functional conditions of the general Malliavin-type theorem (such as theorem 6.1 in |5,
p. 55]. or theorems 2. 3 in [4]) appears 1o be very difficalt.

In such a sitwation it is wseful 0 obtain a weaker version of the Malliavin-type
theorem which will give the existence of the density (without any staements about its
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MALLIAVIN CALCULUS FOR FUNCTIONALS WITH GENERALIZED .. 217

smoothness) of the functional under weaker conditions on it, The typical result of this
type can be formulated (for a one-dimensional functional) in a following form.
Theorem. Let functional f has stochastic devivative Df, then

Plioge o of 1 << Al

Such a statement was proved with some additional suppositions about the structure
of the formal differentiation by the stratification method in [6] and (with weaker
conditions) in [7]. by the descent method in [5] and in [2] by the Malliavin-type
technigue with additional condition on the existence of second derivative.

In this paper we prove this result without any additional suppositions about the
structure of differentiation or existence of higher derivatives of £ Moreover, we admit
the functional § only to have the derivative which is a generalized function in some
sence, which is quite new condition in this theory. To demonstrate this result by an
example we regard the siable process as the semistable process and use the differentia-
tion from [5] to obtain the smoothness of the distribution of local time of the initial
Process,

2. Formal differentiation, Sobolev spaces and generalized stochastic
derivatives. The notion of the admissible formal differentiation (differentiation rule)
on a probability space was introduced in [8] (see also [9]). Let us give the correspond-
ing definition in the form which s convenient for our Tuture discussions,

Let (3.3} be complele metric space with Borel o-algebra. H s a real separable
Hilbert space. The set 6 of bounded measurable functions & — B with the operator

Vy acting on "6 and waking values  in the spase of bounded measurable H-valued
functions on F  is called a formal differentiation (differentiation rule, differentiation)
on aspace (3, 9). il they satisfy the chain rule
Whvonfag G Fe GUIRME Ffy o) e,
(1)

‘l;'r”FU.“--- 1_||r“J' = Zﬁf{ﬁv“lfnlv”ﬁ'
bl

Definition 1. ¥he formal differentionon (V€ is called 10 be admissible for

a measure oo (WY 0f there exisix o weak vandom element p in H, such
that the folfowing inregration by pavis formula holds irue

E(Vuf.hyy = -Efip.h). he H. fe'G. (2)

The element p is called the logarithmic devivative of B w.r. 1. (V. %€).

In the situation of Definition 1 we shall also say that p is differentiable w, r. 1.
( ?.” " ‘% :. #

The formal differentiation (V. €) is called full w. r. . measure @ if there exisis
a countable set €, = € such that (o€, ) = M. Differentiation (Vg €) is called
full if o(%€,)=">23.

Further we suppose that the space (%, 93, i) with the full p -admissible formal
differentiation are fixed. We also suppose that for an arbitrary p > 0 the logarithmic
derivative has a weak moment of p-th order, i. e.

AC,<+o=: E|l(p. " < C A, he H.
Regard for pe (1. 4e) operator ¥V, as the densely defined unbounded operator
?”! LF"[:‘?" I-l}a‘cﬁ - LF(W.H.J‘I"}-
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218 A M. KULIK
Due to (1) on the functions of the type
g = ié‘g"*t- gr€€. heH, k=Lln (3)
k=1
it"s adjoint operator is well defined and equals

"
Vi@ = - X (8@ h) + (Vi i)
k=1
Thus V isclosable in L, sence.

Definition 2. The closure of Vi in L, sence is called stochastic derivative
and denoted by Dy, its adjoint 1, is called stochastic integral. The domain aof Dy
with the graph norm is called the Sobolev space of the order (1.p) over & w.r. 1.
W and denoted by W,(%.11).

The higher derivatives D] and corresponding spaces WJ(¥.p) are defined

iteratively. We shall omit the subscripi in the notations for D'y, I, if it should not
cause misunderstandings.
MNow let us proceed to the definition of the generalized stochastic derivative.

Definition 3. Ler fe UP}ILP{KJ.J.}. The signed measure D o f with finite

variation on (%, B is called 1o be the weak derivative in the direction he H of
the functional f if

Efl(gh) = [g(o[@sf)(dv). ge 6.
¥

It is obvious that if fe W;{E.u] then its weak derivative in the direction he H

is equal
[C-E'ﬁf]{dr} = [Df{IL h) H}I{{f.-l':l}.

It is also easy to see that inverse is nol frue,

Example 1. Let =H =R, p~N(@©.1), € = Co(R) and Vf=f" Then
function f(x)= x + sign(x) has the weak derivative D f=p +/2/ndy. But by the
Sobolev lemma Up}! Wpl{lt, Wi < C(R), so f is not stochastic differentiable.

The Definition 3 is too wide for our needs. the final definition of the generalized
derivative will suppose that it satisfies some analogue of the chain rule.

For a signed measure v with finite variation on (%, 98) we shall denote by [v],
and [v], its absolutely continuous and singular parts w. r. . measure 1 respectively.

Definition 4. Functional fe | ]

5% Lp{&.ﬂ W)  has the generalized derivative in

direction he H w.r.1. Vy if

a) f has weak derivative in the direction h and for every @ € CL(R) functional
PUf) has weak derivative in the direction h;

b) for every @ € Co(R) [Dp@(f)a << (D flar (D4, << (D) f), and

d[D, ()], d[2,9(f)];
(D4 fa (D S,

Example 2. In the situation of Example 1 it is easy to sec that for ¢ € CiﬂR) the

change of variable formula applied to @ on semi-axis (-, 0] and [0, +==) gives
that

(x) = @Uflx)).

reR

{x}| = sup|g'(n].

ISSN 004]-6053, Yep. mam. wypn., 2002, m. 54, W* 2



MALLIAVIN CALCULUS FOR FUNCTIONALS WITH GENERALIZED ... 219

I'afldyy = @(x +signix))uidy) + [l = tp{ﬂ]l],J%ﬁn{c-‘x}

andl thus f has the generalized derivative w.r 1. V.

3. The main theorem. Further we suppose that the space % with the full
dilTerentiation rule (V. €) and the measure p which is differentiable w.r. t. (V.
£) are fixed.

Denote for f e UP:‘ILF(&ZHE by N the set of h € H such that f has

generalized derivative in the direction i and choose some sequence { A} < N which
is dense in N inthe || -|[;; -norm. Denote

8y = U{@s, 1 #0}
k

one can see that the set A, does not depend (mod ) on the choice of the sequence
{hal.
Theorem 1. Let N 2@, then

uj&f s f1 < AL
Kemarks. 1. Inthe case fe W,.IJT-H} Theorem | gives that

=1 1
Mlipremef™ << A.

2. In the situation of the Examples 1. 2 the statement of the theorem can be
abtained as a corollary of changing of variables formula: one has only o apply this
formula w the intervals (—e=, 03 and (0, +==), which are the intervals of smoothness
of the initial function £, However., il we ke on the same place the funcuon fy(x) =

= X +qu < piowhere p;>0. 3 p=1 and {g;}=Q. then f, will not have any

imtervals of smoothness. Therefore, even in onc-dimensional case Theorem 1 can not
be oblained immediately from the changing of variables formula and needs some
additional technigue 1o be proved.

To prove the theorem we need the following auxiliary resull. Let b € & be fixed,
f has the gencralized derivative in the direction #, denote by [H,..xe ] the
conditional probability of p with respect 1o G(f) (it exists because (Vy,6) is full),

d |
Denote by U{ the setof all ve & such that p, [{ [d:L’ :H}H =0
Lemma 1.
]-I-qu"f_l << A,

Proof. Denote by Y, < & such set that var[D, f],(Y;) = var[D, f], (%),
var[@,, f],(Y;) = 0. Fix the sequence {g,} € suchthat |g,[< 1 and g,— ‘lyf.
n=yee (mod var|%, f], + var[D, f]). Let g € €, be lixed. denote

pitny = E[ligemIf=1]. Cn = E[gx.,f%"-]“lfﬂ} re R.

Denote by W/ the image of the measure W under the function f and by p;: and

s absolutely continuous and singular components w.r. t. &' respectively.

Hy
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220 A. M. KULIK
It follows from Definition 4 that for every ¢ & C;,{R}
J [owio - @i oln @n| < sup|9'(0)| lgll [ 12,0 var (D, £] (). (4)
R . x

Fix the set Oy R such that pf(0y) = pf(R), pf(Oy) = 0 and choose the
sequence {¢, }c (Z},{R} such that

1) ¢,0)=0, max(|g,|.|¢nl) <L

2) ¢, — sign@,)Tp, m e (modA' +pf).

Then ¢, —0, m — += uniformly on every finite interval, and passing to the
limit by m — o< in (4) one has that

JIgEo|nl @) < lgh. Jlgu0lvar[@, £, (dx).
R - 4

Now, taking n — == we have that
a0 > 40 = B[40k -]

for p/-almostall re R and
Il.t'.,{x}l\'ar[fhf],{dx} =0, n—oee
¥

and therefore
[|&E@|uf@n = o.
R

This implies that for the set U{r,, = {E[g%ﬂilf]#ﬂ}

1 1
ul”{.. of " =< AN,
This gives the needed statement because

U_{ = UUL..

ey

Lemma is proved.,
Proof of the theorem. Due to the result of the Lemma 1 it is sufficient to prove
that for any fixed he N,

{ﬂ%ﬁuﬁi:n} c Ul (modp).

As far as U{ € o(f) there exists a sequence of continuous functions with compact
supporton R {@,}, |9,|<1, such that @,(f) = 1-T,,, n = = a.s. Then for

g€ €y one has
P I (LT P A2y fly ,
E[l 1"’!] an a EoalS) dn

= lim If,{f{x)][jﬂmsdu;]ﬂmﬂ - [ | Msdu,]u(m =0
mepe o, ¥ dp ¥ du

r\]-u;‘
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MALLIAVIN CALCULUS FOR FUNCTIONALS WITH GENERALIZED ... 221

by the definition of the set U{ . Therefore 1 M

vl =0 that gives the

needed statement. Theorem is proved.

Remark 3. As one can sce, we proved the statement which formally is even
stronger than claimed in the theorem, namely the set A, was changed by the bigger set
U1 U.d:. Inthe case ¥ =# = RY Vuf=(f..... 00 and fe& C'(®) one can use

the Sard theorem and the implicit function theorem to show that this sets a. s. coincide.
The question whether this seis coincide in the general case is still open.
4. The generalized derivative and the distribution density for a lucal time of a

stable process. Let {&(s).t 2 0} be a one-dimensional stable process with
independent increments of the order @ e (0, 2]. 1. e. the characteristic function of

E(r) is equal 1o

@A) = chp{fml.-crlllu[l-iﬁﬁtggﬂ]}. c>0. |Bl=L

Denote by W the distribution of & in 3 = D{[0, +=s)).
Let ae (1.2]. Itis known (sec [10]) that then for every point x€ R there exists
the local time {v;.r =0} of the process £ at the point x. The following properties of

the family [v')] can be easily obtained from the general properties of Markov W-
functionals:
1) v* is nondecreasing function by ¢ and its set of the points of growth is a subset

of {r|E(t)=x};
] 11
2) v = L~ lim 5—] Yr-c.xve)(E5)) ds:
i}

3) vi* = v in L; when x, — x.
Let the process § be centered, i. ¢, a = 0. Then process £ is semistable of the
order y= 1/ in the sence that for every ue R process T,E = {c""’f,{rf'"}.re [I}

has the same distribution with &. Further we use the differential structure correspond-
ing to semistable processes (sec [5. p. 48]) to construct the formal differentiation Vg
which is full and admissible w.r. t. p and v, has a generalized derivative w. r. L.
T

Denote by € the set of functionals of the form

-f| t,
f= F[jf.{.gm}ds.....jc,,{e_,{,-.-}}d.-,-]. Fe CHB™, ce CIR). (5
] 1]

It easy to see that for every functional (5) there exists the limit in the L, sence (for
gvery pl

v = tim f—M EF[]lq E(s))ds, . jc,[&,{s;}ds]x

j=1
* l j {cj{ﬁ{s]] + ﬁ{sk}[ﬁ[s]}}cﬂ - rjcj{{’.;.{:,-}]].
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222 A M. KULIK

Obviously, the pair (V,“€) is the full formal differcnuiation on & (now the Hilberi
space H from the general definition coincides with B! and is ommited in notations).
Asfaras Ef(E)=Ef(T.E) forevery we H, fe €, this differentiation is admissible
w.r. L. 1 with logarithmic derivative p = 0. Note that the fact that the process § is
not differentiable in L, sence implies that £(7) ¢ wl op=1, T=0.

Let T=0 be fixed,

Theorem 2. The functional Vi has generalized derivative F.M? w.orol J

and
dlD o],

1) —I— = (1-7W5;

) = (=ywr

2) the measure [IVY], coincide with the weak limit of the measures (-} =
= —p(-N{|ETN)|<e})/e. € >0 and is equal - Tppr(OT where Py is the distri-
bution density for E(T) and w7 is rhe disiribution of & under condition
{E(T)=0}.

Proaf. Let €>0 be fixed, denote

T
1
= — |1 2
f; 25{ |!‘,u|.¢|||~-:|:‘:‘|'l'Ir
One has that for ue R
: %5 i
f(TR) = e ;II. Leiseere
and
Sf(TE) = f(T_B) - 1.,
£ 2: _,__;,..in JAE) - %[v} + 'u'-..-‘:] = EI g <e-

Let ge € befixed.one has Ef(T.E)e(T.E) = Effg. we £, Therclore
E£AT 210 -2 B _ o o RULE) - KO, 5}. (
JATE) ™ Eg(T E) == 6)
The right-hand side of (6) converges to
E Lo
_Eg{_ﬁ -%[v% + \,rr*:] - E." :ﬁl:ﬁltl’.‘}

when w — 0 by the Lebesgue theorem of the majorised convergence. 11 is easy 1o
check that

NTLE) - g(T_.E) .
2u
in the mean square sence. Therefore the lefi-hand side of (6) converges 1o Ef Vg =
= —EfI(g). and the functional f; has the weak derivative % f, with
d9@f,
dy

fTE) = f. Vg, u—0

= {.fc - :2[["%""“'?] = i‘rtm]’ﬂ{t}'
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MALLIAVIN CALCULUS FOR FUNCTIONALS WITH GENERALIZED ... 223

Analogously, for every ¢ € C‘,', the functional @(f,) has the weak derivative
SDp(f,) with

dDe(fe) _

T tﬂfd{ﬂ *%[V?r +vr¢] - 'Z'IET"LF.:TH-::}

Our next step is to show that the family {D@(f,),e> 0} has the weak limit DP(v)
as £ — 0. MNote that as far as every functional from € is continuous in the metrics of

[0, =)}, this will give us that tp{v?~} has the weak derivative equai to ‘:ﬂtp{v-r,
By the Lebesgue theorem and properties of the local time v

GU{f - Xt +i¥]} > a-nehvE i L0,
Thus the measures
ax?! = @ U{fe - I[vh +vif] jom

converge as € — (0 to the measure drg" = {l—T}tp’{'-’?-_W'?-dl.l in variation.
Consider the family dx?* = é'ﬁp’ (fe) Tjgr))<ed. € > 0 and prove that it is

weakly compact. As far as p is the distribution of the process with independent
. o dk®? . o :
increments and the densily _if:ll_ is o{E(t). T < T}-measurable. it is sufficient to

prove compaciness of the family arxgﬂjmm;,. Due 1o [11, p. 179] 1o prove such a
compaciness it is sufficient to verify that there exist such 6§ >0, b >0, C < + o that

foreverytriple 0=y <ry<t3ST with A=ry-1, {%

| 18~ B@I1E U3 - &) " var [KE2U(aE) < CA'P. 7
D[, +=a))

Suppose first that 14 = % Then

_[ 1E(1) = E(t)1°|Elta) ~ E(r) | var [x® *1(dE) <
DI[0, +=))
& Tl¢'ll.. J

4

prl{'xl I-IPJ'! =f (-’-’2 }P,r;-r! {4'3}.”]' -,_J.t.,‘.!d.t'.dxzdx_,d“ :

| 2y #xg +xy+xy ]z

where
pilx) = J—j’ i, (),
Lo
is the densily of E(1). We have
= [ 11wl ey 0Py 2Py, (3)Pry (xe)dxidxpd xadx, =

oy #xp #xy4x, ]2
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-1 +:]+:1 +£

p'f'-.-:i Lh :'I'ird,

= I | X |bl X Ib —X T *13_;£ F’I [j:l :IP'2 -1 {_{2 }pr!_‘: {1‘3}d.r|_d.l'2d X3 =
RJ

= [ sup P {x}]

2
ﬁxlbﬂ'{”d" 2= -6"". b&<o.
re[Ti3,T),zeR

LR
Now, laking b e (/2. a), we obtain (7) with

2
C=T|¢'|l. sup p,(x}][ Jlxl P|(I}-fir} :
[ 1e[T/3T).xeR B

Now let 15 > % then > % and the same estimation can be obtained using
inequality

= .[ %2 1% %3 |hFr1 )Py - Ce2) Py, (3)Pr—yy (g )d Xyd Xpd X3d vy =

|z vaybug|ce
=Xy Iy +ay +E

Py, (% ey

- J' | X2 Ibr X3 ib i +~£ ﬂ;l - ( X3 }ﬂn =tz { X3 }f-"_l -y { Xy } l’!.t’zdl’:‘d.'l.'_. <
R!

2
4 [ sup p,[.t]]l_|'|x|bp|{.r}¢f.u] [t = 6 [y~ b<e.
1e[T/3.T).xeR R

Therefore the family {K:" ten 'D} is weakly compact and consequently has the weak
limit point. As far as for every ge €

lim [ @xPP@g) = lim [ e@KE @) - Egvicg).
=0 pipa, e £ M0, + )

and € generates the Borel o-algebra in D{[(), +-e2)), this limit point is unique and
there exists the weak limit

k$? = dim k%2,
e—=0
This gives that tp(\r;';} hias the weak derivative w. r. 1. 'V equal to
0 A .2
ﬂ'l.p‘['h":r} = Iﬁg —I'Eg .

Analogously, there exisls
Ky = limxl. i = lim«xZ,
=0 £= 10
with
1 Yt - 2 A
dx! = [;;—?[vrwr ]}du. dk? = LT Tgpyeedi. € >0,
and v] has the weak derivative
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A,
@V; = K- Kp-
In the same way with (7) one can oblain the estimate

| Em-g0fxiEs s ca-nd.
D0, #+e])

which will imply that the process £ is stochastically continuous at the point T with
2 . P =

respect 1o measure Wi As far as this process has the left limitat T a. s. with respect

1o this measure, this gives that trajectorics of this process are a. s continuous at I with

respect 1o r:ﬁ. Then by Theorem 5.1, Ch. | [11] for every fixed 5> 0

ka{|E(T)|>eq} < limsup k2 {E(T) > ey} = 0.

0=l

and therefore X3 {E(T)>0} =0, ie. k3 Lp. Thus
[DV3), = kb (DY), = -x3.

As lar as
o K‘t{ &
o®

2

= |¢(f)] < l9'll.. e=>0.

we have that k§° << k3. [Dev) )], = 3 ['RH.H"-’?-}L = -xg? and
ded*
—| = l¢'l..-
vy |

This together with the equaliny

aed!
dKp

ded !
dp
gives the necded statement. Theorem is proved,

Now we can use Theorem 1 10 obtain the existence of the density of v,
Theorem 3. The distribution of Vi  has a densiry.

-1
Proof. 1t follows from Theorems 1, 2 that ptf o o[vF]™ << A'. Therefore 0

= (-YWiQ'vP) = ¢v7)

prove the theorem we need 1o show that u{ vF} = ﬂ} = 0.
Suppose that it is not true and for some T>0 ap= p{v‘?’ = u} > 0. Then for 1=

<T a,2ay, and the Laplace transform of vy is uniformly detached from zero on
[0,T):

w(A.1) = Eexp[-AvP] 2 ap. A 20. (%)

Due 1o formula (3) from [ 10] this Laplace ransform satisfies equation

u(d.t) = l—lj!iilf—s}p,{ﬂlds. %)
0
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226 A M. KULIK

Due to (8) the integral in the right-hand side of (9} is not less than  ar _L; p(0)ds € R
for 1 € [0, T]. This gives that for such ¢ w(A, 1) = —eo, A — +e2, and this is
impossible. Thus our supposition is false and u-[v?- =U} =0, Te R*. Theorem is
proved.
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