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FINITARY AND ARTINIAN-FINITARY GROUPS
OVER THE INTEGERS Z
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In a series of papers we have considered Nnitary (than 1s, Noetherian-finitaryy and Artinian-finitary
groups of autcimoiplizims of arbitrary modules over aibitrary rings. The structural conclusions for these
two classes of groups are really very similar, especially over commutative rings, The question arises of
the extend o which csch class 15 a subclass of the other.

Here we resolve this question by concentraing just on the ground ring of the imegers £, We show
that even over & nenther of these two classes of groups 15 contained in the other, On the other hand we

show how each group in either class can be buily oo of groups in the other ¢lass, This later fact helps o
cxplain the structural similarity of the groups in the two classes.
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In a series ol papers (sce |1 — 5]) we have introduced various forms of linitary groups
of arhitrary modules over arhitrary rings. Among the most interesting are the
Mocthertan-linitary (or just finitary for short) and the Aninian-finitary groups. Our
siructural conclusions in these two cases are not identical, but are oo similar 0 be
cotncidental, especially over commutative rings. What is the relationship between
these two classex ol groups? For example, is one & subelass o the other? Here we
resolve some of these questions by making a detailed study of these groups, but just
over the integers &, As a result we can say that even over £ neither of these classes
is contained in the other. Notwithstanding this, we also show how, over Z. proups in
cach of these classes can be pieced together from groups inthe other.

We must start by recalling the basic delinitions. Let M be a module over the ring
K. In [4] we deline various generalized finitary groups, of which the following are
relevant here.

For o an ordinal or ==,

Fohuty M = {ge Autg M: Mig - 1) has Krull dimension less than e},
- AulgM = {ge AutgM: Mig~1) has Krull co-dimension less than o }.
In partivular, the Artinian-finitary group off M over R s
FrauyM= {ge Autg M: M(g -1} is Artinian}
and the Noetherian-linitary group of M over R is
F'AulpgM = {ge Aulg M: M(g - 1) is Noetherian}.
The latter we also call the finitary group of M over £ and so denote it by FAutg M

There are two [urther finitary groups we have cause o mention. These are
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154 B. A. F. WEHRFRITZ

Fies AutpgM = {g € Auty M: M(g - 1) has a finite composition series}
and
FrAmpM = {ge Autg M: Mg~ 1) is finite}.
The basic relationships between these various finitary groups can be found in [4].
Now assume that K =Z, the integers. Any module with Krull dimension has finite

uniform dimension. Hence an abelian group M with Krull dimension is an extension
of a free abelian group of finite rank by a direct sum of finite number of co-cyclic
groups. Thus M has Krull dimension and Krull co-dimension at most 1. Clearly
Moetherian, Artinian abelian groups are finite. Thus for any Z-module M we have

the following relationships
FxAulzM = Fi Aulg M = FAutz M F Autz M,

Fis AulzM < FyAuiz M < Fy Auty M,
Fiee AUty M € FAuM = F' Auz M € FRAug M
and

FyAutzM = F_AutzM = F”Autz M < F? Autg M.

We show below that there are Z-modules M, and M ' such that Fy Autz M,

does not embed inte FAuty M for any M. while FAUIIMI does not embed into

FyAueM forany M. We develop a close relationship between these groups. In

particular, there is a vague and ill-defined duality between the finitary and the Artinian-
finitary groups, with Noetherian and Artinian interchanging at the module level and
finitely generated and periodic imerchanging al the group level,

Below we number our resulls consecutively 1, 2 etc. Where a result can be

considercd as part of the duality above we label the result 1 ' 2" etc. in the finitary case
and 1,, 2, ete. in the Artinian-finitary case, The reader should for each relevant

' = " - - = & |
compare i' with i+ Since the duality is incomplete, for a given i there may. for
example, be no 7. Although these two wypes of hinitary groups are incomparable,
even over &, the linitary (that is, the Noetherian-finitary ) case does scem the stronger.
A positive resull il s usually easier 1o prove thal the comparative result {1, while a

negative result i is usually harder to prove that the comparative result ¢, when they
hoth exist.

Let m be any infinite set of odd primes p such that p= 2 (mod 3); note that such
sets m do exists by Dirichlet’s Theorem. Foreach p in m let A, be a divisible
abelian p-group of rank 2 and in L2, Z) set

0o =l
= [I —I]‘
Regard g as also lying in Aul A= GL(2, ) 2 GL(2, ). St A =¥pegAp the
direct product of the A, and let G be the split exiension (g)A of A by {(g). For

each p let E, be an (additive) Priifer p~-group and set £= @, o Ep.
1!, With the notation above the following hold:
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FINITARY AND ARTINIAN-FINITARY GROUPS OVER THE INTEGERS Z 135

a) G is periodic and metabelian;
b) G embeds into F AutzM for M=Z'V @ E;
c) G does not embed into Fy Autg M for any Temodule M.

Proof. a) Clearly g has order 3. Part a) follows.
b) Regard A as E@E, soifl ae A, then a=(a,,a,) lorsome a, and a5 in
E. Define amap p of G into

[GL{Z.E} E$EJ
= Aul M
0 Aut E
by
0 =1 O I 0 a
gp=1|1 =1 0| and @ap=1|0 |
0 0 I 0o 0 1

for « € A. Then p in casily seen to be a well-defined embedding of G. Also
Migp-1)= Erl'(g = 1), which is finitely Z-generated, while Miap - 1) =Za, +
+ Loy = E, and sois finite. Therefore & embeds via p into F Auty M.

) Note that 3 ¢ n. Suppose G = F AutgM  for some Z-module M. Then

Mig-1) is Artinian. We prove that M{g - 1) contains an element of order p for
every p in ®. This contradiction of = infinite will prove Part ¢). To accomplish this
we need consider only one p in . To simplify notation set B=A, and H = (g =
=G,

Now [B, g]l=B"""" is divisible and nontrivial. If [B, g]<B, then B = [B. g]x
» C for some C=#{1) and so g acts reducibly on the GF{p)space Q B =
={he B:b"==1}. By Maschke's Theorem (recall p# 3) g acts diagonally on
£,8. But GF(p) conlains no primitive cube root of 1. Thus g centralizes £2, 8. By
6], Lemma 3.28, alternatively by Lemma 7 below, the element g centralizes B,
which is false. Therefore (B, g]=8 and 50 {gH}=H.

Let T be the Z-torsion submodule of M. For each prime ¢ sat T. = &, T,
and set Mq =M/ ?:J,-, Mow Mq,[b - 1) is an Artinian g-group and also a B-
submodule for any b in B. In particular, Aut(M (b~ 1)) is residually finite, so B
centralizes each M (b~ 1) and therefore [M,, B, B]={0}.

Suppose g # p. Stability theory maps the p-group B into Hom(M,, H ) and the
torsion subgroup of the latter is a g-group. Hence [M,, B]= {0} and consequently
[M, B]= ﬂq” ?‘}, = T.n‘ Suppose Mig - 1} contains no element of order p. Itis

also Artinian and so torsion. Therefore M'F[g = 1)={0}. But then H = {gH}i_* B8
also centralizes M, Consequently [M.B]=T,. But [M.B]=T, by the above.
Thus B centralizes M, which is false. This proves that Mig - 1) contains an
element of order p and completes the proof of | r.

1. Let & be the wreath product of twe infinite cyelic groups. The following
herld:

a) & s finirely generated and metabelian;

by for any prime p. if M is a divisible abelian p-group of rank 2, then G
embeds inte Fy Autg M= Autg M= GL(2, E,)
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756 B. A. F. WEHRFRITZ

c) G does not embed into F Autg M for any Temodule M.
Proef. a) This is clear.
b} Pick any unit « of Z, that is ranscendental over the rationals Q. Then G is

isomorphic to the subgroup
1 0yfu O
(G )
of GL(2,Z,).

¢} Suppose G < FAulg M forsome Z-module M. By [1], 2.3 ¢), we may assume
that M is finitely Z-generated. Then AutyM embeds into G L{n, Z) for some
integer noand in particular the soluble subgroups of Aul s M are polycyclic. Clearly

G is soluble but not polyeyclie. The result follows.

From now on let M be some abelian group and let T denote the torsion subgroup
of M. Denote the p-primary component of T by T, and the divisible radical of T
by D, Our first positive results, namely 2' and 2. summarise our starling points;
they are extracted from [1] and [5].

2. There is a normal subgroup N of G = FAugM thar is a Fitting group
fand hence is locally nilporent and hyperabelian) such that G/ N embeds into
FAulg,o M, for some (3% Z-module M.

Proof. We apply 2.2 of [1] and its proof and notation. With N = nu CiiNg ),

the subgroup N is a Fitting group by [1], 3.2 and 3.7. By [1]. 2.2 and its proof, we
can embed G/N into a direct product %, FGL(V,). where p runs over 0 and the

positive primes of Z and where Vy is a vector space over @ and V, for p>0 isa
vector space over G F(p). Clearly FGL(V,) = FjAugV, for p >0 and the claim
follows with M, =V, @ (@,.0V,).

2,. There is a locally residually nilpotent normal subgroup N of G =
= F, Auty M such that G |N embeds into F AmgM, for some E-module M,.

Compared with 2', the conclusion on N in 2, is weaker, while that on G /N is

stronger.
Proof. Apply the proof of [5],2.7,10 & and M. In the notation of that proof, set

N = (Nyer C(Ag.1/Mg). Each field kg of that proof is an image of Z. so
FGL(V4)=F Auty Vy. Therefore G/ N cmbeds into F Autz(@g.,Vy).

3. If M is finitely generated (that is. if M is L-Noetherian). there is a
positive integer n such that for every prime p, the group F AutzyM (= Auig M)
embeds inte GL{(n, Z,) = FyAutzM, for M, a divisible abelian p-group of

rank n.
For there exisis an integer n such that Auty M embeds into GL(n, Z) s GL(n,

Z,). This simple result 3' is truc in essence if Z is replaced by any commutative ring

(mot so simple. see 14 below).
There is no 3, analogue to : 18 Specifically if M is Z-Artinian, then F), Autg M
need not embed into FAutz M, for any abelian group M. The example of |,
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FINITARY AND ARTINIAN-FINITARY GROUPS OVER THE INTEGERS % 137

already shows this. IF M is finite, of course F) Aut; M = FAuy M. If M is infinite

(and still Artinian) and if ® denotes the spectrum of the divisible part of M, then n
is finite and nonempty and it is easy o show that for some integer n, the group
FyAulz M = (=Autg M) embeds into J-EMKGL{.-:. EP}; thus it embeds into

Fau, "™ for J== - L ,. This could be interpreted as some sort of weak

analogue of 3",

' If G = FAugM, then Co(MIT) = FyAuty M = Fi Autz M S F) Autz M.
In particular, GlC5(T) embeds into FAulgT = FlAugT and if M s Z-
rorsion, then F Auly M S FLAuig M,

Thas is all obvious.

dy. Let G = FiAuieM. Then GiCa(MID) embeds narirally into
Fauy (M D). Inparticular, if D={0}. then F;Aul: M< FAuty M,

Proaf. For notational simplicity only, assume D= {0} If ge G, then Mig -
= 1) is Artinian, torsion and reduced. Therefore Mig - 1) is finite and consequently

F| .H.I.IIEM = .‘";.-; ndi.l.l-lzl'l‘f = Fr‘_-_‘ A.I.lle = Fﬁulz M.
The general case follows.
In4' and 4, we have dealt with the actions of FAul-M on T and of F; Autz M

on M/D. Out next target (8' and 8,) is to analyse the actions of FAulzgM on M/T
and of Fy Autyz M on 0. For this we need a couple of lemmas, special cases at least

of which are well known.
5. Lemma. Let X be a Neetherian module over the commutative ring R and

let E be an injective hull of some irreducible B-module 5. Ser X "= Hom g (X,
E). Then X is Artinian.

Proaf. Sct a=anngiX). Then R/a is Noetherian, Also X" = Homg (X,
ann(1)). Assume X #{0}. Let ¢ X . Theneither Xp={0} or 5< X¢. The

latter implies that a8 = {0}. Thus since Xz {0}, s0 8§ is an essential submodule
of A=anng(a). Hence A is Artinian as &/ -module by [7], 4.30, and therefore A
i also Artinian as K-module.

X is Noctherian and hence finitely generated. For some integer & we have an

exact sequence R = X 0. Then

0—=X = HnmRiR[“..ﬁ}
i% also exact. But
Homg(R™, &) = Homg(R. 8)* = a'™),

and the latter is Artinian. Consequently so toois X .

6. Corellary. If X is any module over the commutative ring R, then
FaugX i residually an Artinian-finitary group of R-module avtomorphisms.

Proof. Sct G = FAulgX and let § be any irreducible R-module. Denote an
injective hull of § by E and put X = Homg(X, E). Then G actson X on the lefi
viag its right actionon X, Let g & andset Y=X(g-1). Then P embeds into X~

ISYN 016033, ¥ep, som, xvpn., 202, m. 54, N7 6



T58 B. A.F. WEHRFRITZ

via Wi (g - 1)y and then (g - I}X' Sy, By 5 we have thai ¥" and hence
(g-1)X" is Artinian. Consequently we have a map ps of G into Fy AutgX .

Let ge G\{1} and pick x in X with xg=x. Set y=xig—1). By [7]. 2.24, we
can choose the irreducible R-module 5 such that there is some & in X with vé = 0.
Then x((g-1)9)=0 andso (g - 1)X # {0}. Therefore gps# | Consequently
r]j kerpe = {1} and the corollary follows,

7. Lemma. Let A be a divisible torsion abelian group and ler g be an
aictemarphism of A of finite order that fixes every element of A of order twice a
prime, Then g=1,

Proof. If A has finite rank, this is a lemma of Baer, see [6], 3.28. If g fixes
every element of A of prime-square order, then g =1 by 1.F.2 of [8]). Clearly,
therefore, we may assume that A is a p-group for some odd prime p. We may also
assume that g has prime order g and seek a contradiction.

Each factor A{g - | WiAlg = 1y is divisible for =, so. for example,

Hom(A/A(g-1).Alg—-1)/A(g-1)?)

is torsion-free. Therefore the stability group of the series AZA(g - 1)2A(g - 117 is
torsion-free and hence A(g = 1) = A(g = 1)% In particular g cannot centralize
Alg — 1) and therefore must act faithfully on Ai(g — 1) Thus replacing A by
Alg - 1) if necessary, we may assume that A =A(g -1

Set h=1+g +g}+_._+g"r_|. Then Ah=A(g-1Yh=A(g"-1)={0}. Pick
ae A with ag #a and |a| minimal. Necessarily |a|=>p. Then plaig-1))=
=(pa)g-1)={0} by the minimality of a. Hence b =al(g - 1) has order p and
so is fixed by g. Since ag=a + b, this and a simple induction yields that ag’=a +
+ib forall iz 1. Therefore

= 1)b
0=ch=ga+ ZH? = gl + M ()

155y

If p=g. then pa=0 (recall pb=0), whichis falsc. Thus p =g. Also p is odd,
so p divides gig=1)/2 and (*) becomes 0 =pa, again a contradiction. The proof
of the lemma is complete.

(There is no real need 1o guote [8], 1. F. 2, at the start of the above proof. 1T we
assume p =2 in the above calculation, then g =2 and (*) yields that 4a =-2b=10,

a contradiction since here |a|>4.)

S .olf ox(F) = {p: TF:E{{!}} is finite, then F AutgM  embeds into
FiAulz M, for some E-module M. Thus in general F AuigM is resicually an
Artinian-finitary group of Z-awromorphisms (cf. 6')and F Auty (M/T) embeds
into F, Autg M, for some E-module M. In particular if G = FAugM, then
GICG(MIT)Y embeds inte FyAutzM, for some Z-module My and if M s
T-torsion-free, then G embeds into Fy Autg M for some Z-module M.

In general in 8! the group Cg(T) need not embed into some FAuly M by 1

of. 4'. Also we cannot replace ®(T) finitc by w(T/Cr(G)) finite, again by the

example 1 .
Proaf. Suppose first that T is p-group for some prime p. Then M is residually
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a p-group; forif ye M0} then {pyvi# (v} and there exists a homomorphism ¢
of M into a Prifer p~-group P with (py}p=0=# vy, see [7], 2.24. Set M~
=Homy(M, P). Then FAutzM actson M~ on the left via its right action on M. If

gzl liesin FAutz M, then xg#x for some v e M and so by the above (take

= x(g = 1)) there exists some ¢ in M" with pxig-110=0=#x(g-1)1p. hence g =
¢ and FAuiy M acts faithfully on M.

For ge FAulz M, set X=M(g-1). Then X" is Artinian by the lemma 5 and

X" embeds into M~ via Wi (g= 1)y suchtha (g -1 }M‘ < X". Consequently
(g - r}M' is Artinian for any such g and therefore FAuty M  embeds into
FyAutz M.

If m(T) is just finite, set. T, =@, T, and M ,= M/T,. Let P, be a Prifer
p -group and set {MP}' = Homgy(M,, P,). Then FAulizM cmbeds into
¥ penF Aulz (M), which embeds into x, . F, AUI;EMP}' by the above, which in
turn embeds into F| ﬁulz[ﬁ'm,,mip]'}. From this all of 8' casily follows.

B). Set Dy ={xe D: 2px=0 for seme prime p). Let G € FiAuzM be
suwch thar GICo(D) iy periodic. Then G/Co(D) embeds into FAula D). In
particular, i G = FpAutg M is periedic, then Gl Cr(D) embeds imo F Ay D),

The “duality” heiween 8' and 8, is imperfect, not least because we have to restrict
o periodic groups in 8. The symmetry belween 9" and 9, helow is also less than
ideal,

Proof. By 7 we have that  G/C(D)  embeds into F AutzD,. Clearly
F| A.IJ[}:D. = Fﬁulz.ﬂ..

9! Ser G= Fauty M. Then G has an abelian normal subgroup A such that
GiA  embeds inte FyAuia M for some  Z-module M. Also G s an
extension of o xnb;,:rrmp of .‘"t At z M By a sulbgrowp of some F. Aut z ,r'.-fl :

Proof. By 8' the group G/ Co(M/T) embeds into F, Auty M, for some Z-
module M. Hence G/{Co{M/T)NCp(T)) embedsinto F|Autz(M, ®T) by 4'.
Clearly Cg{M/T)VCpy(T) embeds into the abelian group Homz(M /T, T). in fact
intor the potentially smaller group

FHomy(M/T.T) = {¢ e Homy(M/T.T): Imé is finitc}

Finally Ci;(M/T) < F) Auly M by 4' again.
'.'.-;|. Ser G=F| AUl::M.
a) There is an abelian normal subgronp A of G and a module L over the
cemmittative J = Z,. suchthat G[A embeds into F Aut,L.
e primne
by CplTY is an abelian normal subgroup of G and G/ Cq(T) embeds imto
"-| At x T.
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. Proaf. a) This follows at once from [5]. 3.4, cxcept for the identification of the
ring J. A check of the construction of the ring § in the proof of [5], 3.4, shows that
when B =Z we may choose 5=/,

by Here [M, G| =T, sostability theory shows that Ci;(T) can be embedded into
the abelian group Homy(M/T, T). Clearly G/C;(T) embeds natrally into
Fl Aul 7z T.

1w'. F AutyM is locally residually finite and locally an Artinian-finitary
automorphism group over . More precisely, if G s a finitely generated
subgroup of FAule M there is an integer n such that for each prime p  and
divisible abelian p-m‘"ﬂup M| of rank n, the group G embeds into
GL(n,Z) S GL(#Ep) = FlAungM,.

Any periodic subgroup of F Autz M is locally finite.

Proaf. Given the finitely gererated subgroup G, by [1], 2.3, we may assume that
M is finitely Z-generated. Now apply 3 (and its proof). Of course GL{n, Z) is
residually finite and its periodic subgroups are finite.

10,. FyAutg M is locally residually finite. If G is a periodic subgroup of
FyAute M, then G is locally finire,

By I, the group F, Auiz8d need not be locally a finitary automorphism, group
over Z. However, the “duality” and 10" suggests thal the group G in 10, should be

isomorphic to some finitary group over Z. A trivial consequence of 10, is that G is

at least locally of this type.
Proof. F; AulzM is locally residually finite by [5], 6.2 ¢). Suppose G 2

= FyAuty M is periodic and Oinitely geperated, Then N =M, G is Artinian (4], 2.1
a)). It m=mniN), then m is finiic and for some positive integer m we have the
following embeddings:

GICGINY = X g GL{M, L)) = GL(m| x|, C).
Therefore G/ C (M) is finite. Conszguently  Cp; (M) is also finitely generated. Bu
C;(N) is abelian, since it stohilives the series M 2 N = {0}, Thercfore C;(N) is
finite and hence & is o,

We now consider residual local liniteness. Here we can handle much of the two
cases logether,

1. Ser R = r],.:-;"'“‘ If G=F_AuzM, then GI(Co(M/IR)NCu(TY) is
residually locally finire. {7 M has finite expenens, then G is locally finite.

Proof. Il pM={0} for some prime p, then G = FGL( (;;”,,M']. which is
locally finite. If p"M={0}. then G/ n. (};{P'_'Ma"p'a"»f] is locally finite by the
previous case, while by stability theory ﬂ, Eﬁ[;}"'lM.-' ;;‘M} is nilpotent with finite
exponent dividing p™ ' Again G is focally finite. It follows that G s locally finite

whenever M has linile exponent,
In general this yields that G/Co(M/inM) and G/Ci({xeT:ne=0)) are

locally finite.  Since  C(M/R) = ﬂ" CeilM I uM) and C(T) =
= n_l Collxe T nx=0%. the result follows
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FINITARY AND ARTINIAN-FINITARY GROUPS OVER THE INTEGERS E 761

1. If G=FAutgM, then Ci(MIR) is abelian (for R asin \1) and G
is abelian by residually-locally-finite (in symbols G e NRLF). The group G
need not be residually locally finite,

Proof. Il ge G, then M/Cy(g) = Mig - 1). which is linitely Z-generated
and hence residually finite. Therefore R = ﬂﬁ{; Cylg) = CylG) and so
C;(M/R) stabilizes the series M 2 R 2 {0}, Then Cg(M/R) is abelian and
Ge YRLF byll.

Let we GL(2, Z) have inlinite order and let A be a divisible abelian  p-group of
rank 2 for some prime p. Then u actson A via GL(2. Z)s GL(2. Z,) = AulgA

and we can form the split extension G ={n)A of A by {u) Asinthe proof of Flrh},
the group & can be embedded into F Aut- M lor M=Z"""@E, for E aPriifer pe-
Zroup.

For any positive integer 7 the group [A, '] is divisible and nontrivial. Also [A,
w1 [A. '] whenever J is a multiple of i, It follows that there is some positive
integer r with B=[A. u']5 A, u'] forall i21. Suppose N is normal subgroup of
G with G/N periodic. Then 1'e N forsome i2 1 andso N 2 ((u")V")2 [A, u'lz
=8 Then {1}z B = nx N and o G cannot be residually periodic. The result
ol lows.

. If G = FiAuigM, then Cg(T) is abelion and again G € ARLY.
Apain the group G need not be residiwally locally finire.

Proof. Here [M.G1= T, so CuiT) is abelizn, stabilizing the seriecs M= T =
=10Y Thus G e MARLA by 11,

Let u beaunitof &, of infinite order, let A be a Prifer p™-group and let G he
the split extension {uw}A of A by {(u}. By [5]. 5.6, the group € embeds into
F,Aum-{E®A)

Suppose N is a normal subgroup of G with G /N penodic. Then «'e N for
some positive integer i Now [A, i'] is divisible, since A is, and nontrivial since {n)
is infinite. Thus [A.&']=A andso A < {(u)¥}< N. Thercfore G is not residually
periodic: indeed its periodic residual is A,

12'. If M T is divisible, then F AutzM embeds natrally into F AuigT <
< FyAu T, e particular this holds if M= 11T, where T, for each prime p
ix evr ahelian p-growp,

Proof. Since M/ T isdivisible and Mg~ 1) is initely generaied for cach g in
G=FAuly M. so G cenralizes MJT, It ge Cp{Th then g -1 maps M /T onlo
a hinitely generated divisible subgroup of T, Therefore g - 1 =0, s0o Cgl) = {1}
and the first claim follows. Itis casy o sce that it M = 1,7, then M/T is always
divisible.

In view of 1, the dircet analogue of 12" is false: in particular F, Autg (TT,7,)

need not embed into any F Auty M. However we do have some partial analogues.

12,. Suppose M[T is divisible; for example. suppose M = T1,T,, where T,

Sor each prime pois an abelian p-group,
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a) If D ={0} (eguivalently in the special case, if each T, is reduced), then
FyAutg M embeds naturally into F Auty T.

by If G is a periodic subgroup of F, Auty M, then G embeds narurally into
Fiaue T

Proaf. a) Let g e FiAugM ceniralize T, Then since M /T is divisible,
M(g-1)=T isdivisible and hence {0}. Thus F, Autz M embeds via restriction
into

FiauyT = FrAuyT = FAugT.

b) Homgy(M/T,T)=Homgz(M/T, D), which is Z-torsion-frec. Also
FyAutz(M/T) =(1). Therefore G embeds via restriction inte F, Aut;T.

Priifer groups do not sit easily in either FAuyM or F) Autz M. Again we can

handle these two cases simultancously.
13. Let G be a Priifer p™-subgroup of F_ AuzM for some prime p. Then

G centralizes T and M D and consequently G embeds into Homg(MJT, D).

In particular, the same conclusion holds for:
13"y FAutzM

aved

|.3|:| F] At“z.lil"f.

MNotwithstanding 13" and 13, such Priifcr subgroups do arise; for example, see the
proofs of 1,. 11" and 11,

Proof. Suppose ¢"M = {0} for some prime ¢ and some positive inleger n.
Then there is a (normal) subgroup N of & of linite exponent {and henee finite order)
with G/N (= &) embeddable inte FGLIV)Y Tor some vector space ¥V oover GFig).
I p =g, then G is unipotent in FGLIV)Y and hence is elementary-abelian by
residually-finite (|9], Theorem B). Therefore p# g, Any irreducible abelian subgroup
of FGLOVY is linite-dimensional and hence finite. Also the unipotent radical of & <
= FGLIV) is trivial, so we may assume & 1o be completely reducible. Thus & is
residually finite. which itis not. It follows that M cannol have finite exponent. Hence
& centralizes {x & M: nx=0% forall n2 1 and therefore & centralizes T,

MNow suppose T={0}. Then G embeds inte FGL(Q @ M) (cither by (4], 2.8.3,
or dircetly).  Unipotent subgroups of the laiter group are torsion-free.  Any
homomaorphism of & w G Lk, Q) for any integer & is trivial, since periodic
subgroups of the laver are finite. Again we obtain a contradiction, namely that G =
={1} Forgeneral E-modules M. this proves that G centralizes M/ T,

Suppose E< M has finite exponent, where & centralizves M/ E and (by the first
paragraph of the prool) alse £ Then & embeds into the group Homg (M E, E) of
finite exponent. a contradiction that shows this situation does nol arise. A simple
transfinite induction, using this fact, shows that G centralizes M /g™ T for every
prime g and cvery ordinal o, Thus [M, &) = ﬂqn T =D. Thatis, G
centralizes M/ D, as claimed.

We conclude this paper with a generalization of 3' from the integers to an arbitrary
commutative ring.
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14!, Let M be a Noetherian module over the commuiative ring R. Then
Autg M can be embedded into Aulgy N for some Artinian R-module N.

We have already seen that the dual result 1o 14", where we interchange the words
“Noetherian™ and “Artinian”, is false lor R =Z. To prove 14', we need the following
lemma.

I5. With R and M as in 14", suppose we have a series { 0} = M, <
<sM<...<M_ =M where D, =amg(M, /M, |) is prime and MM, _; is
R v torsion-free for each i=1,2,....r. Let m; be any maximal ideal of R
comtaining ;. Then

M ﬂme = {0}
Iige f20

MNotc that a series {M;} Tor M as in 15 always exists, e. g. see [1], 2.2,

Proof. Now R/fanngM is Noetherian and p, 2 anngM for each i. Thus we may
assume that K& is Noetherian. By the Krull Imtersection Theorem we have
ﬂ‘. nyM, = {0}. By the Artin - Rees Lemma for each j2 1 there is some k 2j with

miM N My < miM,. Therefore M, (7] (1), miM = {0}. By induction on r we
have ﬂ.:_l n;an m?M = M. The result Tollows,

Proof of 14'. We may replace R by R fanngM and assume that R in
MNoctherian. Let E; be an injective hull of £/m,;. By [7]. 430, each E; is an

Artinian R-module. Set M™ = Homg(M. ®_ E,). Since M is finitely generated, there

& & - =
I% AN exact sequence R M = 0 for some imteger k. Hence we have an exact

(k)

sequence 00— M~ = (R, Now

R" = Homg(R. ®E,) = @®E,.

Hence (R )™ is Antinian and consequently so oo is M

Clearly Autg M acts on M" onhe left via its right action on M, as indecd does
EndpM Let ne Endg MA{0), Then an =0 lorsome x in M. By |5 there exists
an integer ¢ and submodules <V oof M with xn e VAU and V/U = R/ m,,
Since £, is injective, this isomorphism extends to a homomorphism ¢: M— E; with
Ua={0 Thus xnd =0 and we have found ¢ in M with md = 0. Conscquently
End gz M acts faithlully on M" and therefore so oo does Aut g M. The result follows.
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