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SOME PROBLEMS IN NONCLASSICAL
ALGEBRAIC GEOMETRY

NEAKI NPOBJIEMH B HEKJIACHYHIH
AJITEBPAIYHIN TEOMETPIT

We describe the general approach 1o a nonstandard geometry with the emphasis on associative algebras.
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1. Introduction. Fix an infinite ficld P. Consider two varieties of algebras.

Com-P — the variety of all commutative and associative algebras with the unity
over P

Ass-P — the variety of all associative, but not necessarily commutative algebras with
the unity over P,

Let © be an arbitrary variety of algebras. In every such @ one can consider its
algebraic geometry (algebraic geometry in @) | 1-4].

The classical algebraic geometry over the field P is algebraic geometry associated
with varicty Com-P. Correspondingly, we define nonclassical geomelry as an
algebraic geometry in the variety of Ass-P and in various subvarieties of this variety.

One can consider algebraic geometry over A for every @ and every algebra
H e ®. The principal question is as follows: for which Hy and H, do the
corresponding algebraic geometries coincide”

Let us pose this question in more detailed way. For every H € © we consider two
calegorics

Kl H)y — the category of algebraic sets over H,

Kg(H) — the category of algebraic varieties over H.

Since algebraic varicty is regarded as an algebraic set considered up to an isomorphism
in the category Kg(H), the category Kg(H) is a skeleton of the category Kol(H).

All precise definitions will be given below,

Both categories Kg(H) and Kg(H) are geometric invariants of the algebra H,
and in many senses they are responsible for the geometry in H.

MNow we can formulate the main question in Two more precise ways:

When arc the categories Kg(H ) and KgiH,) isomorphic?

When are the categories Kg(H,) and Kg(H,) isomorphic?
Category theory says that two categories C; and C, are equivalent if and only if

their skeletons €, and €, are isomorphic [5]. Hence, the second question may be
replaced by the following one:

When are the categories Kg(H ) and KgiH,) equivalent?

Itis clear that if 1) holds for &, and H.. then 2} also holds, but not vice versa.

In the classical sitwation both question are solved 1o some extent [4, 6], and the main
part here plays the notion of geometrical equivalence of two algebras. There are
reasons 1o believe that a similar picture exists for the variety Ass-P,

We need 1o make the following remark.

In the classical sitwation if the field P is infinite. then it generates the whole variety
Com-P. Therefore every algebra of this variety generates the whole variety. In the
situation of Ass-£ this is far from being so. and we will proceed from the assumption
that the algebras H, and H, generate the whole variety Ass-P.
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Before we pass 1o the definitions, we would like 1o make another remark. Along
with the categories Kg(H), one can consider also a category Kg [3]. This is the
category ol algebraic scts over differemt H € @, Correspondingly, we have a category
of algebraic varicties Kg. Also here arise the problems of isomorphism and
equivalence of the categories Ky and Ky, from different ©; and ©,, where 9,
and @ are subvarieties of the variety Ass-FP.

Owr plan is as follows:

To give the definitions of necessary notions.

The main focus is on geometrical equivalence of two algebras.

To consider the main problem for the variety Ass-P.

2. Definitions. Recall first of all that a variety of algebra is a class of algebras
determined by identities. If X is an arbitrary class of algebras in @, then the variety
generated by X is the minimal variety in © containing X. This variety is
determined by the identitics of algebras from X and is denoted by © = Var(X), Itis
known that Var(X) = QSC(X). The language of operators on classes is used here:
C(X) is the class of cartesian products of algebras from X, S(X) is the class of all
subalgebras of algebras from X, and Q(X) is the class of all homomorphic images of
algebras from X. Further we will use such a language.

In cvery variety @ there are free algebras. Denote by @7 the category of all free
in © algebras W = W(X) with finite X. We assume thai all these X are subseis of
some infinite fixed universum X%, Then the category @Y is a small category whose
objects constitule a set,

Fix now an algebra H & ©. For every object W = W(X) of the calcgory @Y,
consider the set of homomorphisms Hom (W, H). If X = {x,,..., x,}. then we have a
bijection oy: HomW, H) = H'™ Forevery v: W— H  we have oylv) =
= (Mxg)y ..o vix,)). Now we consider Hom (W, H) as an affine space. Its points are
homomorphisms v: W— H. We can also consider the category of affine spaces. In
this category morphisms have the form

i Hom(W(X) H) = Hom({W(Y) H),

where 5: W¥) = W(X) is a morphism in @Y and F(v) = vs: W(¥)— H for every
point v WXy — H,

Further. for the sake of simplicity, we consider only associative algebras.  If
we W, then the point v is a rool of this w il w¥ =0, we Kerv.

Let now T be asubsetin W oand A asubset in Hom(W, f). We are interested in
the following Galois correspondence:

Ty = A={v:W = HIT c Kerv),
A=T= N Kerv,
ved

We call every A ofthe form A = Ty aclosed (algebraic) set. For each A we have a
closure A” = (AVy. Every T ofthe form T = A" is an ideal in W, and we call it
an H-closed ideal. For an arbitrary T we have a closure 7. Anideal T is H-
closed if and only if there is an injection W/ T — H! for some 1 This is equivalent 1o
W/Te SCiH).

The class of algebras SCUH) is closed under operators S and O We call every
such class a prevariety. For an arbitrary wet T, its closure Tj s an intersection of all
ideals T, containing T and such that W/ T, e SC(H).

We give the main definition,

Definition 1. Algebras M, and H. in @ are called geomerrically equivalent
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if TE-, = Tﬁz Jorevery W = W(X) and every T in W.
3. Geometrically equivalent algebras. It is proved [7] that the algebras H, and
H4 are geomeltrically equivalent if and only il

LSC(H,) = LSC(H,).

Here L is an operator, determined by the condition: H € LX, if every finitely
generated subalgebra in A belongs to the class . The class LSC(X) is a locally
closed prevariety over the class X. We will also consider quasivarieties, i. e., classes
of algebras determined by quasiidentitics {formulas) of the form

y =0a...an, 80=vel

Denote by g Var(¥) the quasivariety over X. Then the embedding LSC(X) c
= g Var(X) = Var(X) always holds true.

Let us return to the closure Ty, It is easy to understand that the inclusion veTy
takes place if and only if the formula

[Au:—e[}):u = 0
wial
holds in the algebra H.

We call such a formula a generalized (infinite) quasiidentity. Now we can say that
the algebras H, and H, are geometrically equivalent if and only if every generalized
quasiidentity of the algebra H, holds also in H,, and vice versa.

From this follows that if #; and #H, are geometrically equivalent, then
g Var(H,) = g Var(H,). s the opposite true? We consider this problem in more
detail.

Long ago, A. 1. Malcev [8, 9] proved that the prevariety SC(X) is an axiomatized
class if and only if it is a quasivariety. This motivated the problem: for which X does
the equality

SC(X) = gVar(X)
hold? The problem was solved by V. A. Gorbunov [10],
We are interested in the conditions when
LEC(H) = g Var(H).
Assume that this is true for the algebras H; and H,. Then
g Var(H) = LSCUH,),
g Var(H1) = LSC{H;),

and the algebras H, and H, are geometrically equivalent if and only if g Var(H,) =
=g Var(H,). thatis, H, and H, have the same gquasiidentities.

Let us also remark that if the above equality holds for M, then for every W and
T W the closure Ty is the intersection of all ideals Ty in W, containing T and
with the condition W/ Ty € g VariH).

This is a variant of Hilbert's Nullstallensatz theorem in the general situation,

We need the following definitions,

Definition 2. The algebra H & @ is called geomerrically noetherian if for every
W and T < W, there is a finite part Ty in T suchthar T = Ty .

The algebra H is geometrically noetherian if and only if every ascending sequence
of H-closed ideals is finite.

We call a variety noetherian if every algebra W = W{X) with the finite X is
noctherian, All noetherian subvaricties in Ass-P are described. The variety Com-P
is one of them.

It is clear that if © is a noetherian variety, then every algebra He @ s
geomeltrically noetherian.
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Let us now weaken the condition to be geometrically noetherian.

Definition 3. The algebra H is called locally geometrically noetherian if for
every W oand T W, and for every vely in T there is a finite part Ty such
that vely .

This is equivalent to the fact that every generalized quasiidentity

Auzﬂ]::-ul[}
el

can be reduced to an ordinary quasiidentity

Auhﬂ]#u = ).
paty

The set Ty depends, in general, on . It is casy 1o prove that the algebra H is
locally geometrically noetherian if and only if for every W the union of each
imcreasing sequence of  H-closed ideals is  H-closed. In case of geometrically
noetherian algebras every such chain is finite.

MNow we state the following theorem.

Theorem 1. The equality

LSC(H) = g Var(H)

helds if and enly if the algebra H is locally geomertrically noetherian.

This theorem for groups was proved by Myasnikov and Remeslennikov [11] (see
also [12, 13]) as a development of ideals of Gorbunov [10]. But their proof is valid
also for every variety @.

Let us apply this to the next theorem (compare [11]).

Theorem 2. [f the algebra H is not locally geometrically noetherian, then there
exists s wlrrapower H wihich is not geometrically equivalent to H.

Progf. 1tis known [14] that g Var(X) = SCCyp(X) is always true. Here Cyp(X)
are ultraproducts of algebras from X.

Let now the algebra H be not locally geometrically noetherian. Then

LSC(H) # qVar(H) = SCCyp(H).

This means that some algebra  H” in Cup{H} does not lie in ILSC(H). Then
LEC(H) # LSC(H"), and H and H' are not geometrically equivalent.

The theorem is proved.

There arises a question about examples of nonlocally geometrical algebras. There
are such examples for groups and associative algebras. First consider the case of
groups (compare [15]).

Let a group & be a discrete direct product of finitely presented groups, i.e., the
groups of the form F(X)/ U, where F = F(X) is the free group over a finite set X,
and {f is an invariant subgroup in F generated by a finite set of elements. It can be
proven that the group & is not locally geometrically noetherian. The proof uses the
following group theoretic fact [16]: there exists continuum of 2-generator simple
groups. The similar fact for associative algebras has been proven recently by A.
Lichtman (unpublished). This allows to construct the example of associative
nonlocally geometrically noctherian algebra.

Let us point out the following Problems.

1. Toanvestigate the wreath products of groups from the point of view to be locally
geometrically noetherian.

2. Toinvestigate from the same point of view relations between groups and group
algebras.

3. Whether free associative or free Lie algebras are locally geometrically
noetherian. Note [17] that a free group is geometrically noetherian and correspond-
ingly. locally geometrically noetherian.

Let us note that these question can be solved relatively simply in the sitvation of
algebras with big fixed algebra of constants.
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4. Isomorphisms and equivalences of categories of algebraic sets. We now pass
to the main problems, which were formulated above. Define first the category  Kg(H).
Objects in cach such category are of the form (X, A). where A is an algebraic set in an
alfine space Hom (W(X), H). Now define morphisms:

(X.A)= (Y. B)
We proceed from 5 WYy — WX and have

£ Hom(WiX), H) = Hom(Wi ¥, H)
Consider further s, suchthat (vl e B ¥ v e A, These are exactly those s which
induce a homomaorphism
F:WMN/B = wixfa,

sue A" il we B For such s we have a mapping [s]: A — 8. treated as a
morphism (X, A)— (Y. B).

Simultancously, we consider a category ClH). Iis objects arc algebras WXy /T,
where T is an H-closed ideal in WXy, and morphisms are homomorphisms of
algebras,

The transition (X, A) — W(X)/ A" determines duality of categories Kg(H) —
= ClAD). I0 the algebras H, and Hy arce geometrically equivalent, then the
calegorics CglH ) and Cy(Hy) coincide, and the categories KgiH ) and KglHs)
are isemaorphic.

If VariH) = @, thenthe catecgory @' is a subcategory in CulH) and @Y, and
the category of affine spaces are dual. The last is always a subcaegory in Kg(H). Let,
further. Var(H;) = Var(H,) = 6,

An isommerphism Fo Kl ) = KglHS) is called correct, il the corresponding @ ¢
CH{H|J -3 CH‘HI-' induces an automonphism g : ' B and, besides, 1 is
assumed that & takes a natural homomorphism of  Cgl(H)  into natural
homomarphisms of CglH-).

For F this means that F{(Hom(W. H5)) = Hom({p(W), H4). Il A s an algebraic
sct in Hom{WiX). H,). then F(X.A) = (¥. B). where B s an algebraic set in
Hom{W(Y). H,). WYY = @(WiX)).

Rocall that the algebras Hy and A, are semiisomorphic il there is a pair (g, v).
where o€ AulP, v: Hy — H, is an isomorphism ol vings. and  vwiAa) = A%v(a).
ae H,. he P.

H, and M, are antiisomorphic il there is an isomorphism of P-modules p: H; —
— Hy such that piesb) = pil) - pier). Here @ is an antiisomorphism of algebras.

Mow let us formulate the theorems for Com-P oand o conjecture Tor Ass-P.

Theorem 3. The caregovies KgiH ) and KgiHs) in Com-P are correctly
ixerorpliic if aned ondy if there exists H o xuch dieit B oand H | are semiisomorphic
el H e Hs are geometrically eguivedent.

Here @ = Com-P, and H s automatically built by H|.

The prool ol this theorem depends on investigations of automaorphisms @ o —
— @, where @ = Com-P. It is proved |6] that every such @ is semiinner. In the
same classical situation we consider a question on equivalence of categories Kg(H|)
and KyiHs)o Itwrned out that here we have the same resull. Also here everything
depends on investigations of autocquivalencies ol the category @Y, All of them arc
also semiinner.
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We now pass to @ = Ass-P. For every finite X denote by S(X) a free monoid
over X and by S3(X) a free semigroup over X. W(X) = W is a semigroup algebra,
W = PSiX). Each of its elemenis has the form

W=y +huy 4.+ My, Ae P, ue SiX).

Denote @ = x; ...x; forevery u = x;...x; . By definition

Wo= hpy o+ A+ A

Consider further a mirror automorphism o of the category @Y, It does not change
objects, and for every v: WiX) = W(Y¥) we set 8(v): WiX) = W(Y¥) determined by
the rule

S(vix) = v(x) VYaxelX

Conjecture. Every automorphism ¢ : € —= @° can be represented as ¢ =
=gy, where @y is semiinner or already @ is semiinner or ¢ = 8.

If this question can be solved positively, then we can state that the categories
KalH ) and Kg(H,) are correctly isomorphic if and only if there exists a sequence

H.H H. H,

such that H, and H, are antiisomorphic, H and H* are semiisomorphic, H° and
Hy are geometrically equivalent.

The algebras M and A are easily constructed by A, . The same result could also
be obtained to the question about equivalence of the categories Kg(H,) and Kg(H,)
(see [18]).
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