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MORPHISMS OF BALL'S STRUCTURES
OF GROUPS AND GRAPHS

MOP®I3MH KYJILOBHX CTPYKTYP I'PY¥II TA TPAQ®IB

We introduce and study two kinds of morphisms between ball’s structures related w groups and graphs.

Breeni i e niiAe i jsa Lo sopdei s sa KYSROBHMN CTPYKTYPaMH, R’ REITHME 3 1Py Iasm
T v pafranin,

1. Introduction and main results, Following |1] by ball's structure  we mean a
riple B=(X, P, 8), where X, P arc the nonempty scis and, for any xe X, a e P,
Bix, o) is asubset of X, which is called a ball of radius @ around x. It is supposed
that xe B{x. o) lorall ve X, e P.

Let By=(X,.B.58) and Ba= (X>.P. 8:) be the ball structures. We say that a
mapping f of X, onto Xy isa =-mapping ol By ono By if. for every fe f,
there exists e £/ such that

Bal fix)B) = fUB (x. w))

forcvery xe Xy, IMthere exists a =-mapping of By onto Bz, we write By = B;.
An injective mapping /@ X;—= X3 is called a <-mapping of B into By il for
every o € Py, there exists B e Py osuch that

FlB (v a)) © By(fix)P)

forevery xe X, Il there exists a <-mapping of By into By, we write By < By,

A bijection f: X — X2 is called an isesmorplism belween the ball's structures
By and Bs if f is a =-mapping and f is 2 <-mapping.

Let Gr=(V.E) bea graph with a set ol vertices V' and a set of edges E,
EcVxV, E'=E, E'={(yv,x): (x,v)eE} and (x.x)€E forevery ve X. If
x, v e V belong o the distinct connecied components of Gr, put dix, y)=ss.
Otherwise, denote by dix, v) the length of the shotest paih between x and v, Given
any xe Vand new, put Blx.n)= {veV: dix. v)sn). A ball's structure (V, w,
B is denoted by B({Gr).

For every natueral number », put  [o]={1.2.....n} and denote by [, the graph
(nl. E,). where E, = {(1.2).(2.3) ... (n=1.m}. Denote by [ the graph (N, E),
where E= {{m.n+1): ne N}

Let & be a group with the identity ¢ and let Fin be a family of all finite subsets
of G containing . Givenany ve G. Fe Fin. put Bix, F)=Fx. A ball's structure
(G, Fin, B) s denoted by B{G ),

Assume that a group G is generated by a finite subsct 5, §= N By Cayley
graph Cav ol group & with a pregiven linile set of generators we understand a graph
({7 E), where (x, v)e E iland only if x#y and v =3y for some s e 5. Note thal
the identity mapping f: G = G is an isomorphism between the ball’s structures
BiG)y and B(Cav),

Theorem 1. For every infiiite cemnected graph Gr. the following statements
rerlel

B(Gr) = B(I), B(l) < B(Gr).
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A group & s called locally finite if every finite subset of G generates a finile
subgroup,

Theorem 2. For every infinite group G, the following statements are equiva-
lent:

Iy B{G) = B(J):

2) B(1) = B(Gr);

3} @ ix ner locally finire.

Theorem 3. Let G be an infinite growp. Then B(G) = B () if and only if
either G has an infinite cvelic subgroup of finite index or G is a coumable locally
[inire growp.

Theorem 4. Ler &), Ga be the corntable locally finite groups. Then B(G)) =
=BG and B{G )= B(Gh).

Theorem 5. Let Gy, G be the comrable focally finite groups. Then B(G))
and B(Gz) are isomorphic if and only if. for every finite subgroup F of Gy,
there exists a finite subgroup H of G such that | F| is a diviser of | H|. and,
Jor every finite subgrowp H of Ga, there exists a finite subgroup F oof Gy such
that |H| is a divisor of | F|.

2. Dominating mappings of graphs. Let Gey=i(V, E)). Gra=(V,, E) be the
graphs, ke N and lei f be a mapping of V', onio V. We say that f is a k lomi-
nating mapping ol Gry onto Gra if

B(fix)y o fiBlx. kD)
lorevery xe V). The following Lemma | states that a mapping f: Vi — Vi isa »-
mapping of B(Gr;) omo B(Gra) ifanu only il f is o k-dominating mapping of Gr
omo G forsome ke N

Lemma 1. Ler Gry= (V. E|). Gra= (Vi E3) be the graphs and ler [ be a k-
domminating mapping, Thea BUAx), myS flBx ki) forall xe Vi, me w.

Proof. Fixany xe V; and m € ©w Take any v < B(fix),m) and choose the
clements vy, ¥a, ..., ¥, B S from  BOf(x),m) such that v = fix), y,=y and
(¥. ¥ )EE;, forevery i<n-1. Byasumplion of Lemma 1, we can choose the
clements  xp, X3,.... %, from Vy such that x=x. fly)=y. flr)=r,..
voos Fix,d=y, and d(x,x;,,) Sk Torevery i=n—1. Since y=y,, »n £m. then
ve flBlx. km)).

Lemma 2. Ler Gry = (V5 Ey). Gry = (Va, F5) be the graphs. Suppose that
there existy a mapping g : @ = w such thar |BC wi!l < gim) foralf ve Vi, me
€ w. If B(Gry)= B(Gra), then there exists k € w such thar | B(y,m)| = glkm)
forall ve Vi, me w.

Proaf. Let f£: V)= Va bea =-mapping. Chouse & € @ such that B(fix) 1)
c fiB(x, k)) forevery xe Vy. By Lemma 1, B(f(x), m)c f(B(x km)) lor every
xe V). Hence, |B(fix)m)| £ glkm) Torall xe V. me w. Since fmaps V,
onto Vi, then |Biy,m)| < glkm) Tovall v< Vel oame .

Lemma 3. Let Gr=(V, E) be a finite conaccted graph, |V]|=un. n 22 and
fer v.ve V., (x,vde E. Then there exists o 3-doninating bijection £ of Gr ante
Iy such thar flx)=s 1 fivi=n.

Proof. We proceed by induction on . For n =2, Gr is isomorphic 1o {2, so
the statement is trivial. Let w> 2. Replacing Gr by ils spanmg (ree, we may suppose
that Gr itsell is a wree. Consider two cases,

Case |. |B(x.1)| =2. so Bix.1)= {x.v}. Delete the vertex x and the edge
(x,y) from Gr. Then we have got the tree Gr'=(V, E"), where V' =V\{x},

E'= E\{(x.v)}. Takea graph [, , with the set of vertices {2.3,....n} and the set
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of edges {(2,3),(3,4),....(n=1,m)}. Since |V’'|2 2, then there exists z e V' such
that (v.:)e E". By assumption of induction, there exists a bijection £ V' = {2, .

.n]-, which is a  3-dominating mapping of Gr’ onto f;_l and f’{}-}=".
f'(z)=2. Define a bijection f—[n] by the rule f(x)=1 and f(v)=f(v) for
each v e V', Since the distance between v and z in Gr is equal 1o 2, then f isa
3-dominating mapping of Gr onto A,

Case 2. |B(x.1)|=2. If |B(x.1}| = 1. then we can apply Case | with the pair v,
x instead of v, y. Thus, we may assume that |B(x.1)| = 1. |B(y.1)| = 1. Delete the
edge (x.xd from Gr. Then we have two trees Gry = (V), E))., Gra= ( Va, E2), with
xe V. yeVa Let |V|=k, |Va|l=m. Then k22, m2z2 and k+m=n.

Denote by I a graph with the set of vertices {1.2,.... k) and the set of edges
[(L2)02.3) ... (k=1 k) ). Take any clement 1 e V) with (x, x*)e E;. By induc-
tive assumption, there exists a bijection £ V, = {1,2...., k}, which is a 3-domina-
ling mapping ol Gry onlo -',:. such that f'{x)=1, [{x')=k.

Denote by 7, a graph with the set of vertices {k+1, k+2..... k+n} and the set of
cdges {(A+Lk+2). (A+2.k+3).....(n=1,m}. Take any clement y“e Vi with (.
¥ ) e Er. By inductive assumption, there exists a bijection  f™: Vo = {k+1,
k+2.....n}, which isa 3-dominating mapping ol Gry oo J’;, such that (¥} =
=k+1, ,I""f';}: .

Define a bijection f: V = [n] by the rule f{v)=f"(r) forall v & V; and f(v)=
=f"(v) forall ve Vi, Since the distance between x° and ¥ in Gr is equal 1o 3,
then f is a 3-dominating mapping o Gr onto [, By construction of £, flx)=1,
fiv)=n.

Lemma 4. Ler Gr=(V.E) be a graph. Then B (1) = B{Gr) if and only if
there exist a partition V=Uremlf el e arertnrad e sweh thear |'Ir‘,-|£m e nel
Bix. r]ﬂ‘r"‘-=@ forall xe V., tew and =1+ 1.

Proaf. Supposc that B{f) = B(Gr) and lix a =-mapping f: N —= V. Choosc a
natural number & such that BCFv DS AUOBv LY Torevery ve N, Put m= 26+
and partition N into consecutive segments Ay, A, ... of length m. Put W, = f(A4;),
Vi=fIANY, Va=f AUV, ... Clearly, |Vi[sm and V=[] _ V. Fix
ie w and ke any ve V. Pick aeA; with fla)=x. Then

Bix,1) = Bifia)d 1) € fiBla k) o AA_ UAUALL

Hence, Bix, DNV, =@ Torevery j=i+].
Now assume that there exist a partition V = Uh_m

sumption of Lemma 4. Deline a bijection @ N =V suchthat, il {(a. b)e N, a < b
and flaje Vi, filyeV,, then isj. Fix ie w undtake any xe V,. Pick aeN
with f{a)=x. Then

e

V. and me N satisfying the as-

Biflay ) = Bix. )  V_ UV LV,,.

Hence, BOfa) 1y g AOBCa, 2m)). ITollows that f s a 2m -dominating mapping.
By Lemma I, f isa =-mapping ol B{/) onto B({Gr).

Let B =(X,P. 8) be a ball’s structure and let @we P. An injective sequence
{0, hew OF clemens of X s called on ce-ray il v, € Bix,. o) forevery ne m.

Lemma 5. Ler B = (X, P.B) be a ball's stracinee, wwe PN B(D =B, then
every disgeint foamiy of G-ravs in X is finite.

Proaf. Let @ N— X bea =-mapping. Choose e @ such that
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Bif(y). o) < f(B(y,m)) (*)
forevery ye N. Let {x,),q0 bean o-ray. Pick yoe N with f(yp)=x4 Using
(*), construct inductively a sequence {¥,),e, in N such that f(y,)=x, and
| ¥as1=¥y| S m forevery ne w. Since the sequence (y, Yeam 15 Injective, then
every segment [a, b]e N of length m with a2y, contains a point ¢ such that
fle)e {x,: new). It follows that every disjoint family of a-rays in X is of
cardinality = n.

3. Ball's structures of direct products. Let (&}, be a sequence of natural
numbers, [k]={1,2,....k}. i e w. By direct product X = ®,_,.[k] we mean a set
of all vectors x= (x(0), x(1),..., x(i),...) such that x(/)e[k] and x(i)=1 for all
but finitely many i€ w. Givenany ye X and me w, put

Blx,m) = {y € X: yi) = x(i) for all i2 m}.

A ball's structure (X, @, B) will be denoted by  B({x; ). ).
Lemma 6. Let (& oy and {m; ), be the sequence of natural numbers such
that k; 2 m; forevery i € w. Then

B((kiYiew) = B({m;Yign)s  BUm)igw) < B{{k digu)-

Proof. For every i€ w, fix any mapping f of [&] onto [m;]. Define a
mapping f: ®,..[k] = ®.u[m;] by the rule

F0), x(), ..., 1)) = (f(x(O)), filx(D), e fi(x(D), ...).

Then B(f(x),m) = f(B(x,m)) forany xe®;,[k], me . Hence, f isa =-
mapping.

For every i€ @, fix any injective mapping g;: [m;] = [k;]. Define a mapping
8 Biylm] = @ylk] by the rule

2(¥(0), ¥(1). ..., ¥(i), ... ) = (go(¥(0D), & (¥(1)),..., g3, ...).

Then g(B(y,m)) < B(g(y),m) forall ye®, ,[m], me w. Hence, g isa <-
mapping. -

Lemma 7. Let (k;)on be a sequence of natural numbers and ler g: 00— @
be a nondecreasing mapping. Put my = kok, .. .kypy and, for every i€ @, my =
= keisiKgiiez - -kegisny- Then the ball's structures B({k; );o,) and B({m;}.,)
are isomorphic.

Proof. Fix any bijection fy: [mg] = [kp]x...%[k,q,] and, forevery i e w, i>
=0, fix any bijection

f,' : [H't,-] o [kxtlli*l]x X [kglhli]'

Define a bijection f: @, ,[m;] = &, .[&] by rule  f{x(0), x(1),..., x(i),...) =
= (folx(00), f{x(N, ..., fi(x(@)),...).

Since f(B(x,m)) = B(f(x), g(0)+g(l)+...+gim—1)) for every xe®; ,[m]
and every natural number m, then f is an isomorphism.

Lemma 8. Ler (k) and {m )., be the sequences of natural numbers

such that k; =1, m;>1 for each i€ w. Then B({k }ieu)=B({{m)ie,) and
B((m, )iew ) < BU(K; }ige)-

Progf. By Lemma 7. there exist a sequence {K; )., of nawral numbers such
that B({k; }ie,) and B({K,};.,) areisomorphicand K, =m; foreach ie w. By
Lemma 6,
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B({Kf}r'em} > B{{mi }i'Ew}' B'l:{ml'}iem} = B({Kr'}ieu}'

Lemma 9. Ler (k) and {m )., be the sequences of natural numbers.
Forevery i€ @, pul K, =kek,...k;. M. =mgm...m;. Then the ball's structures
Bk D) and B({m; ). are isomorphic if and only if, for every k € w, there
exist I, me w suchthar K, | M, and M, | K,,.

Froof. Assume that these ball’s structures are isomorphic and fix an isomorphism
5 ® k1= ®, ., [m]. Since fisa <-mapping then there cxists [ e w such that
F(B(x, k)< Bif(x),]) forevery xe®,,,[k]. Fixany ae®,,,[m;] and 1ake any
re®, (k]  with fix)e Bla.l). Then B(f(x), h= Bla,l) and
FiB(x, k)< Bla, ). It follows that f~'(B(a,!)) is a disjoint union of the ball's of
radius k. Note that every ball of radius [ in @,,,[m;] is of cardinality M, and
every ball of radius k in @&, [k;] is cardinality K. Hence, K, |M, To find the
number m, it suffices wo repeat this argument for isomorphism .

MNow assume that, for every & € @, there exist [.m e @ such that K, | M, and
M, | K. Applying Lemma 7, we may suppose that

Kol Mo, Mo| Ky Ki[M. MKy Ky|My ...

M, K M, K,
Put 5= Ky, 5y=—, .51=—-L, By=—, ===, ...
Ky M, K, M,

By Lemma 7, B({k },o) isisomorphicio B{{s; }i.y).

Lemma 10. Let a group G be a union of an increasing chain of its subgroup
GocGc..cG c.... Gy=lel, e is the identity of G. Ler k =|G,,:G|
iew. Then B(G) is isomorphic to B({k; }iee).

Proof. For every iew, decompose G, on the right cosels by the subgroup
G, and choose some subset X, of representatives of cosets such that e e X;. Thus,
G, = G; X;. Take any element ge G and choose the minimal subgroup G, with
£€G,s- For g=¢ wechoose G;. Then g=g, 1%y 8u-1€Cu Xn€Xy
Since Sur=1 Ec}m' then Bui—1 = Bur=2¥mi=1 for some Bup-2 EGm—I- Ken—1 X -1-
After m+ | steps we obtain the represenation

8= Xﬂxl....fm_|.\’m. Xg = XQ. .'t| [ xl' - L 1= Xm"

MNote that this representation is unique. For every € . fix any bijection
fi: X; =[k] such that fi(e)=1. Define a bijection f: G — @, [k;] by the rule
fig) = (olagh Alxh oo S (X L L 2c0 )

Since every finite subset of G is contained in some subgroup G, then f is an
isomorphism between B(G) and B({k; };o0 ).

Lemma 11. Ler G be a direct sum G = @, Z, of w copies of the group
Z,={0.1}. Then B({l)>B(G).

Praof. We may assume that [ = (@, E), E = [(i.i+]): iew}. Forevery ke w,
take a binary representation of k

k= ag2’ +a2 +..+a,2"
Define a mapping f: @ = G by the rule
Fik) = (ap.ay,....a,,0,0,0,...).

Observe that B(g. m)g [g-2"*", g+2"""'] forany ge G, m e w. It follows
that f is a =-mapping of B(/} onto B(G).
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4. Proof of theorems. Proaf of Theorem 1. Loy Gr = (V, E). To prove the first
statement B(Gr)= B ([}, we construct a  3-dominating mapping  f: V=N,
Replacing Gr by ils spanning tree, we may suppose that Gr itsell is a tree. Fix any
point xe V, put f(x)=1 and consider the set 5= [veV: (x.y)e E]. Deleting the
vertex o« and the edges (x,¥), v € 5, we obtain a disjoint family T, : ve S} ool
trees with ve T, Denote S, = {veS: T, is finite} and consider three cases.

Case . S3=0. Puv fix)=2 forall y& § and, in what follows, we shall map
every tree T, onto the subset {2,3,...) of N,

Case 2. 5 is nonemply and finite. Let S, = [v. ¥a...., ¥} and let W, V5, ...
o+ ¥, be the sets of vertices of T, . T, ,.... T, . Let |Vi|=my, |Vi]=m,, ...
oo |V |=m,. 10 |¥| 2 2. 1ake any eV, with (x.3)eE If |V[=1, pw
¥; = v, By Lemma 3, there exist the 3-dominating mappings

i Y = {23, ....m+1}, LO1y=20 fily) =m+1,

far Vo — {m +2, m]+3....~m}+m3+ll. 050 =m+2, fylys) = m+my+l,

Fo V= mpdmadm, 42, oy, 1
L) = my+as 4 +m,  +2, LU= mp+mg+om, 4]
Dieline a mapping
fi 'Ir"] UVE u...u 'i":l —-?{2.3 ..... i -I-n:‘-_.+...+m__!__|+mu+|]
by the rule  fi{v)= flv) il and only il re V. Since the distance between

r

and
vy in G is £3, then f is a 3-dominating mapping of wree T with the sct of
vertices (AU UWU.UY, onto [L2,....my+ms+...+m,_+m,+1}. Put
flx) = my+ma+ o+ +m,+1 for every yeS\S,;, delete T and, in what
follows, we shall map every tree T,.. ve SV 5, ono the subset  {m +... +m, +1,
my+ . +m,+2, ...} of N

Caxe 3. 5, ixinfinite. Partition 5, into countable subsets and take any subsel
5" of the partition. Let 8§ = {x, ¥5. ... ¥ye.oc b and let Vi Voo V..... be the seis
of vertices T, .7.......T, ..... Denote by T the subtree of Gr with the set of
vertices {x)UW UV, U UV, U.... Using the arguments of Case 2, define a 3-
dominating mapping f of T° onto N. Delete T° from Gr. If S\ S; =&, then we
have got the mapping f: V = N. Otherwise, put fivi=1 lorevery ye S\ 5; and,
in what follows, we shall map every iree 7,, ve SV 5, onlo N,

Repeating this procedure, we extend f onto V.

The second statement B{/)=< B{Gr) is much more casy. Supposc that the graph
Gr is locally finite, iie. every B(x, 1), x € V is finite. By Konig Lemma, there exists
a l-ray {x,ben in Gr. Put flul=x,, n € N and note that  fiBlx, mhg
o B(fixy.m) forall xe N, me w. Hence, £ isa <-mapping. Il Gr is not locally
finite, fix any vertex v & V with an infinite ball #(v, 1). Choose any countable sub-
set [y, : N} from Ble,h\{e]. Put fimi=x,, « e N. Since fiBlx,m)c
o B(fix).2) lorall xe N, me w, then [ isa <-mapping.

Proof of Theorem 2. | = 3. Suppose that B(G) =B/}, but G is locally finite.
Fix a <-mapping f: G—=N and choose a finite subgroup H of & such that
Biflg)r. g fiBlg. H)) for every g e G. Fix any clement gpe G and take a
maximal natural number  m e fiB(g;. H)). Choose gy e Blgg, H) with  flg)=m.
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Since M is a subgroup, then B(g . H) = B(gy, H). Hence, B(f(g). 1)< f(B(gy, H))
and m+1e f(B(gy, H)). acontradiction with the choice of m.

1= 3. Suppose that B(/) =< B(G), but G is locally finite. Fix a ~<-mapping
f:N—=G and choose a finite subgroup H  of G such that f(B(n,1))c
< B(fin), H) for every ne N. Choose a maximal number me_f"{B{f(l).Hn.
Since fim)e B(f(1), H) and H is a subgroup, then B(f(m), Hy= B(f(1), H).
Since  f(Bim, 1)) Bifim), H), then m+1e B(f(1), H), a contradiction with the
choice of m.

3 = 1. Choose an infinite finitely generated subgroup G of G. Partition G on-
1o right cosets by G and fix some set X of representatives of cosets. Thus, G =G'X
and every element g € G has an unique representation of the form g=g'x, g’ €G’,
xe X. Define a mapping f: G—= G’ bytherule f(g)=g". Clearly, f" isa =-
mapping of B(G) onto B(G"). Identify B(G") with the ball's structure B{Cay)
of Cayley graph Cay of G". By Teorem |, there exists a =-mapping f~ of B(Cay)
onto B(I). Then f=f"f" isa =-mapping of B{G) opto B([).

3 = 2. Choose an infinite finitely generated subgroup G of G. Identify B(G")
with the ball’s structure B{Cay).

Proof aof Theerem 3. Assume that B(/) = B(Gr) and consider two cases.

Case 1. & has an element g of infinite order. Let € be the subgroup generated
by g, e bethe identity of 7. Pul o ={e. g} and observe that, for every x e G, the
sequence {g" x},0 15an ot-ray in B(&). By Lemma 5, € is a subgroup of infinite
index.

Carse 2. G is a torsion group. Suppose that & is not locally finite and choose a
finite subset F of G which generates an infinite subgroup G”. Parlition G onto
right cosets by G and pick some set X of representatives of cosets. Thus, G = G'X
and every element g € G has an unique representation g=g'x, g'€G, x e X.
Define amapping f: G—= G bytherule fig)=g’. Clearly, f isa ~-mapping of
B(G) onto B(G"). Hence, B(/)=B(G"). Identify B(G") with the ball's structure
B(Cay) of its Cayley graph. By Lemma 2, G is a group of linear growth. By
Gromov Theorem [2], & has a nilpotent subgroup H of finite index. Since H is fi-
nitely generated torsion nilpotent group, then H is finite. Hence, G° is finite, a con-
tradiction.

Let G be a countable locally finite group. By Lemma 10, there exists a sequence
{k, dyae ©F natural numbers such that B(G) is isomorphic to B({k, },.,). Let H
be a direct sum of @ copies of Z;. By Lemma 8, B(H) = B({k, },ey)- By Lemma
11, B{/)y=B(H). Hence, B(/)=B(G).

Mow let G be a finite extension of an infinite cyclic group € generated by
clement g. We may suppose that € is an invariant subgroup, so x~lgx e {g.g-!}
for every element x € . Partition & into right cosets by € and choose a set of

representatives H= {h.hy,.... k) suchthat H= H™'. For i,j e {l2.....n}, pick
a(i.j)e Z such that hh; € g™V H. Put a = max {|ati, /)| +1: i.j € {1.2,...,n}}.
Consider the Cayley graph Cay of group G determined by the set H | J{g, g1} of
generators. Put  Vy ={g*H: |k|sa), VW = {¢*H:a<|k|s2a}, W = {g*H:
2a<|k|s3a), ....

By Lemma 4, B(/)>= B{Cay).

Proof of Theorem 4. Apply Lemma 10 and Lemma 8.

Proof of Theorem 5. Choose a sequence FcFRc..cFc... of finite
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854 I. V. PROTASOV
subgroups of G; such that G, = Ufme’ and Fy is the identity subgroup of G,.
Put k=|F,:F| ie w. Choose a sequence Hyc H,c...c H;c... of finite
subgroups of Gz such that Ga = U‘_m H; and Hg is the identity subgroup of G3.
Put m;=|H,:H;|. 1€ w. By Lemma 10, B(G;), B({k}m) and B (Gz),
B{{m; }icqy) are the isomorphic pairs of ball's structures. MNote that every finite sub-
group F of Gy is contained in some subgroup F,, and every finite subgroup of &,
is contained in some subgroup H,,. Then we can apply Lemma 9.

5. Comments and open problem. Let By and B: be the ball's structures,
Suppose that By = By (resp. By <B;). Is By < By (resp. Ba=By)? Let G bea
countable locally finite group. By Theorem 3, B(/) = B(&). By Theorem 2, the
relation B{G) < B(/) is not true. Thus, the answer to the first question is negative.
The following example gives a negative answer to the second question. Consider a
complete graph Gr with the set of vertices w. Atach a copy of graph f{m+1) to
each vertex m e w. Denote the resulting graph by G, Clearly, B{Gri=< B (Gr"). It
is easy to see that the relation B(Gr") = B(Gr) is false,

Let B =(X. P, B) be an arbitrary ball's structure. Consider a complete graph Gr
with the set of vertices X. Then the identity mapping f: X — X isa =-mapping of
B(Gr) onto B. In particular, for every group &, there exists a graph Gr such that
B(Gr)=B(G). Now suppose that a group of G is countable and denote by F' a free
group of countable rank. Note that a homomorphism f° of F” onto G is a »=-
mapping of B(F "y onto B(G). Embed F’ intoa free group F of rank 2 and note
that B{F)= B(F"). Identify B(F) with B(Cay) where Cay is a Cayley graph of
F, Since Cay is a connected locally finite graph and B({Cay)>= B (&), then we have
proved the following stalement.

There exists a countable connected locally finite graph Gr such thar B({Gr) =
=B(G) for every countable group G.

On the other hand, if Gr is a locally finite graph, & is an infinite group and
B(Gr)=B{(G), then Gr is connected and, consequently, Gr and & are countable.

Let & bea group and let Gr be a graph such that the ball’s structures B(G) and
B{Gr) are isomorphic. We may assume that Gr = (G, E) and the identity mapping
f: G =G isanisomorphism. Since f is a =-mapping, then Gr is connecled. Since
[ isa =-mapping, then there exists a finite subset H of @ such that Bix, 1)g Hx
for every x &€ & and we have got the following statement.

For every group G, BIG) is isomerphic o B(Gr) for seme graph Gr if
and enly if G is finitely generated.

By weighted graph we mean a graph Gr=(V, E} and a function w: E— N,
which assigns a weight w(y) toeachedge ve E. Alengthofapath x, x,,....x, In
a weighted graph is a sum of weights of consecutive edges (x),x;3) (x3.23), ...

oy (XyopeXy). Put dix,x)=0 foreach xe V. If x, x"eV belong to the distinct
connected component of Gr put d{x,x")==. Otherwise, denote by d(x,x") a
length of the shortest path between x and x'. Put B(x,m)={x"eV: d(x,x") S m},
me w. A ball's structure (V, @3, B) is called a ball’s structure of weighted graph (V|
E. w).

Let G = {g,: mew} be acountable group with the identity g, and let Gr =
= (G, E) be a complete graph. Partition G =G,UG, UG, suchthat G, ={geG:
g =gl G'=G.

Define any bijection f: GyUG, = N and extend it to G, by the rule f(g) =
= f(g~') forevery geG,. Givenanyedge y=(g.8). put w(y)= f(g:g"). Itis
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easy 1o check that the ball's structure B(G) is isomorphic to the ball's structure
B(Gr) of weighted graph Gr.

Let Z be a group of integers. By Theorem 2, B(Z)= B(/) and, by Theorem 3,
Bil)=B(Z). Let f: N—Z be abijection. Show that, for every m e N, there
exists n & N suchthat  filn)- fln+1) >m. Choose ke N with f[L.k]=[0,m] and
take a minimal number n e N such that n > &, fin)>m. fin+1)<0. Then
fin)= fin+1) = m. It follows that the ball’'s structure B(f) and B{Z) is not
isomorphic. Which groups has a ball’s structures isomorphic to B(Z). A slight modi-
fication of proof of Theorem 3 gives the following answer.

Fora gronp G, B(G) is isomorphic to B(Z) if and only if G is a finite ex-
tension af an infinite cvelic group.

Question 1. Characterize the finite connected graphs which admit a 1-dominating
bijection onto [, ? The same question for a 2-dominating bijection,

Question 2. Let Gy, G, bethe infinite locally finite groups of the same cardina-
lity. Is B(G,)>B(G;)? Is B(G,)<B(G,)?

It follows from Theorem 5 that there are exactly comtinuum classes of countable
groups with isomorphic ball’s structures.

Question 3. Let @ be an infinite cardinal. How many classes of groups of cardi-
nality o with isomaorphic ball’s structures?
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