D. J. S. Robinson (Univ. Illinois, USA)

MINIMALITY AND SYLOW-PERMUTABILITY IN LOCALLY FINITE GROUPS

МІНІМАЛЬНІСТЬ І СИЛОВСЬКА КОМУТАТИВНІСТЬ У ЛОКАЛЬНО СКІНЧЕННИХ ГРУПАХ

We give a complete classification of the locally finite groups that are minimal with respect to Sylowpermutability being intransitive.

Наведено повну класифікацію локально скінченних груп, мінімальних із нетранзитивною властивістю силовської комутативності.

1. Introduction and results. A subgroup H of a group G is called Sylow-permutable, or S-permutable, if HP = PH for every Sylow subgroup P of G. If S-permutability is transitive in G, i. e., if the S-permutability of H in K and of K in G always imply that H is S-permutable in G, then G is called a PST-group. Now it was shown by Kegel [1] that an S-permutable subgroup of a finite group is subnormal. From this it follows easily that a finite group is a PST-group if and only if every subnormal subgroup is S-permutable.

In recent years there has been an upsurge of interest in finite *PST*-groups (see [2–9]). For example, Agrawal [2] characterized finite soluble *PST*-groups, proving the following basic result.

Theorem. A finite group G is a soluble PST-group if and only if it has an abelian normal subgroup L of odd order such that G/L is nilpotent, $\pi(L) \cap \pi(G/L)$ is empty, and elements of G induce power automorphisms in L.

Notice the consequence: all finite soluble PST-groups are supersoluble. The structure of finite insoluble PST-groups has recently been described in Robinson [9]. Also, in [4] Ballester-Bolinches et al. gave an interesting property of a finite PST-group G: the p-chief factors occurring below G' are G-isomorphic, as are those occurring above G'.

Our aim in the present work is to determine the minimal non-PST-groups which are locally finite. The motivation for investigating such minimal classes is that detailed knowledge of groups that just fail to have a group theoretic property is likely to give some insight into just what makes a group have a property. The minimal classes have been determined for a number of properties, for example T, the property that normality is transitive [10].

It turns out that all the locally finite, minimal non-PST-groups are finite, and they fall into five distinct types, as delineated below.

Type I. Let p and q be primes such that $p \equiv 1 \pmod{q^f}$ where $q^f > 1$. Let i be the least positive primitive q^f -th root of unity modulo p. Put $j = 1 + kq^{f-1}$ where 0 < k < q. Define

$$G_1 = X \ltimes A$$

where $X = \langle x \rangle$ has order q^r with $r \ge f$, $A = \langle a, b \rangle$ is elementary abelian of order p^2 , and $a^x = a^i$, $b^x = b^{ij}$.

Type II. Let p and q be distinct primes such that $p \not\equiv 1 \pmod{q}$. Let z be a primitive q-th root of unity modulo p and denote by F the field $\mathbb{Z}_p(z)$. Define

$$G_2 = X \ltimes F^+$$

where $X = \langle x \rangle$ has order $q^r > 1$ and x acts on F^+ via multiplication by z.

Type III. Let p and q be primes such that $p \equiv 1 \pmod{q}$, and write q^f for the highest power of q dividing p-1. Let A be an elementary abelian p-group with basis $\{a_0, a_1, \ldots, a_{q-1}\}$ and let $X = \langle x \rangle$ have order q^r where r > f. Set i equal to the least positive primitive q^f -th root of unity modulo p. Define

$$G_3 = \langle x \rangle \ltimes A$$

where $a_i^x = a_{i+1}$ for $0 \le i < q-1$ and $a_{q-1}^x = a_0^i$.

Type IV. $G_4 = X \times Q$ where Q is a quaternion group of order 8, $X = \langle x \rangle$ has order 3^r and x permutes cyclically the three subgroups of Q with order 4.

Type V. Let p and q be distinct primes such that the exponent of p modulo q is even, say 2m. Let P be a (non-abelian) special p-group of rank 2m which can be generated by elements of order p. Take $X = \langle x \rangle$ to have order $q^r > 1$ and let x induce an automorphism in P such that P/P' is a simple $\mathbb{Z}_p X$ -module and [P', X] = 1. Define

$$G_5 = X \ltimes P$$
.

Our main conclusion is the following theorem.

Theorem 1. The locally finite, minimal non-PST-groups are precisely the groups of Types 1 to V.

We shall make some comments on the classification. First it is easy to check that each of the five types of group is 2-generator and nilpotent-by-cyclic, and involves just two primes in its order. On the basis of this observation we can establish:

Corollary. Let G be a locally finite group such that each 2-generator, nilpotent-by-cyclic subgroup with order divisible by two primes is a PST-group. Then G is a PST-group.

For if G is finite but non-PST, it must contain a minimal non-PST-subgroup, which is impossible by the preceding remark. So G is infinite and every finite subgroup is PST, whence G is PST by Proposition 1 below. More generally, Theorem 1 can be used to establish sufficient conditions for a finite group to be a soluble PST-group: for example, the results in [7], Theorem C can be proved in this manner.

The proof of Theorem 1 provides additional srtuctural information about the groups of Type V, namely

$$|P'| \leq p^m$$
.

In addition a scheme for constructing all groups of Type V is given in Section 6 below.

Finally, it is a routine matter to verify with the aid of Agrawal's theorem that any group of Types I-V is a minimal non-PST-group. We therefore concentrate on demonstrating that only this groups can arise.

Notation: $\pi(G)$ — the set of primes dividing the orders of elements of G, $\operatorname{Syl}_p(G)$ — the set of Sylow p-subgroups of G, $\varphi_\infty(G)$ — the limit of the lower central series of a finite group G.

 Finiteness of the groups. The first step in the proof of Theorem 1 is to show that a locally finite, minimal non-PST-group is finite. This is an immediate consequence of the following result.

Proposition 1. Let G be a locally finite group in which every finite subgroup is a PST-group. Then the following hold.

- (i) There is an abelian normal subgroup L containing no involutions such that G/L is locally nilpotent, $\pi(L) \cap \pi(G/L)$ is empty, and elements of G induce power automorphisms in L.
- (ii) The serial subgroups and the S-permutable subgroups of G are the same.Hence G is a PST-group.

858 D. J. S. ROBINSON

During the proof we will make use of an auxiliary result (cf. [11], proposition 2.3.10).

Lemma 1. Let G be a locally finite group with an abelian normal subgroup L such that G/L is locally nilpotent and $\pi(L) \cap \pi(G/L) = \emptyset$. Assume that elements of G induce power automorphisms in L. If $L \triangleleft G$, then

$$\operatorname{Syl}_p(G/N) = \{PN/N \mid P \in \operatorname{Syl}_p(G)\}\$$

for all primes p.

Proof. We may assume that $O_p(G) = 1$, so that $p \notin \pi(L)$. Put $C = C_G(L)$. Then G/C, being a torsion group of power automorphisms of L, is finite. Also, since $C = L \times O_{\pi(C/L)}(C)$ and $O_{\pi(C/L)}(C)$ is locally nilpotent, we see that C is a p'-group. Hence Sylow p-subgroups of G are finite.

Let $P \in \operatorname{Syl}_p(G)$; then PN/N is contained in some $P_1/N \in \operatorname{Syl}_p(G/N)$ and P_1/N is finite. Hence $P_1 = FN$ where F is a finite subgroup containing P. Clearly |F:P| is a p'-number, as must be $|P_1:PN|$. Therefore $P_1 = PN$.

Conversely, let $Q/N \in \operatorname{Syl}_p(G/N)$. Since Q/N is finite, Q = FN with F a finite subgroup. Since $F/F \cap N$ is a p-group, $F \leq P(F \cap N)$ for some $P \in \operatorname{Syl}_p(G)$. Thus $Q = FN \leq PN$ and Q = PN.

Proof of Proposition 1. First we show that finite subgroups of G are soluble. Indeed suppose that this is false and let F be a smallest insoluble finite subgroup. Every proper subgroup of F is a soluble PST-group and hence is supersoluble. It now follows from results of Doerk [12] that F is soluble.

Next write

$$L = \bigcup \gamma_{\infty}(F),$$

where the union is formed over all finite subgroups F of G. By Agrawal's theorem each $\gamma_{\infty}(F)$ is abelian of odd order. If F_1 and F_2 are finite subgroups, $F = \langle F_1, F_2 \rangle$ is a finite soluble PST-group and $\gamma_{\infty}(F_1)\gamma_{\infty}(F_2) \subseteq \gamma_{\infty}(F) \subseteq L$. This implies that L is an abelian subgroup containing no involutions. In addition $L \triangleleft G$ and G/L is locally nilpotent, being the union of all FL/L with F finite.

Let $a \in L_p$ and suppose that $x \in G$ is a q-element where q is a prime different from p. Since $F = \langle x, a \rangle$ is a finite soluble PST-group and $\langle a \rangle$ is subnormal in F, we have $\langle a \rangle \langle x \rangle = \langle x \rangle \langle a \rangle$, which implies that $a^{\langle x \rangle} = \langle a \rangle$ since $a^{\langle x \rangle} \leq L_p$. Therefore x induces a power automorphism in G.

Next suppose that $p \in \pi(L) \cap \pi(G/L)$, and let $a \in L$ and $bL \in G/L$ both have order p. Then there is a finite subgroup F such that $b \in F$ and $a \in \gamma_{\infty}(F)$. Since $\pi(\gamma_{\infty}(F)) \cap \pi(F/\gamma_{\infty}(F)) = \emptyset$, we must have $b^m \in \gamma_{\infty}(F) \le L$ for some positive p'-number m. But this implies that $b \in L$. Hence $\pi(L) \cap \pi(G/L) = \emptyset$. If now follows from the previous paragraph that arbitrary elements of G induce power automorphisms in L.

It remains to prove that the serial subgroups and the S-permutable subgroups of G are one and the same. Suppose that H is serial in G: we show H is S-permutable. Since $H \cap L \triangleleft G$, it is enough by Lemma 1 to prove that $H/H \cap L$ is S-permutable in $G/H \cap L$: so assume that $H \cap L = 1$. Thus H is locally nilpotent and we can suppose it is a q-group. If $q \in \pi(L)$, then $H \subseteq L$ and $H \triangleleft G$, so all is clear. Assume that $q \notin \pi(L)$; we claim that H^G is a q-group. Indeed, if $h \in H$ and $g_1, g_2, \ldots, g_n \in G$, then $F \in \langle h, g_1, g_2, \ldots, g_n \rangle$ is finite and $H \cap F$ is a subnormal q-subgroup of G. Hence G is a G-group, and it follows that G is a G-group, as is claimed.

Let $P \in \text{Syl}_p(G)$. If p = q, then $H \le P$, so assume that $p \ne q$. If $p \in \pi(L)$, we

shall have $P \le L$ and $P \triangleleft G$. If on the other hand $p \notin \pi(L)$, then $H^G P \cap L = 1$ since $H^G P$ is a $\{p, q\}$ -group. It follows that $H^G P$ is locally nilpotent and [H, P] = 1. Hence H is S-permutable in G.

Conversely, assume that H is an S-permutable subgroup of G. We need to show that H is serial. As before we may assume $H \cap L = 1$ and H is a q-group. Now it is sufficient to deal with the case where $\pi(L)$ contains a single prime. For suppose this case has been settled, and let $\pi(L) = \{p_1, p_2, \ldots\}$. By Lemma 1 each $HL_{p_i'}$ is S-permutable, and hence serial, in G, from which it follows that $HL_{\{p_1,\ldots,p_i\}'}$ is serial in $HL_{\{p_1,\ldots,p_i\}'}$ for $i=1,2,\ldots$, since $H \cap L=1$. Therefore $H=\prod_{i=1,2,\ldots}HL_{\{p_1,\ldots,p_i\}'}$ is serial in G.

Now assume that $\pi(L) = \{p\}$. Let $Q \in \operatorname{Syl}_q(G)$ and put $C = C_Q(L)$; then Q/C is a finite q-group. Next QL/L is the unique Sylow q-subgroup of G/L by Lemma 1, so $H \leq QL$. Since $C \triangleleft QL$, it follows that HC is a q-group. Also H is S-permutable, so HQ is a subgroup and |HQ:HC| is a power of q. Consequently HQ is a q-group and $H \leq Q$. It follows that $H \leq O_q(G)$. Since $O_q(G)$ is locally nilpotent, H is serial in G.

3. Finite minimal non-PST-groups. By Proposition 1 locally finite, minimal non-PST-groups are finite. From now on in the proof of Theorem 1 all groups will be finite. Initial insight into the structure of the groups is given by the following lemma.

Lemma 2. Let G be a minimal non-PST-group. Then G has a nontrivial normal Sylow p-subgroup P for some p. In addition

- (i) $G = X \ltimes P$ where X is a cyclic group of order $q^r > 1$ and q is a prime different from p;
 - (ii) either P is abelian or $[P, X^q] = 1$.

Proof. Assume that G has no nontrivial normal Sylow subgroups and let G_1 be a subgroup of G which is minimal with respect to this property. Then G_1 cannot be supersoluble since otherwise there would be a normal Sylow subgroup associated with the largest prime divisor of $|G_1|$.

We claim that G_1 is soluble. If this is not true, G_1 contains a minimal insoluble subgroup G_2 . But each proper subgroup of the group G_2 is supersoluble, so G_2 is soluble. It follows that G_2 must be soluble and thus all of its proper subgroups are supersoluble. In short G_1 is a minimal nonsupersoluble group. But by another result of Doerk [12] this implies that G_1 has a nontrivial normal Sylow subgroup, a contradiction which establishes our original claim.

We now have $1 \neq P = O_p(G)$, a Sylow p-subgroup, for some prime p. Hence $G = X \ltimes P$ where X is a p-group. Suppose that X is not cyclic of prime power order. If $\langle x \rangle$ is a subgroup of X with prime power order, then $\langle x, P \rangle \neq G$, so that $\langle x, P \rangle$ is a soluble PST-group. It follows that x induces a power automorphism in P, whence X induces a nontrivial p'-group of power automorphisms in P. By a result of Huppert [13] this means that P is abelian, and hence G is a PST-group by Agrawal's theorem. We conclude that $X = \langle x \rangle$ where |x| = q' > 1 and $q \neq p$ is a prime.

Finally, assume that $[P, X^q] \neq 1$. Since $G \neq \langle x^q, P \rangle$, the latter is a *PST*-group and x^q induces a nontrivial p'-power automorphism in P. By [13] again P is abelian.

We can now complete the classification in the case where P is abelian.

Lemma 3. Let G be a minimal non-PST-group. If G has a nontrivial normal Sylow p-subgroup P which is abelian, then G is of Type I, II or III.

860 D. J. S. ROBINSON

Proof. Write $G = X \ltimes P$ where X is a cyclic q-group. Let H be a proper subgroup of G. Then H is a PST-group, so $L = \gamma_{\infty}(H)$ is abelian and $\pi(L) \cap \pi(H/L) = \emptyset$. Since $L \leq P \cap H$, it follows that either L = 1 or $L = P \cap H$. In the first case H is nilpotent and hence abelian. Otherwise H/L is a cyclic q-group and elements of H induce power automorphisms in L, which implies that H is a T-group by a result of Gaschütz [14]. Therefore every proper subgroup of G is a T-group and G is a minimal non-T-group. An examination of the list of minimal non-T-groups in [10] reveals that Types I, II and III are the only possibilities for G.

For the remainder of the proof of Theorem 1 we shall assume that P is non-abelian. Also we still have $G = X \ltimes P$, with $X = \langle x \rangle$ of order $q^r > 1$ and $[P, x^q] = 1$. Write

$$\overline{P} = P/\varphi(P)$$

and regard \overline{P} as a $\mathbb{Z}_p X$ -module in the obvious way. The structure of this module is critical to the investigation; our aim is to prove that it is simple.

4. Simplicity of the module \overline{P} . Assume that \overline{P} is not a simple \mathbb{Z}_pX -module. Then by Maschke's Theorem $\overline{P} = \overline{P_1} \oplus \ldots \oplus \overline{P_n}$ where $\overline{P_i} = P_i/\varphi(P)$ is a simple module and $n \ge 2$. The first step is to show that n = 2.

Suppose that $n \ge 3$. Since $[P, X] \ne 1$, there is an i for which $[P_i, X] \ne 1$. For any $j \ne i$ the subgroup $U = XP_iP_j$ is proper since $n \ge 3$. By Agrawal's theorem $T = \gamma_\infty(U)$ is abelian. Also $T \le P$ and $T \ne 1$ since $[P_i, X] \ne 1$. Hence U/T is a P'-group and $P_iP_j \le T$. This shows that each P_j is abelian and that X induces a uniform power automorphism in each P_iP_j ; thus $[P_j, X] \ne 1$. If $k \ne j$, the same argument shows that P_jP_k is abelian. However this implies that P is abelian.

Thus far we have shown that n=2 and $\overline{P}=\overline{P_1}\oplus \overline{P_2}$. Also XP_1 and XP_2 are PST-groups. If $[P_1,x]\neq 1$, then P_1 is abelian and x induces a p'-power automorphism in P_1 . Hence $C_{P_1}(x)=1$, whence $[P_2,x]\neq 1$. It follows that P_2 is abelian and therefore P is nilpotent of class 2. In addition $|\overline{P}|=p$ since x induces a power automorphism in P_1 , and for this reason $p\equiv 1\pmod{q}$. Thus p is certainly odd.

Next assume that P/P' is not an elementary abelian p-group. Then x induces a p'-power automorphism in $\Omega_1(P/P')$ and hence in P/P'. Let $a \in P$; now $Xa^G \neq G$ since a^GP'/P' is cyclic. Therefore Xa^G is a PST-group and consequently x induces a p'-power automorphism in P, a statement which implies that P is abelian. We conclude that P/P' is elementary, so that $P' = \varphi(P)$ and $|\overline{P}| = p^2$. Since $P' \leq Z(P)$, it follows that $|\overline{P}| = p^3$ and Z(P) = P'.

Now we show this situation to be impossible. Write $P_1 = \langle a, P' \rangle$ and $P_2 = \langle b, P' \rangle$. Recall that x induces power automorphisms in P_1 and P_2 , say $u \mapsto u^l$ and $u \mapsto u^m$ respectively. These must agree on P', so $l \equiv m \pmod{p}$ and we can assume l = m. Hence $[a, b]^l = [a, b]^x = [a^l, b^l]$, which yields $l^2 \equiv l \pmod{p}$ and $l \equiv 1 \pmod{p}$. By this contradiction the simplicity of the module \overline{P} is established.

5. Completion of the proof of Theorem 1. Let G be a minimal non-PST-group with $G = X \ltimes P$, $X = \langle x \rangle$ of order $q^r > 1$ and $P = O_p(G)$ non-abelian. It is known that

$$\overline{P} = P/\varphi(P)$$

is a simple $\mathbb{Z}_p X$ -module. A sequence of assertions about G will be proved, culminating in the proof of Theorem 1.

(i) q is odd.

For if q = 2, then $[P, x^2] = 1$ by Lemma 2, which implies that $|\overline{P}| = p$ and P is abelian.

(ii) P is a special p-group. Also P = [P, x] and [P', x] = 1.

If P/P' is not elementary abelian, x induces a p'-power automorphism in $\Omega_1(P/P^P)$ and hence in P/P'. The simplicity of the module $\overline{P} = P/\varphi(P)$ implies that \overline{P} , and hence P, is cyclic. Therefore P/P' must be elementary and

$$\varphi(P) = P'$$
.

Since x induces a power automorphism in P', we have [P', [P, x]] = 1. In addition, P = [P, x]P' since \overline{P} is a simple $\mathbb{Z}_p X$ -module, so P = [P, x]. Hence [P', P] = 1 and P is nilpotent of class 2. Thus $P' \le Z(P)$, so that P' = Z(P). Clearly P is a special p-group.

If $[P', x] \neq 1$, then x induces a power automorphism in P' of order q. This implies that $p \equiv 1 \pmod{q}$, which leads to the contradiction $|\overline{P}| = p$. Therefore [P', x] = 1.

(iii) If p is odd, $P^{p} = 1$. If p = 2, then $P^{4} = 1$.

Suppose first that p is odd: then $(ab)^p = a^p b^p$ since P has class 2 and $(P')^p = 1$. Therefore $a \mapsto a^p$ is an X-operator homomorphism $\alpha: P \to P'$ and $P' \le \text{Ker}(\alpha) \triangleleft G$. Thus $\text{Ker}(\alpha) = P$ or P'. Since [P', X] = 1, the latter case cannot occur. Hence $P^p = 1$. If p = 2, the same argument for the map $a \mapsto a^4$ shows that $P^4 = 1$.

(iv) If p = 2 and P cannot be generated by involutions, then P is a quaternion group of order 8, q = 3 and G is of Type IV.

Suppose first that $a \in P \setminus P'$ has order 2. Then $P = a^G P'$, whence $P = a^G$ and P is generated by involutions. Hence every element of $P \setminus P'$ has order 4.

Let $a \in P \setminus P'$, so that a has order 4 and $a^2 \in P'$. Observe that $[a, x] \notin P'$ since otherwise $[P, x] \le P'$. Put $U = \langle a, a^x \rangle = \langle a, [a, x] \rangle$. Since $a^2 = (a^2)^x = (a^x)^2$, we have $|U| \le 8$. Also $1 = [a^2, x] = [a, x]^a [a, x]$, so $[a, x]^a = [a, x]^{-1}$. Now $[a, x]^2 \ne 1$ because $[a, x] \notin P'$. Hence U is a quaternion group of order 8 and $[a, x]^2 = a^2 = z$, say.

Next we have

$$[a, a^x] = [a, [a, x] = [a, x]^2 = z,$$

and in the same way $[a, a^{x^2}] = z$. Hence

$$(aa^xa^{x^2})^2 = a^2(a^x)^2(a^{x^2})^2[a^x, a][a^{x^2}, a][a^{x^2}a^x] = z^6 = 1.$$

Therefore $aa^xa^{x^2} \in P'$ and $a^{x^2} \in UP'$. It follows that UP' is X-invariant. Thus P = UP' and P = U is quaternion of order 8. Clearly q = 3 and G is of Type IV.

From now on it will be assumed that P is generated by elements of order p.

(v) $\dim_{\mathbb{Z}_p}(\overline{P})$ is even.

Suppose this is false and let G be a counterexample of smallest order. Then $|P'| \neq p$ since otherwise P is extra-special, when $\dim(\overline{P})$ is known to be even.

862 D. J. S. ROBINSON

Hence there is a proper nontrivial subgroup Z of P'. Of course $Z \triangleleft G$ since [P', X] = 1.

Put $G_1 = G/Z$. If G_1 is a *PST*-group, x will induce a p'-power automorphism in P/Z, and hence in P/P', which is impossible. Consequently, G_1 is a minimal non-*PST*-group. Clearly $O_p(G_1) = P/Z$, and Z(P/Z) = P'/Z since otherwise P/Z would be abelian. By minimality of |G| we deduce that $\dim(\overline{P})$ is even.

From now on we shall write

$$\dim(\overline{P}) = 2m$$
.

(vi) The exponent of p modulo q equals 2m.

This is because \overline{P} , being a nontrivial simple $\mathbb{Z}_p(X/X^q)$ -module, has dimension equal to the exponent of p modulo q.

(vii)
$$|P'| \le p^m$$
.

Choose a basis $\{\overline{a}_1, \dots, \overline{a}_{2m}\}$ of \overline{P} and write $\overline{a}_i = a_i P'$. Then P' is generated by the elements $[a_i, a_j]$, $i < j = 1, 2, \dots, 2m$. Let M denote the Schur multiplicator of \overline{P} . Thus

$$M = \overline{P} \wedge \overline{P}$$
,

the exterior square, which has the basis $\{\overline{a}_i \wedge \overline{a}_j \mid i < j = 1, 2, ..., 2m\}$. Further there is a surjective linear map

$$\theta: M \to P'$$

in which $(\overline{a} \wedge \overline{b})\theta = [a, b]$ where $\overline{a} = aP'$ and $\overline{b} = bP'$ are in \overline{P} . Now M is an X-module via the diagonal action $(\overline{a} \wedge \overline{b}) \cdot x = \overline{a}^x \wedge \overline{b}^x$, and θ is a $\mathbb{Z}_p X$ -module homomorphism. Since P' is a trivial $\mathbb{Z}_p X$ -module, $[M, X] \leq \operatorname{Ker}(\theta)$. Now M is completely reducible, so

$$M = [M, X] \oplus M^X,$$

and M^X maps homomorphically onto P'. It is therefore sufficient to show that $\dim(M^X) \le m$. This will follow from the following result.

Proposition 2. The multiplicator M of \overline{P} is the direct sum of m-1 nontrivial simple $\mathbb{Z}_p(X/X^q)$ -modules, each of dimension 2m, and m copies of the trivial module \mathbb{Z}_p . Thus $\dim(M^X) = m$.

Proof. Let x' denote the linear operator induced in \overline{P} by x and let f be its minimum polynomial. Since \overline{P} is a simple module, f is irreducible and its degree is 2m. The roots of f, which are all different, are written d_1, \ldots, d_{2m} . Let C be the matrix representing x' with respect to some ordered basis of \overline{P} . Then C is similar over some extension field to the diagonal matrix

$$D = \begin{bmatrix} d_1 & 0 & \dots & 0 \\ 0 & d_2 & \dots & 0 \\ & & \ddots & \\ 0 & 0 & \dots & d_{2m} \end{bmatrix},$$

say $D = U^{-1}CU$. The linear operator induced in $M = \overline{P} \wedge \overline{P}$ by x' is represented by $C \wedge C$, the exterior square of C. Also

$$(U \wedge U)^{-1}(C \wedge C)(U \wedge U) = (U^{-1}CU) \wedge (U^{-1}CU) = D \wedge D,$$

and $D \wedge D$ is the $\binom{2m}{2}$ -square matrix

$$\begin{bmatrix} d_1 d_2 & 0 & \dots & 0 \\ 0 & d_2 d_3 & \dots & 0 \\ & & \ddots & \\ 0 & 0 & \dots & d_{2m-1} d_{2m} \end{bmatrix}.$$

From this it follows that $\dim(M^X)$ equals the number of pairs of inverse roots (d_i, d_j) where $d_j = d_i^{-1}$ and i < j. The mapping $u \mapsto u^{p^m}$ is an automorphism of the splitting field of f, so it permutes the roots of f. Since $p^m \equiv -1 \pmod{q}$, it follows that the roots of f fall into f pairs of inverses. Therefore $\dim(M^X) = f$.

Finally, the number of nontrivial simple summands in the didect decomposition of *M* into simple modules is

$$\left(\binom{2m}{2} - m\right) / 2m = m - 1$$

since each nontrivial simple $\mathbb{Z}_p(X/X^q)$ -module has dimension 2m. It now follows that G is of Type V and this completes the proof of Theorem 1.

6. Constructing the groups of Type V. We now show to construct explicitly all the minimal non-PST-groups of Type V. Choose distinct primes p and q such that the exponent of p modulo q is even, say 2m. Let f be an irreducible divisor of the cyclotomic polynomial $\Phi_q \in \mathbb{Z}_p[t]$, and write

$$f = t^{2m} + f_{2m-1}t^{2m-1} + ... + f_1t + f_0.$$

Next form the special p-group

$$P_0 = \langle a_0, a_1, \dots, a_{2m-1} | a_i^p = [a_i, a_j, a_k] = 1, i, j, k = 1, 2, \dots, 2m-1 \rangle.$$

Thus $P'_0 \simeq M(P_0/P'_0)$. Let $X = \langle x \rangle$ have order q' > 1.

At this point a distinction between the cases p = 2 and p odd becomes necessery. First let p be odd. Then we can allow x to act on P as an automorphism of order q where

$$a_i^x = a_{i+1}, \quad 0 \le i < 2m-1 \quad \text{and} \quad a_{2m-1}^x = a_0^{-f_0} \, a_1^{-f_1} \, \dots \, a_{2m-1}^{-f_{2m-1}}.$$

Because $P_0^P = 1$, this is automorphism. Note that P_0/P' is a simple \mathbb{Z}_pX -module since f is irreducible. Now form

$$P_1 = P_0 / [P_0', X].$$

Then $P'_0 = Z(P_1) = P'_0 / [P'_0, X]$, which has dimension m by Proposition 2.

Choose a subgroup K such that $[P_0', X] \le K < P_0'$ and put $P = P_0 / K$. Then define

$$G = X \ltimes P$$
.

which is a minimal non-PST-group with order

$$\frac{p^{3m}q}{|K:[P_0',X]|}.$$

Now let p = 2. While we would like x to act on P_0 by the same rule as above, this may not be an automorphism, so another approach is required. Let P_0 be the free nilpotent group of class 2 with basis $\{a_0, a_1, \ldots, a_{2m-1}\}$. An automorphism x of P_0 is defined by

$$a_i^x = a_{i+1}$$
 for $0 \le i < 2m-1$, $a_{2m-1}^x = a_0^{f_0} a_1^{f_1} \dots a_{2m-1}^{f_{2m-1}}$

Now add the relations

$$a_i^2 = 1$$
 and $\left(\left(a_0^{f_0} a_1^{f_1} \dots a_{2m-1}^{f_{2m-1}} \right)^2 \right)^{x^j} = 1$,

for i = 0, 1, ..., 2m-1 and j = 1, 2, ..., 2q-1, to get a special 2-group \tilde{P}_0 . Choose a subgroup K such that $[\tilde{P}'_0, x] \le K < \tilde{P}'_0$. Put $P = \tilde{P}_0 / K$ and let $G = X \ltimes P$ where $X = \langle x \rangle$ has order $q^r > 1$. Then G is a minimal non-PST-group.

7. Minimal non-PT-groups. A group G is called a PT-group if H permutable in K and K permutable in G always imply that H is permutable in G. For finite groups this is equivalent to all the subnormal subgroups being permutable. The structure of finite PT-groups has been studied intensively, in the soluble case by Zacher [15] and in general by Robinson [9]. The minimal non-PT-groups which are locally finite can be determined with the aid of Theorem 1. The definitive result is the following theorem.

Theorem 2. The locally finite, minimal non-PT-groups are the minimal non-PST-groups of Types I – IV, together with the minimal nonmodular p-groups.

We remark that the minimal nonmodular p-groups were determined by Napolitani [16] and fall into eleven classes. Two general properties of PT-groups, which may be of independent interest, precede the proof.

Lemma 4. A group G is a PT-group if and only if every ascendant subgroup is permutable.

Proof. In the first place, by a theorem of Stonehewer [17] permutable subgroups are always ascendant, and so the sufficiency of the condition follows.

Conversely let G be a PT-group and H an ascendant subgroup of G, with an ascending series

$$H = H_0 \triangleleft H_1 \triangleleft \dots H_{\gamma} = G.$$

Should H not be permutable in G, there is a least ordinal α for wich H is not permutable in H_{α} . If α is not a limit ordinal, then H is permutable in $H_{\alpha-1}$ and $H_{\alpha-1} \triangleleft H_{\alpha}$. Hence H is permutable in H_{α} . By this contradiction α is a limit ordinal. Let $x \in H_{\alpha}$; then $x \in H_{\beta}$ where $\beta < \alpha$, and H is permutable in H_{β} . Therefore $H(x) = \langle x \rangle H$ and H is permutable in H_{α} .

Lemma 5. The property PT is a local property of groups.

Proof. Suppose that G is locally a PT-group, but it is not a PT-group. By Lemma 4 there is an ascendant subgroup H which is not permutable in G. Let $h \in H$ and $g \in G$. Then there is a PT-subgroup F containing h and g. Now $H \cap F$ is ascendant in F, so Lemma 4 may be applied to show that $H \cap F$ is permutable in F. Hence $hg \in (H \cap F) \setminus \{g\} = \langle g \setminus (H \cap F) \subseteq \langle g \setminus H \rangle$. It follows that $H \setminus \{g\} = \langle g \setminus H \rangle$ and H is permutable in G.

Proof of Theorem 2. Let G be a locally finite, minimal non-PT-group. It follows immediately from Lemma 5 that G must be finite. Also G is soluble: for

otherwise it has a minimal insoluble subgroup and all its subgroups, being soluble *PT*-groups, are supersoluble, which is impossible.

If G is not a PST-group, then it is minimal non-PST-group and must be on our list of groups. Type V can be excluded since the subgroup P is not modular. However Types I-IV qualify.

Now assume that G is a PST-group. Then $G = X \ltimes L$ where X is nilpotent, L is abelian, $\pi(L) \cap \pi(X) = \emptyset$, and elements of X induce power automorphisms in L. If L = 1, then G is nilpotent and hence is a minimal nonmodular p-group. If $L \neq 1$, then X is modular and G is a PT-group by [15]. The proof of Theorem 2 is now complete.

- Kegel O. H. Sylow-Gruppen und Subnormalteiler endlicher Gruppen // Math. Z. 1962, 78, S. 205 – 221.
- Agrawal R. K. Finite groups whose subnormal subgroups permute with all Sylow subgroups //
 Proc. Amer. Math. Soc. 1975. 47. P. 77 83.
- Alejandre M. J., Ballester-Bolinches A., Pedraza-Aguilera M. C. Finite soluble groups with permutable subnormal subgroups // J. Algebra. – 2001. – 240. – P. 705 – 722.
- Ballester-Bolinches A., Beidleman J. C., Heineken H. Groups in which Sylow subgroups and subnormal subgroups permute (to appear).
- Ballester-Bolinches A., Esteban-Romero R. Sylow permutable subnormal subgroups of finite groups. – Preprint.
- Ballester-Bolinches A., Esteban-Romero R. Sylow permutable subnormal subgroups of finite groups. II // Bull. Austral. Math. Soc. – 2001. – 64. – P. 479 – 486.
- Ballester-Bolinches A., Esteban-Romero R. On finite soluble groups in which Sylow permutability is a transitive relation. – Preprint.
- Beidleman J. C., Heineken H. Finite soluble groups whose subnormal subgroups permute with certain classes of subgroups (to appear).
- Robinson D. J. S. The structure of finite groups in which permutability is a transitive relation // J. Austral. Math. Soc. - 2001. - 70. - P. 143 - 159.
- Robinson D. J. S. Groups which are minimal with respect to normality being intransitive // Pacif.
 J. Math. 1969. 31. P. 777 785.
- Dixon M. R. Sylow theory, formations and Fitting classes in locally finite groups. Singapore: World Sci., 1994.
- Doerk K. Minimal nicht überauflösbare, endliche Gruppen // Math. Z. 1966. 91. S. 198 – 205.
- Huppert B. Zur Sylowstruktur auflösbarer Gruppen // Arch. Math. (Basel). 1961. 12. P. 161 – 169.
- Gaschütz W. Gruppen in denen, das Normalteilersein transitiv ist // J. reine und angew. Math. 1957. – 198. – S. 87 – 92.
- Zacher G. I gruppi risolubili in cui i sottogruppi di composizione coincidano con i sottogruppi quasinormali // Atti Accad. naz. Lincei Rend. Cl. sci. fis., mat. e natur. – 1964. – 37. – P. 150 – 154.
- Napolitani F. Gruppi finiti minimali non modulari // Rend. semin. mat. Univ. Padova. 1971. –
 45. P. 229 248.
- 17. Stonehewer S. E. Permutable subgroups of infinite groups // Math. Z. 1972. 125. S. 1 16.

Received 20.02.2002