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MINIMALITY AND SYLOW-PERMUTABILITY
IN LOCALLY FINITE GROUPS

MIHIMAJIBHICTB I CHIIOBCBKA KOMYTATHBHICTE
¥ JIOKAJIBHO CKIHHEHHHX I'PYIIAX

We give a complete classification of the locally finite groups that are minimal with respect 1o Sylow-
permutability being intransitive.

Harereno nowiy KASCHgHKAIIe JI0Ka0RI0 CKINMCIITNG 1Py, Millisaining i3 e rpansmnniime piac-
THEIC T CHAORCKRK 0T KOMY TRTHRIOCTI.

1. Introduction and results. A subgroup H of a group & is called Svlow-permiunt-
able, or S-permurable, it HP = PH for every Sylow subgroup P of &, If S-per-
multability is transitive in G, i.e., ifthe S-permutability of # in K and of K in G
always imply that H is S-permutable in &, then & is called a PST-group. Now it
was shown by Kegel [1] that an S-permutable subgroup of a finite group is subnormal.
From this it follows casily that a finite group is a PST-group if and only il every sub-
normal subgroup is S-permutable.

In recent years there has been an upsurge of interest in finite PST-groups (see |2~
9]). For example, Agrawal [2] characterized finite soluble PST-groups, proving the
following basic result,

Theorem. A finite group G is a sofuble PST-group if and only if it has an
abelian normal subgroup L of odd order such thar G [L is nilpotent,  wi(L)[
M w(GILY is empty, and elements of G induce power automorphisms in L.

Notice the consequence:  all finite soluble PST-groups are supersoluble. The
structure of finite insoluble PST-groups has recently been described in Robinson [9].
Also, in [4] Ballester-Bolinches et al, gave an interesting property of a finite PST-
group G: the p-chief factors occuring below G are G -isomorphic. as are those
oceuring above G

Qur aim in the present work is o determine the minimal non-PST-groups which
are locally finite. The motivation for investigating such minimal classes is that detailed
knowledge of groups that just fail io have a group theoretic property is likely to give
some insight into just what makes a group have a property. The minimal classes have
been determined for a number of properties, for example T, the property that nor-
mality is transitive [10].

It turns out that all the locally finite, minimal non-PST-groups are finite, and they
fall into five distinet types, as delineated below.

Typel. Let p and g be primes such that p=1 (mod g’y where g/ >1. Let i
be the least positive primitive g/th root of unity modulo p. Put j=1+kg' ™' where
D<=k <g. Deline

G|=xD€A

where X ={x} has order g7 with r2 f, A={a. b} isclementary abelian of order

pl, and a*=a', b* =b".
Type Il Let p and g be distinct primes such that p#1 (modg). Let z bea
primitive g-th root of unity modulo p and denote by F the field Z,(z). Define

G, = XwF'
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where X =(x} hasorder g"=1 and x actson F* via multiplication by z.
Type lIl. Let p and g be primes such that p=1 (mod g), and write 4/ for the
highest power of ¢ dividing p—1. Let A be an clememary abelian p-group with

basis feg. e, .... a, i} andlet X ={x} haveorder g” where r>f. Set i equal to
the least positive primitive gf-th root of unily modulo p. Define
G_; = {T} w A

where o =, for 0Si<g-1 and a;_, = ajy.

TypelV. G, =XwQ where € is a quaternion group of order 8, X ={x% has
order 3" and x permuites cyclically the three subgroups of @0 with order 4.

Type V. Let poand g be distinet primes such that the exponent of p modulo g
is even, say 2o, Let P obe a (non-abelian) special p-group of rank 2m which can be
generated by clements of order p. Take X ={x} o have order g7 =1 and let x
induce an automorphism in P such that P/P° is a simple Z ,X -module and
[P’ X]=1. Define

Gg = X P

Our main conclusion is the following theorem.

Theorem 1. The locally finite, minimal won-PST-groups are precisely the groups
af Types 1 10 V.

We shall make some commenis on the classification. First it is casy to check that
each of the five types of group is 2-generator and nilpotent-by-cyelic, and involves just
twao primes in its order. On the basis of this observation we can establish:

Corallary. Let G be a locally finite group such that each  2-generator, nilpe-
tene-by-cvelic subgroup with arvder divisible by twe primes is a PST -group.  Then
G oisa PST-group.

For il & is finite but non-PST, it must contain a minimal non-PST-subgroup,
which is impossible by the preceding remark. So & is infinite and every finite sub-
group is PST, whenee G is PST by Proposition | below. More generally, Theorem
I can be used o establish sufficient conditions for a finite group to be a soluble PST-
group: lor example, the results in | 7], Theorem C can be proved in this manner.

The proof of Theorem | provides additional sriuctural information about the gro-
ups of Type V. namely

|P] = p™.
In addition a seheme for constructing all groups of Type V is given in Section 6 below.

Finally, it is a routine matter to verifly with the aid ol Agrawal’s theorem thal any
group of Types 1=V is a minimal non-PST-group, We therefore concentrate on
demonstrating that only this groups can arise.

Naoration: m(G) — the set of primes dividing the orders of elements of G,
Syl (G) — the set of Sylow p-subgroups of G, @u{G) — the limit of the lower
central series of a finite group G.

2. Finiteness of the groups. The first step in the prool of Theorem | is 1o show
that a locally finite, minimal non-PST-group 15 Oinite.  This is an immediate con-
sequence of the following result.

Proposition 1. Let G be a locally finite group in which every finite subgroup is
a PST-group. Then the following hold.

(iy There is an abelian normal subgrowp L comaining ne invelutions such thar
GHL is lecally nilpotemt, miLYOR(GH LY is empiv, and elements of G induce
preewer automorphisms in L.

(i1} The serial subgroups and the S-permutable subgroups of G are the same,
Henee G isa PST-group.
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, Jbgring the proof we will make use of an auxiliary result (cf. [11], proposition
3.10).

Lemma 1. Let G be a locally finite group with an abelian normal subgroup L
such that G/ L is locally nilpotent and n(L)\m(G/L)=8. Assume rthat
elements of G induce power awtomorphisms in L. If L aG, then

Syl,(G/N) = {PN/N| PeSyl,(G)}

Sfor all primes p.

Proof. We may assume that Q,(G)=1, sothat pen(l). Pu C=CglL).
Then G/C, being a torsion group of power automorphisms of L, is finite. Also,
since C=Lx0g 0, (C) and O, p(C) is locally nilpotent, we see that C isa
p-group. Hence Sylow p-subgroups of G are finite.

Let PeSyl,(G): then PN/N is contained in some F/NeSyl,(G/N) and
B /N isfinite. Hence B = FN where F is a finite subgroup containing P. Clearly
| F: P| isa p"-number, as must be |F : PN|. Therefore A = PN.

Conversely, let Q/N e Syl (G/N). Since Q/N isfinite, O=FN with F afi-
nite subgroup. Since F/FNN isa p-group, F= P(FNN) for some P e SylpG).
Thus Q=FN<PN and Q= PN.

Proof of Proposition 1. First we show that finite subgroups of & are soluble. In-
deed suppose that this is false and let F be a smallest insoluble finite subgroup. Every
proper subgroup of F is a soluble PST-group and hence is supersoluble. It now

follows from results of Doerk [12] that F is soluble.
MNext write

L= |Jva(h)

where the union is formed over all finite subgroups F of G. By Agrawal's theorem
each v.(F) is abelian of odd order. If K and F are finite subgroups,
F={(R,FE} is afinite soluble PST-group and y._.(F)y.(Rlcy.(Fic L. This
implies that L is an abelian subgroup containing no involutions. In addition La@
and G /L is locally nilpotent, being the union of all FL/L with F finite.

Let aelL, andsupposethat x€G isa g-clement where g is a prime different
from p. Since F={x,a) isa finite soluble PST-group and {a) is subnormal in F,
we have {a) {x)=(x}{a), which implies that a'* ={a) since &'’ < L,. Therefore
x induces a power automorphism in G,

MNext suppose that pe R(L)NA(G/L), andlet ael and bLeG/L both have
order p. Then there is a finite subgroup F such that be F and aey.(F). Since
YA FNNR{F Iy (F) =2, wemust have &™ e y.(F)< L for some positive p’-
number m. But this implies that be L. Hence miL)Nn(G/L)=E. If now follows
from the previous paragraph that arbitrary elements of &  induce power automor-
phisms in L.

It remains to prove that the serial subgroups and the S-permutable subgroups of G
are one and the same. Suppose that A is serial in G we show H is S-permutable.
Since HML 4G, itis enough by Lemma 1 toprove that H/HML is S-permutable
in GfHMNL: soassume that HML=1. Thus H is locally nilpotent and we can sup-
pose it isa g-group. If gen(l), then H=L and H aG, so all is clear. Assume
that gen(L); we claim that H® isag-group. Indeed,if he H and g,.gs.....8, €
e G, then Felh g.g,.....2,0 is finite and HMF is a subnormal g-subgroup of
F. Hence h' isa g-group, and it follows that HY is a g-group, as is claimed.

Let PeSyl (G). If p=g, then H< P, soassumethat p#g. If pen(L). we
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shall have P<L and PaG. If on the other hand pem(L), then HSPNL=1
since H°P isa {p. q)-group. It follows that HOP is locally nilpotent and
[H.P]=1. Hence H is S-permutable in G.

Conversely, assume that H is an S-permutable subgroup of G. We need to show
that H is serial. As before we may assume H[L=1 and H isa g-group. Now it is
sufficient to deal with the case where m(L) contains a single prime. For suppose this
case has been settled, and let ®(L)={p, p2....]. By Lemma 1 each HL, is §-
permutable, and hence serial, in G, from which it follows that HL, PR
serial in HL, . for i =1, 2 .., since HMNL=1. Therefore H =

= n.=1,z,... Hip,.....p 18serialin G.

Now assume that n(L)={p}. Let QeSyl (G) andput C=Cpy(L); then Q/C
is a finite g-group. MNext QL/L is the unique Sylow g-subgroup of G/L by
Lemma 1, so H= QL. Since C<QL, it follows that HC isa g-group. Also H is
S-permutable, so HQ is a subgroup and |HQ : HC| is a power of g. Consequently
HQ isa g-group and H = Q. It follows that H =0, (G). Since O,(G) is locally
nilpotent, H is serial in G.

3. Finite minimal non-PST-groups. By Proposition 1 locally finite, minimal
non-PST-groups are finite. From now on in the proof of Theorem 1 all groups will
be finite. Initial insight into the structure of the groups is given by the following
lemma.

Lemma 2. Let G be a minimal non-PST-group. Then G has a nontrivial
normal Sylow p-subgroup P for some p. In addition

(i) G=Xuw P where X is a cvelic group of order g™ > | and g is a prime
different from p;

(ii) either P isabelianor [P, XY]=1.

Proof., Assume that & has no nontrivial normal Sylow subgroups and let &, be
a subgroup of & which is minimal with respect to this property. Then & cannot be
supersoluble since otherwise there would be a normal Sylow subgroup associated with
the largest prime divisor of |G, |.

We claim that G, is soluble. If this is not true, &, contains a minimal insoluble
subgroup Ga. But cach proper subgroup of the group G, is supersoluble, so Gy is
soluble. Tt follows that G, must be soluble and thus all of its proper subgroups are
supersoluble. Inshort G, is a minimal nonsupersoluble group. But by another result
of Doerk [ 12] this implies that G, has a nontrivial normal Sylow subgroup, a contra-
diction which establishes our original claim.

We now have l= F= OF[G}, a Sylow p-subgroup, for some prime p. Hence
G=Xw P where X isa pigroup. Suppose that X is not cyclic of prime power
order. If {x} isasubgroup of X with prime power order, then {x, Py= G, so that
{x, P} is asoluble PST-group. It follows that x induces a power automorphism in P,
whence X induces a nontrivial p“-group of power automorphisms in P. By a result of
Huppert [13] this means that P is abelian, and hence G is a PST-group by Agrawal’s

theorem. We conclude that X =(x) where |x|=g">1 and g=#p is a prime.
Finally, assume that [P, X9]=1. Since G =#{xY, P}, the latter is a PST-group

and x" induces a nontrivial p'-power automorphism in P. By [13] again P is
abelian.

We can now complete the classification in the case where P is abelian.

Lemma 3. Let G be a minimal non-PST-group. If G has a nontrivial nor-
mal Sylow p-subgroup P which is abelian, then G is of Type 1, 11 or III.
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Proof. Write G=XwP where X is.a cyclic g-group. Let H be a proper
subgroup of G. Then H isa PST-group, so L=y.(H) is abelian and
r(DNR(H/L)=@. Since L<PNH, it follows that either L=1 or L=PMH.
In the first case M is nilpotent and hence abelian. Otherwise H/L is a cyclic g-
group and elements of H induce power automorphisms in L, which implies that H
isa T-group by a result of Gaschiitz [14]. Therefore every proper subgroup of & isa
T-group and G is a minimal non-T-group. An examination of the list of minimal
non-T-groups in [10] reveals that Types I, 11 and III are the only possibilities for G.

For the remainder of the proof of Theorem 1 we shall assume that P is non-abeli-
an. Also we still have G=XxP, with X={(x) of order ¢">1 and [P,x%]=1.
Write

P = Plo(P)
and regard P asa Z,X -module in the obvious way. The structure of this module is
critical to the investigation; our aim is to prove that it is simple.

4. Simplicity of the module P. Assume that P is not a simple Z,X-module.
Then by Maschke's Theorem P=FR @...®F, where B =PF/@(P) isa simple mo-
dule and n = 2. The first step is to show that n= 2.

Suppose that n = 3. Since [P, X]#1, thereisan i for which [P.X]#1. For
any j#i the subgroup U= XFP, is propersince n = 3. By Agrawal's theorem
T =v.(l/) isabelian. Also T= P and T | since [P.X]=1. Hence U/T isa
p'-group and F P, <T. This shows that each P, is abelian and that x induces a
uniform power automorphism in cach PP, thus [P, X]=1. 1F k=, the same
argument shows that P;F, is abelian. However this implies that P is abelian,

Thus far we have shownthat n=2 and P=F@®P. Also XP and XP, arc
PST-groups. If [B,x]#1, then B is abelian and x induces a p’-power automor-
phismin P. Hence Cp(x)=1, whence [Py, x]=1. It follows that F is abelian

and therefore P is nilpotent of class 2. Inaddition |P|=p since x induces a power
automorphism in £, and for this reason p=1 (mod g). Thus p is certainly odd.

Mext assume that P/ P’ is not an elementary abelian p-group. Then x induces a
p*-power automorphism in  ,(P/P’) and hence in P/ P'. Let aeP; now
va® =G since a®P /P is eyclic. Therefore Xa“ is a PST-group and
consequently x induces a p“-power automorphism in F, a statement which implies
that P is abelian. We conclude that P/ P’ is elementary, so that P'=¢(P) and
|B|=p?. Since P'<Z(P), it follows that [P|=p® and Z(P)=F'.

Now we show this situation to be impossible. Write F ={a, P and B ={(b, P%.
Recall that x induces power automorphisms in F and P, say wue w'  and
ui»u™ respectively. These must agree on P’, so [=m (mod p) and we can
assume |=m. Hence [a.b) = [a b = [a',b'], which yields I* =1 (mod p) and
[=1 (mod p). By this contradiction the simplicity of the module P is established.

5. Completion of the proof of Theorem 1. Let & be a minimal non-PST-group
with G= X P, X ={(x) oforder ¢" =1 and P=0,(G) non-abelian. It is known
that

P = Plo(P)
is a simple Z,X-module. A sequence of assertions about G will be proved, culmina-

ting in the proof of Theorem 1.
(1) g is odd
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Forif g=2, then [P, x*]=1 by Lemma 2, which implies that |P|=p and P is
abelian.

(i) P isaspecial p-group. Also P=[P,x] and [P, x]=1.

If P/P" is not elementary abelian, x induces a p’-power automorphism in
€,(P/P") and hence in P/ P, The simplicity of the module P = P/@(P) implies
that P, and hence P, is cyclic. Therefore P/ P’ musi be elementary and

PPy =P
Since x induces a power automorphism in P’, we have [P’ [P.x]]=1. In addition,
P=[P,x] P since P isasimple Z,X-module, so P=[P,x]. Hence [P’ P]=1
and P is nilpotent of class 2. Thus P < Z(P), sothat P'=Z(P). Clearly P isa
special p-group,

If [P,x]#1, then x induces a power automorphism in P of order g. This im-
plies that p=1 (mod g). which leads 1o the contradiction [Fl: p. Therefore
[F, x])=1].

(i) If p isodd, P'=1. If p=2, then P'=).

Suppose first that p is odd: then (ab)" =a”b"” since P has class 2 and
(P)" =1. Therefore arsa” isan X-operator homomorphism o: P— P’ and
P'<Ker(w)aG. Thus Ker(a)=P or P’ Since [P, X]=1, the latter case cannot
occur. Hence P" =1, If p=2. the same argument for the map a— a® shows that

Pl=1

(iv) If p=2 and P cannor be generated by involutions, then P is a guarer-
mion group of order 8, g =3 and G s af Tyvpe V.

Suppose first that ae P\ P’ has order 2. Then P= a®P’, whence P=a% and
P is generated by involutions. Hence every element of P\ P’ has order 4.

Let aePVP', sothat a has order 4 and a’ & P’. Observe that [a, x]e P’
since otherwise [P,x]<P. Put U = {a,a') = {a.[a, x]). Since a® =l[r12]'T =
= (a*)?, we have |U|<8. Also |=[a’ x]=[a, x)"[a.x), so [a x]"=[a x]"".
Now [a, x]* #1 because [a, x]& P". Hence U/ is a quaternion group of order 8 and
[a.x)* =a® =z, say.

Mext we have

[a.a] = [a.[a.x] = [a.x) =z,
and in the same way [a.a **]=z. Hence

(aa*a”’ Y = a*(a"Y(a*’ Y[a". al[la* alla*’a’] = * = 1.

Therefore aa*a®™ e P’ and a* eUP’. It follows that UP’ is X-invariant. Thus
P=UP" and P=U is quaternion of order 8. Clearly ¢ =3 and G is of Type IV.
From now on it will be assumed that P is generated by elements of order p.

(vl dimzr{F} is even.
Suppose this is false and let & be a counterexample of smallest order. Then

|P’|# p since otherwise P is extra-special, when dim(F) is known to be even.
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Hence there is a proper nontrivial subgroup Z of P’. Of course Z a G since
[P, X]=1.

Put Gi=G/Z. Il G, isa PST-group. x will induce a p’-power automorphism
in P/Z, and hence in P/ P’, which is impossible. Consequently, &, 15 a minimal
non-PST-group. Clearly O,(G))=P/Z, and Z(PIZy=P'|Z since otherwise
P! Z would be abelian. By minimality of |G| we deduce that dim(P) is even.

From now on we shall write

dim(P) = 2m.

(vi) The exponent of p module g equals 2m.

This is because P, being a nontrivial simple Z,( X/ X")-module, has dimension
equal to the exponent of p modulo g.

(vii) |P’'| s p™.

Choose a basis {a,,....d,} of P and write @ =a,P". Then P’ is generated
by the elements [a;, a;], i<j=1.2,...,2m. Let M denote the Schur multiplicator
of P. Thus

M= FaAP,
the exterior square, which has the basis {@ ~&; |l i< j=1.2.,..., 2m}. Further there is
a surjective lingar map

0: Mo P

in which (@A b)8=[a.b] where @=aP’ and b =bP" arein P. Now M isan
X-module via the diagonal action (@ AB)-x=a"Ab", and 0 isa Z ,X -module ho-
momorphism. Since P is a trivial Z_ X-module, [M, X]<Ker(8). Now M is
completely reducible, so

M= [MX]® MY,

and M¥ maps homomorphically onte P". It is therefore sufficient 1o show that
dim (M%) < m. This will follow from the following result.

Proposition 2. The multiplicator M of F is the direct sum of m—1 newtri-
vial simple E‘,{Xfx*"}-umdu!'ﬂ'. each of dimension 2m, and m copies of the
trivial module Z,. Thus dim (M'\'} =m.

Proaf. Let x* denote the linear operator induced in P by x and let f be its
minimum polynomial. Since P is a simple module, f is irreducible and its degree is
2m. The roots of f, which are all different, are written o), ....d5,,. Let C be the
matrix representing x* with respect to some ordered basis of P. Then C is similar
over some extension field to the diagonal matrix

oy (] 0

i s 2 W
D =

i o s A

say D=U"'CU. The linear operator induced in M= P A P by x° is represented by
C a C. the exterior square of C. Also
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UWAY(CACNU ALY = (U'CYAU™'CUY = DA D,

2
and DA D isthe [ ;"J-squn.rc matrix

dds, 0 .. 0
0 dady ... 0
[ S CREC O S A

From this it follows that dim(fr:fx] equals the number of pairs of inverse roois
(d;, d;) where d; = d”' and i < j. The mapping uw—> w isan automorphism of
the splitting field of f, so it permutes the roots of f. Since p™ = -1 (mod g), it fol-

lows that the roots of f fall inte m pairs of inverses. Therefore dim(.‘d’x} =m.
Finally. the number of nontrivial simple summands in the didect decomposition of

M into simple modules is
[[2;]- m]/zm =m=1

since each nontrivial simple E._,,I[Xf X1)-module has dimension 2m. It now follows
that & is of Type V and this completes the proof of Theorem 1.

6. Consrtucting the groups of Type V. We now show to construct explicitly all
the minimal non-PST-groups of Type V. Choose distinct primes p and g such that
the exponent of p modulo g is even, say 2m. Let [ be an irreducible divisor of the
cyclotomic polynomial @, eZ [¢], and write

f=r" e f ™ bt firt
Mexi form the special p-group
Po = (ag.ay..., dapey | @] =lapajuag)=1, i j k=1,2,...,2m—1).

Thus Py=M(P/F). Let X={x) haveorder g" >1.

Al this point a distinction between the cases p=2 and p odd becomes necessery.
First let p be odd. Then we can allow x o acton P as an automorphism of order g
where

al =ay, 0=si<2Zm=-1 and a3, = aa‘r"al"‘r' ...a}ﬁ:‘l".

Because B =1, this is automorphism. Note that Fy /P’ is a simple Z_X-module
since [ s irreducible. Now form

A =R /R X]
Then By =Z(R)=F /[R, X], which has dimension m by Proposition 2.

Choose a subgroup K such that [.ﬁ';. X]=sK<F and pt P=F /K. Then
define

G=XmP
which is a minimal non-P5T-group with order
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LT

P g :
[K' [Pﬂrxll

Now let p=2. While we would like x to acton F, by the same rule as above,
this may not be an automorphism, so another approach is required. Let F; be the free
nilpotent group of class 2 with basis {ag.a.....a5,_;}. Anautomorphism x of B
is defined by

af =ayy for 0Zi<2m-1, af,, =affal.. a{":u‘:_'

Mow add the relations

ar.z =1 and ((ﬂ"r“a’rl . J"-u I-} ]IJ = |,

2m-1

for i=0,1,....2m~1 and j=1,2,...,2¢-1, 1o get aspecial 2-group P,. Choose
asubgroup K such that [P, x]SK<B. Put P=B/K andlet G =X P where

X ={x) hasorder ¢">1. Then & isa minimal non-PST-group.

7. Minimal non-PT-groups. A group G is called a PT-group if H permut-
able in K and K permutable in &  always imply that & is permutable in &, For
finite groups this is equivalent to all the subnormal subgroups being permutable. The
structure of finite PT-groups has been studied intensively, in the soluble case by
Zacher [15] and in general by Robinson [9]. The minimal non-PT-groups which are
locally finite can be determined with the aid of Theorem 1. The definitive result is the
following theorem.

Theorem 2. The locally finite, minimal non-PT-groups are the minimal non-
PST-groups of Tvpes 1 -1V, together with the minimal nonmodular p-groups.

We remark that the minimal nonmodular p-groups were determined by Napolitani
[16] and fall into eleven classes. Two general properties of PT-groups, which may be
of independent interest, precede the proof.

Lemmad. A group G is a PT-group if and only if every ascendant subgroup is
permutable.

Proaf. In the first place, by a theorem of Stonehewer [17] permutable subgroups
are always ascendant, and so the sufficiency of the condition follows.

Conversely let & be a PT-group and H an ascendant subgroup of &, with an
ascending series

H = HﬂdH|d...HT = G.-

Should H not be permutable in ¢, there is a least ordinal o for wich H is not
permutable in Hy. If o is not a limit ordinal, then H is permutable in H,_, and
Hy | 94 Hy. Hence H is permutable in  H,. By this contradiction « is a limil
ordinal. Let xe H,: then xe H|} where B <o, and H is permutable in Hg.
Therefore H{x}={x}H and H is permutable in H,,.

Lemma 5. The property PT is a local property of groups.

Proof. Suppose that & is locally a PT-group, but it is not a PT-group. By
Lemma 4 there is an ascendant subgroup A which is not permutable in &. Let
he H and ge . Then there is a PT-subgroup F containing & and g. Now
HMF is ascendant in F, so Lemma 4 may be applied to show that HMF s
permutable in F. Hence hge(HNFYg)={(g}(HNF)g{g)H. It follows that
Hi{gy={ghH and H is permutable in G.

Proof of Theorem 2. Let & be a locally finite, minimal non-PT-group. It fol-
lows immediately from Lemma 5 that & must be finite. Also G is soluble: for
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otherwise it has a minimal insoluble subgroup and all its subgroups, being soluble PT-
groups, are supersoluble, which is impossible,

If G is nota PST-group, then it is minimal non-PST-group and must be on our list

of groups. Type V can be excluded since the subgroup P is not modular. However
Types [-TV qualify.

MNow assume that @ isa PST-group. Then & =X = L where X is nilpotent, L is

abelian, m(L)R(X) =03, and elemenis of X induce power automorphisms in L. If
L=1, then & is nilpotent and hence is a minimal nonmodular p-group. If L # 1,
then X is modular and G is a PT-group by [15). The proof of Theorem 2 is now
complete.
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