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We say that 2 is a ring with duality for simple modules, or simply a D50 -ring, if Tor each simple right
(el A -module &, the dual module U7 s a simple lelt (right) A-module.  We prove that a semi-
perleet ring is a DSA -ring if and only o i admits o Nakayama permotation. We introduce the notion of
a monomial ideal of 3 semi-perfect ring and study the structure of the hereditary semi-perlect rings with
mnomial ideals. We consider perfect rings with monomial socles.
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1. Introduction. The class of guasi-Frobenius rings, introduced by T. Nakayama in
[1, 2], is one of the most interesting and intensively studied classes of artinian rings.
Onc of the most significant results on guasi-Frobenius rings is the theorem of C. Faith
and E. A. Walker (see, for example, [3]), which says that a ring A is quasi-Frobenius
il and only if every projective right A-module is injective. Quasi-Frobenius rings have
many inleresting propertics, in particular, an artinian ring A is quasi-Frobenius if and
only if A isaring with duality for simple modules (sce [4], Theorem 58.6), The key
coneept in the elassical definition of quasi-Frobenius rings, given by T, Nakayama, is a
permutation of indecomposable projective modules, which is natural to call the
Nakayvema peronitation (sce [5-T]).

The starting point of this article is the Nakayama's definition of guasi-Frobenius
rings (Definition 2.1) and the aim is o explore it in a somewhat “economic™ way,
which means that we avoid the interaction between projectivity and injectivity.
Morcover, the notion of injectivity is not used at all in this work.

In Section 2 the quasi-Frobenius rings are defined and several examples are given.
In Section 3 we give some basic facts about semi-perfeet rings including an casy
consequence of the Wedderburn — Artin Theorem, the Lemma on annihilation of
simple modules, which is a key working ool throughout the paper.  In Section 4 we
introduce the notion of a monomial ideal of o semi-perfect ring, give a result on
hereditary rings with monomial ideals and prove that the socle of a quasi-Frobenius
ring is monomial (Theorem 4.2). Secction 5 is dedicated o the study of socles (using
the Osofsky’s Lemma [8]) of perfect rings, in particular, perfeet rings admitting a
MNakayama permutation are considered (Theorem 5.2).  In Scction & we characterize
semi-perfect rings with duality for simple modules (Theorem 6.1).

2. Quasi-Frobenius rings. Let A be a two-sided artinian ring and % be its
Jacohson radical. For a (right) A-module M we denote by M" the direct sum of n

copics of M andweset M" =0, Then 4 ean be represented as a direet sum of right
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ideals: 4 = " @...® B, where H,..., F, are pairwise non-isomorphic
indecomposable right A -modules, which are called the principal right A-modules.
Set Uy=EBJ/ER, i=1,...,5 Itis well-known that F,..., F, represent up to
isomorphism all indecomposable projective A -modules, while U, ..., U, form a
representative set of isomorphism classes of all simple right A-modules. Let M be a
right A-module and & be a left  A-module. We set topM = M/MRE and wphN =
= N/RN. We denote by socM (respectively socN) the largest semi-simple right
(respectively left) submodule of M (respectively N). Since A is artinian, soc exists
for all A-modules. Let 1= + ...+ f, be a decomposition of the identity element of
A into a sum of idempotents such that fA= P%, i=1,...,s. Then Af, =0,
where (y,..., (2, are the pairwise non-isomorphic indecomposable projective left A -
modules (the principal left A-modules). Set A ;; =j,-Hj"J-. i, j=1,...,5 Then A
has the following canenical Peirce decomposition:

-;
a= &4, (1)
i, jml

Denote by R, the radical of 4;;, i = 1,...,5 Obviously, A;; is artinian. Since

Hom (P, P) = A ;, then A;; R if i #j. The radical R of A has the following
Peirce decomposition:

i j=

R = égﬂg, @)

where f;Rf;=R; and f;Rf; =4, i#j, i=1,...,5

We recall now the classical definition of Frobenius and quasi-Frobenius rings as
given by T. Makayama (sce [2, p. 8], [3], Section 13.4).

Definition 2.1. A mwo-sided artinian ring A is called guasi-Frobenius, if there
exists @ permutation v of {1,2,...,5} such that for each k=1, ..., 5 we have:

(qf;) soc Py = top Py
(qfz) soc @y = topQy.

A quasi-Frobenius ring A is called Frobenius, if n,=n; forall i=1,..., 5.

This permutation v is called the Makayama permuwation of A. Clearly, v is
determined up to conjugation in the symmetric group on s letiers, and conjugations
correspond to renumberings of the principal modules Py, ..., P,

We construct now some examples of quasi-Frobenius rings. Recall that a local ring
O with non-zero unique maximal right ideal M is called a discrete valuation ring, if it
has no zero divisors, the right ideals of O form the unique chain:

OOMIMIS...oM"D...,
and, moreover, this chain is also the unique chain of left ideals of A. Then, obviously,

O is noetherian, but not artinian, all powers of M are distinct and ﬂ:;l At =0,

Moreover, M is principal as a right (left) ideal.
Example 2.1. Denote by # (O} the ring of all 5 x 5 matrices of the following
form:
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c o - Q0
0 .« O
o= (0)= : K, .
M o o
It is casily secn that the radical & of H, (0) is
(M O - O
M M . 0
ﬁ' - = = e H
M M - M
and
s & .. 0
3 oM M - O
K= : . " .
\ M2 M . M

The principal right modules of # are the “row-ideals™ of H and the submodules of
cach of them form a chain. In particular, the submodules of the “first-row-ideal” form
the following chain:

0 0 e g VI |
= e B o S
O 0 - 0 1 R

It is casy 1o sce that each other row-ideal of # is isomorphic to a submodule of the
above module. In a similar fashion, the principal left #-modules are the column-

ideals, whose submodules form corresponding chains. Thus, #  is a serial ring in the
sense of [9,p. 224]. Let B, ..., F, be the principal right modules of the quotient ring

A= H\,(O}IE&: and @,,..., @, be the principal left A-modules numbered such that
F=e;A, Q;=R¢y, i =1,..,5 where e;; denote the clementary s x 5 matrix
whose (i, j)'s entry is 1 and all other entries are zero. Then the submodules of every
P;, O, form finite chains, and a direct verification shows that
socP; = topP;, socP; = wply,...,s0cP, = topP,
and
top(; = soc(ly, topQs = soc(,,...,topQ, = soc(,.

Mareover, each of these modules is a one-dimensional vector space over O/M.
Hence, A is a quasi-Frobenius ring whose Nakayama permutation is (1, 2,..., s).

More in general, the quotient ring A = # (0)/R™, m= 2, is a quasi-Frobenius

ring whose Nakayama permutation is (1, 2,... .s}’"". It follows, in particular, that
the Nakayama permutation of A is identical if and only if m = 1{mod 5).
Example 2.2. Let B, be the ring of 25x 25 matrices of the form:
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'lej — o
X H

It is easily seen that, the Jacobson radical of 85, is [

[ ms ﬁsﬂ]
J = :
ﬂ'ﬁl Ri

A direct verification shows that the quotient ring A = B, [ /J is a quasi-Frobenius ring
whose Nakayama permutation is

V= (1s+1¥25+2)...(5 25).

N

X ] Consider the ideal
®

Remark 2.1. It can be verified that B, /J is semi-distributive (see [10] for the
definition).

Example 2.3. Let G be a finite group and K be a ficld. The group algebra KG
is a well-known example of a quasi-Frobenius ring [3]. By a result of D. 5. Passman
[11, p. 62] {(Theorem 4.11), the Nakayama permutation of K& is identical. 1f A isa
ring and & is a group, then it follows from results of [ G, Connell [12] that AG s
quasi-Frobenius if and only if A is quasi-Frobenius and ¢ is finite.

Example 2.4. Let K be a field and § be a semigroup such that the semigroup
algebra K5 is quasi-Frobenius. Since K& is artinian, it follows by a result of
E. Zelmanov [13] that § is finite. If S is a semi-simple semigroup, a result of
J. Okninski [14, p. 196] says that K5 15 quasi-Frobenius if and only if & is a finite
strongly p-semi-simple semigroup, where p = char K. In particular, the semigroup
algebra KS of an inverse semigroup 8 is quasi-Frobenius if and only if & is finite.

3. Simple modules over semi-perfect rings and Peirce decomposition.  Scmi-
perfect rings were introduced by H. Bass in 1960, The basic facts about these rings can
be found in [3, 9, 15]. In this section we denote by A a semi-perfect ring and denote
by ® =R(A) its Jacobson radical. Write 4 = A/% = M, (D)) %..x M, (D),
where D, = L...,s arc division rings. Every simplc A-module is, obviously,
simple as an A -module. Let 1 = fl * ... j'; be a decompositionof 1e A intoa
sum of central idempotents suchthat fA = A f = M, (D;), i=1,...,s and 1=
= fy +... +f; be the corresponding “lifted” decomposition, i. e. f; f; =8, fi, fi=fi+
+®K,i=1,...,5 where 5” is the Kronecker delta. The existence of such “lifting™
follows from [15] (Chapter 3). We write A = U" @ ...® U!", where U,,..., U,
are the pairwise non-isomorphic simple right A-modules. Each U; can be idemified
with the set of all strings (&y,..., @, ), @y, ..., &, € D;. Similarly, a=wv"
BB s @ V™, where V,,...,V, arethe pairwise non-isomorphic simple left A-

modules, and each V; can be identified with the sct of all columns (e, ..., o, L

@y, oy, € Dy Anidempotent ¢ € A is said to be local if ¢Ae is a local ring.
Observe that two principal A-modules P and P’ arc isomorphic if and only if
top P; =tp P

The next two results are well-known,

Theorem 3.1 [16). A ring A is semi-perfect if and only if the identity 1 of A
can be decomposed inte a sum of pairwise orthogonal local idempotents.
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QUASI-FROBENIUS RINGS AND NAKAYAMA PERMUTATIONS ... 923

Theorem 3.2 [15]. Ler 1 =¢,+...+¢€, =h; +...+h, be two decompositions
aof 1€ A into a sum of pairwise orthogonal local idempotents. Then m = n and
there exists an invertible element a € A and a permutation i — o (i) such that
e =ahu“-,a'1 foreach i=1,...,n

We shall need also the following easy fact.

Lemma 3.1. For every simple right A-module U; and for each f; we have
U; f; = ij Us 6, j =L ..., 5. Similarly, for every simple left A-module V; and for
each f, [Vi=b; Vi, hj=1..,s

Proof. Go modulo & and apply the Wedderburn — Artin Theorem.
This lemma will be a uscful ol in our further considerations and we shall refer to

it as to Lemma on annihilation of simple modules. An idempotent f € A, which is
central modulo K, shall be called minimal modulo R if f can not be decomposed
into a sum of two orthogonal idempotents, which are central modulo %. For two
idempotents ¢ and g of A weshall wrile ee g, if g=e+¢’, where ee’=e'e = 0.
Clearly, ¢” is also an idempotent in A,

Theorem 3.3, Let 1 =f;+...+f, =g+ ... + g, be two decompositions of
1 A into a sum of pairwise orthogonal idempotems, which are minimal central
module K . Then s =t and there exist an invertible element ae€ A and a
permutation { — (i) of {1,...,5} such that f; =ag“”a"1 Joreach i=1,...,s.

Proof. Applying the Wedderburn — Artin Theorem to A, we get immediately
that s=+ Let f;=el”? +...+ 4-::] be a decomposition of f; into a sum of pairwise

orthogonal local idempotents. Then, obviously, Ul 20 for k=1,...,n,. It
follows from the Lemma on annihilation of simple modules that Ujgg,, = U; for
some gq;y and, moreover, Ujg; =0 if j # o(i). Renumber the idempotents g, ...
woo @, suchthat Ug, =U;, i =1,...,5 Take a decomposition g; = () oy ..+ .‘I:'::I
into of pairwise orthogonal local idempotents. Then we obtain two decompositions of
1e 4, which satisfy the assumptions of Theorem 3.2. Hence, there exists a

conjugating element a € A which transforms one decomposition into the other, up o
a permutation. [t follows from our numeration of idempotents g,, ... , g, that

af W b2 Yt = [’} for cach i =1,...,s and, consequently,

ag.-u_l =f, i=kL..,s

Theorem 3.3 is proved.

Consider A= @], £.A. Thenclearly f,A= P", where P; is an indecomposable
projective  A-module whose multiplicity in the right regular module A4 is ;.
Moreover, P;/ PR =U;, i=1,...,s Similarly, A 4 = &, A f;, where A f;= Q"
and each (J; is an indecomposable projective left A-module with multiplicity »; in
the left regular module 5. We also have Q,/RQ; =V, i=1..,5 Set A, =
=f:Af;. Then

A= E-ﬂr"l ﬁ_= éﬂ_f'! {3}
ije1 Y ij=t Y

where R ;;=f;Rf; =A,; for i#j and K ; is the Jacobson radical of &;;, i=1..., s
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Such two-sided Peirce decompositions of A and K shall be called canonical. It

follows from Theorem 3.3 that every other canonical Peirce decomposition of A can
be obtained from

An A - Ay

Ay Ap o Ay
As 'ﬂsl ﬁ“
by a simultaneous permutation of lines and columns and the substitution of all Peirce
components A ;; by af;a" .

4. Monomial ideals. Let 1=e;+...+e, be a decomposition of 1 into a sum of
pairwise orthogonal idempotents. By an ideal we mean a two-sided idcal. For an ideal
I of A the abelian group e fe;, i,j=1..,n, obviously liesin [, and [ =
= ﬁ:_f:,fij, is a decomposition of [ into a direct sum of abelian subgroups. Such

decomposition is called the mo-sided Peirce decomposition of [ corresponding to
1 =¢y+...+e, Ithasanatural matrix form:

Iy o Iy

In In = I3

lilJ'I'I "r.rrz e Inm

If J=@&j;.,7; isalsoan ideal, then
Inttn Iag+dh: —~ Intin,
{ag+ 9 Tan+Fan oo Ia,+7
[ 21.21 ntla P.:Zm‘

‘iﬂ]"'jml ImZ"'jn.‘_ 'Imf"'jnn

and each Peirce component (17);; of the product 17 is given by
{Ij}a'j - zjmjgrs [ I TR &
knul

50 that addition and multiplication of elements from f and § can be donc by the
addition and multiplication of corresponding matrices.

Let A be asemi-perfect ringand 1 =f, + ...+ f, be a canonical decomposition of
1€ A into a sum of pairwise orthogonal idempotents. Then I = @} [, with [;; =
=j",ffj, i,j=1,...,5 iscalled the canonical Peirce decomposition of I, As above,
it is easily seen that one canonical Peirce decomposition of [ can be obtained from
another one by a simultancous permutation of lines and columns and the substitution of
each Peirce component [;; by r:-'.f,-ju_].

Definition 4.1. An ideal I of a semi-perfect ring A shall be called monomial

if each line and each column of a canonical Peirce decomposition of [ contains
exactly ene non-zere Peirce component,

If T is a monomial ideal, then there exists a permutation v — v(i) of {1,...,5}
such that [, = 0. Clearly, v is determined up to conjugation in the symmeltric

groupon 5 letters. We denote this permutation by v(/[).
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QUASI-FROBENIUS RINGS AND NAKAYAMA PERMUTATIONS ... 25

Lemma 4.1. Let A be a semi-perfect ring. If 1 is a monomial ideal of A
then each canonical Peirce component of [ is an ideal in A.

Preof. Let 1=f,+...+f, beacanonical decompositionof 1€ A into a sum of
pairwise orthogonal idempotents. Write v = v([f), then [T = @}‘Ij_Lj';I foriye
Obviously fil fuy A fy =0 if k= v(i). Moreover, fiI fynfunAhic fI1f
which is non-zero if and only if [=w(i), as I is monomial. Similarly,
LA L fiI fyiny #0 ifand only if k=1=i It follows that f£If,, isanidealin A for
each i=1,...,. A

Theorem 4.1. Let A be a right hereditary semi-perfect ring. Then the following
conditions are equivalent:

(a) A contains a monomial ideal,

(b) A is isomorphic to a finite direct product of the rings M, (B) where all B;
are local hereditary domains,

Morcover, if a ring A is semi-distributive [10], then all rings B; are either
division rings or diserete valuation rings.

Proaf, (b) = (a). Obvious,

(a) = (b). Let A be an indecomposable ring [17, p. 73]. By [17] (Proposition
6.4.3) we obtain that A is a piecewise domain (sce [17], § 6.4). Every semi-perfect
piecewise domain has a triangular Peirce decomposition sec [18) (§ 3). S0 A is a
prime right hereditary semi-perfect ring. Since A contains a monomial ideal then A
=P" and A = M, (EndaqP), where B =EndaP is a local right hereditary domain.

Ifaring A issemi-distributive, then B is a right Noetherian right hereditary local
semi-distributive domain. By [19] (Theorem 3.9) B is either a division ring or a
diserete valuation ring.

Lemma 4.2, Ler A be a semi-perfect ring. Then socflg coincides with the
left annihilator [{R) of & = R(A), whereas soc A coincides with the right
annihilator r(&). In particular, soc A and socAq are two-sided ideals,

Proof. If U is a simple right A-module, then, obviously, UX =0 and,
consequently, socf g < I(R). On the other hand, the equality [{R)X =0 implies
that /(&) is a semi-simple right A-module, so it has 10 be contained in the right socle
of A, hence, /(%) =s0cAq. Similarly, r(®)=s0ca4. Lemma 4.2 is proved.

The first statement of the next theorem is well known (see [4]), however, we
include a proof in order to show that the whole result is a consequence of the Lemma
on annihilation of simple modules.

Theorem 4.2, Letr A be a guasi-Frobenius ring. Then socaqf = socfAa.
Moreover, 2 = socqA  is a monomial ideal and v(3) coincides with the
Nakayama permuration v(A) of A.

Proof. Denote by Z,; (respectively Z ) the left (respectively right) socle of A. It
follows from the definition of quasi-Frobenius rings and from the Lemma on
annihilation of simple modules that f;Z£, 20 for each i =1,...,s5. Then for every
local idempotent e € f; the set ¢ f,.Z, = eZ, is different from 0. Therefore, the right
ideal eZ; is a non-zero submodule of the principal module P; and, consequently, eZ,
contains soc P;, which implies that £, 2 Z,. Since the Nakayama's definition of
quasi-Frobenius rings is left-right symmetric, it follows that £, 2 2, and thus, Z; =

=Z =5,
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It remains to show that 5 is monomial and v{S)=v(A). Write v=v({A) and
consider the canonical Peirce decomposition of £: 2 = 'E';.j-l FiZ f;. Sinece Agq =
=®_,£A=8_P" wehave that Z = ®_;s0cfA and f;Z = socfA = sockP" .
It follows from Definition 2.1 that soc B = U}, so f,Z2= Uy, and the Lemma
on annihilation of simple modules implics that f,.Zf; =0 ifand only if j#wv(i). Hence
Z is monomial and v{3) coincides with v(A).

5. Socles of perfect rings. The following notion of Socwlar Ring was considered
in [, p. 22.10] (Chapter 22).

Definition 5.1, A ring A is called left (resp. right) socular if every non-zero lefi
{resp. right) A-module has o non-zero socle. A ring which is right and left socular
is called socular.

Definition 5.2 [20]. A ring A ds called right (resp. lefi) perfect if every right
(resp left) A-module has a projective cover. A ring which is righe and left perfect is
called perfect,

The notion of Socular Ring is based on the following Osofsky’s Lemma [8)
(Lemma ).

Lemma 5.1, The foflowing are equivalent:

(i) A isright perfect (A s left perfeet);

(i) AR iy semi-simple artinian and every cyelic left (right) A -module has
e =zerio socle;

(iti) AR is semi-simple artinian and every non-zero right (left) A-module has
ient-zero simple epintorphic image;

(iv) AR is semi-simple artinian and if | H,li' =0 1,....} =K there isan n
suwch that a o oapg=0 (age.oa,=0)

The following proposition follows from Lemma 5.1 (sec also, [Y], Summary,
22110

Propasition 5.1, For a ring A the folfowing conditions are equivalent:

(i} A iv socular:

(i} A is perfect.

In particular, if A is perfect, then soc g 2 0 and soc A 4 2 0. In [20] H. Bass
gave a characterization of perfect rings, which uses the notion of T-nilpotency.

Definition 5.3. A non-zero ideal § of a ring A is called T-nilpotent if for
CVCTY SCGUONCe @, @,y By of elemenes a e 1 there exist positive integers
b and mroswch ther agag_qcoay=0 and ay.o.oa,_ iy, =0

Clearly, any T-nilpotent ideal is nil.

Theorem 5.1 [20]. Fora ring A the following conditions are equivalenr:

(i) A is perfect;

(i) the Jacobson racdical K_of A is T-nilpotent and A 0K is semi-simple.

Now we give an example of a right noctherian serial ring A for which socfl g =
=U,®U,= U3, and socqA=0.

Example 5.1. Let Q be the field of rutional numbers, p be a prime integer, Z,=
={mineQ{mp)=1} Sel

HTF o)™l 5
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QUASI-FROBENIUS RINGS AND NAKAYAMA PERMUTATIONS ... 927

PZ
]

n (5} en(3)

Since A is serial, then if the socle of a principal (left ar right) module P is
different from zero, then soc P has to be simple.

Obviously, PR =(pZ, Q) and PR =0. The submodules P, are P\R/, j=1,
2,..., and (00, Q). The last module is isomorphic to U3. Hence soeflg = U, @
i
@ UE = U}_ '

It is clear that !JE_:[ L :‘:] and Py =(Z,Q) P, =(0,Q). The left

principal A-modules are:

A
In the lefi case RO, = [![I; } and X > = [3] It is clear that the socles of

these modules are zero. Thus, so¢ g2 =10,

Let A beaperfectringand A= BF"@...@P" =" ®...® Q" be
decompositions of A into direct sums of right, respectively, left indecomposable
idcals.

Definition 5.4. We shall say that a perfect ring A admits a Nakayama
permitation. v(A): i = vi{i) of {1,..,s5} if the following conditions are
verified:

(i) soc Py = wp Py

(i) soc Qyie) = wp Qy.

Let A be a perfect ring, which admits a Nakayama permutation v{(A). By (i) the
socle of every principal module is simple and, moreover, two prineipal modules with
isomorphic socles have to be isomorphic. By (ii) the socles of the principal left
modules are also simple.

Theorem 5.2 (Compare with [4], Theorem 58.12). Let A be a perfect ring such
that the socles of all principal right A-modules and of all principal left A -modules
are simple. Suppose furthermore, that if the socles of two principal right - A-modules
P and P’ are isomorphic then P = P°. Then A satisfied the following
conditions:

(i) socHq = soc A =2 and S s a monomial ideal;

(i) A admits a Nakayama permutation v =v(A) with v(A)=v(3Z).

Proof. Let 1= f,+...+f, bea canonical decomposition of 1 & A into a sum of
pairwisc orthogonal idempotentsand f; A= P", i=1,...,5 Set 2, =socAq and
Zy=socaA. The cquality A =A,@ ... @Af, implics that Z; =s0cAf; @ ...
o @socAf, and S f;=socq f, forall i = 1,..., s Similarly, &, =s0cf A ®...
Lo Bsocf A and sz, = mcj}-,ﬂ, j=1,...,5 Ifollows from our hypothesis that
soc Py, .o, 500 P, s a permutation of simple modules U, s wop Py, ..., U, = top P,.

Denote this permutation of {1,...,5} by v,
Forafixed i=1,...,5 and ¢ach local idempotent ¢ € f;, we get by the Lemma on

annihilation of simple modules that S e # 0. Then since soc e is simple, . must
contain socAe. Hence S, f=s0cAf; S, f; forall i=1,...,s which yiclds &, g
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< 5 ,. Similarly, _,F:,-Er f;_,"jE-;, i =1,...,s which implics that Z_ ¢ Z,.
Consequently, 5, =5,

Since &, = Uy, @ ... @ Uy,,, then by the Lemma on annihilation of simple
modules 2, has the following Peirce decomposition: 2, = @, f.2, f;;- Thus 2 =
=2, =5, is a monomial idcal and v(Z) is a Nakayama permutation of A.

6. Semi-perfect rings with duality of simple modules. The basic definitions on
duality of modules can be found in [3] (Chapter 12) and [4] (§ 58).

Let M be an arbitrary right A-module and M = Hom q(M, A q). The abelian
group M’ can be considered as a left A-module if we define (ay)m)=ay(m) for
aeA, meM, ye M.

The left A-module M~ is called dual 1o M.

Similarly, if N isaleft A-module then the abelian group N~ = Hom 4 (N, 24) is
aright A-module if we put (Qaln)=yin)a for ac A, ne N, e N.

Lemma 6.1. Let U (resp. V) be a simple right (resp. left) A-module. Then
A has a right (resp. left) ideal isomorphic to U (resp. V') if and enly if U 20
(resp. v 20)

Proof. Immediately follows from the lemma of Schur.

Definition 6.1. We say that A is a ring with duality for simple modules if for
each simple right A -module the dual module U " s simple and the same holds also
Jor simple left A-modules,

Proposition 6.1, Let A be a semi-perfect ring with duality for simple modules,
and P be a simple projective A-module, Then A = M, (D) x A, where D =
= End P. Conversely, if A = Mﬂ,l (M) where D is a division ring, then U=V
and V' = U, where U is the unique simple A -module and Vs the unigue
simple left A-module.

Proaf, Let R =P, = ¢l where ¢ is a local idempotent of A. Then obviously
Aec B. Therefore the left simple A-module B = V, coincides with Ae. Let A =

=F"@..® P" be acanonical decomposition of A into a sum of principal A-
modules.

Set P'= P"@..@ P". Clearly Homg(P', B") = 0. Suppose, that
Homgq(£", P*) = 0. Then there exists a canonical idempotent f; such that fia f,= 0
and i# 1. Obviously, fiaf,c (f;A) = V. Since fiAf,# 0 then for the simple
left A-module V; we have fi V)=V, and f;V,=V, which contradicts the lemma on
annihilation of simple modules. Hence Homq(F",P*) =0 and A = M, (End P,) x
# A 3. The converse is obvious, Proposition 6.1 is proved.

Let A3 =R"@..®EF" and 534 = " ® ... ® Q" be the canonical
decomposition of a semi-perfect ring A into a dircet sum of principal right (left)
modules.

Definition 6.2. We shall say that for a semi-perfect ring A there exists a
Nakavama permatation v (A) = v:i—=v(i) o {1,....5} if the following
conditions are verified:
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(i) soc Py = top Pygk);

(ii) soc Qyixy = topQy.

Definition 6.3. The next conditions shall be called the Nakayama's conditions for
a semi-perfect ring A:

(ct) the socles of the principal vight and left A-module are simple;

(B) principal modules with isomorphic socles are isomorphic.

We give an example of a commutative local semiprimary ring A whose socle is
simple, such that A is not artinian.

Example 6.1. Let k[x,,x2,...,%,...] be the polynomial ring over a field with
countable number of variables, 7 be the ideal of kfx, x5,...,x,...] generated by
clements: xf, .raf, cen s Jr,;", e AN X X3 =XaXq, XXy =X 3Xg .03 Xy | Xy =
=X, X ety e - Consider the quotient ring A = k|xy, x5, ..., x,,...]1/J. Denote by ay
the image of x x5 in A. Theimagesof 1, x,x3,...,%,,... in A will be denoted
by the same symbols. Clearly, every element from 2 can be written as: = @ -
S+ ogx +o v x + ogag. Observe, that (o x) + .. +ex,Jag =0 and nﬁ =
=0, which implies that r = ¢ x| + ...+ ¢ x4 Cyx, 1% nilpotent and P=0. 1t
immediately implies that & is an infinite dimensional vector space over & with basic
@gs X3 K2y eansd X g «oo therefore the Loewy series of A is:

ﬂ:n?i::ﬂff:ll,

where 9{_: = soe A is a simple module generated by ay,.

Thus, for A there exists a NMakayama permutation which maps 1 into 1 and A
satisfy the Nakayama's conditions. A simple A -module U can be identified with
U=Aa/R and U =Homgq(U,s0cq) isa simple A-module,

Theorem 6.1, Ler A be a semi-perfect ring. Then the following are equivalent:

(1) A is a ring with duality for simple modules,
(2} A admits a Nakayama permutation v{(A);
(3) A satisfies the Nakayama's conditions.

Moreover, it follows from (1), (2), (3) that soc(Aq) = soe(4A) =2 and T
i a meonomial ideal.

The next lemma is essential for the proof of Theorem 6.1 (see [4, p. 395]).

Lemma 6.2, Let ¢ be an fdempotent in a ring A, and let 9 be a two-sided
ideal in A. Then the dual of the left A-module AelTe is isomorphic to the right
A-module er(f).

Observe that the dual of the right A-module A fef is isomorphic to the left A-
module (7 )e.

Mow we are ready to prove Theorem 6.1,

Obviously, we can suppose that A is reduced and indecomposable. Therefore,
every local idempotent is canonical.

(1y=s(2). Let &, =s0c4q and I, =socyf. Since A is semi-perfect then &, =
=I{R) and Z;=r(R). By Lemma 6.1 Z, contains at lcast one copy of cach simple
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A-module U, i=1,...,s and Z; contains at least onc copy of cach simple left A-
module V;, i=1,...,5

Therefore, by the Lemma on annihilation of simple modules, for each canonical
idempotent e, € A we have e #0 and e, 2,20, ’

By Lemma 6.2 the module V. which is dual to V; =Ae, /R e, is of the form:

V. =e,r(R)=e,Z,. Byourassumption V. issimple.

Thus e,2; ce,S, for i = 1,...,s, from which we get 5, — 5 ,. By symmetry
Z & which implies &5,=5_=2Z.

Suppose now that the right module ¢;Z is simple and isomorphic to U,;. Then
e;Z = e Zeyy. Similarly Ze, is a simple left A-module, and, consequently, it
coincides with V;, as ¢,;Ze,;, # (.

Therefore Z = @] ee,, is a monomial ideal with v(Z) = v(A). & is
determined by V; = Uy,

The equivalency of (2) and (3) is obvious,

()= (1). Weshow that &, =5, For each local idempotent e; we have ¢, 3 #
0 and e;2;2e;3,. Therefore ;> Z,. Symmetrically &, > Z,. Hence, &, =
=Zy=2 and e;5 = Doy, = e, By, and by Lemma 6.2 i';-

Ugp=Zewpy=V; for i=1,...,s.

= {‘-'J:.Z' = U“:j}p and
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