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SECTIONS OF ANGLES AND n-TH ROOTS OF NUMBERS
CEIMEHTH K¥TIB I n-TI KOPEHI 3 HHCEJI

It is known since Galois that an algebraic equation can be solved using suitahle w-th roots whenever the
corresponding Galois group is soluble, The obvject of this mote is the construction of real numbers by the
use of #-th pars of suitable angles, and 1o state the necessary and sufficient condition for this 1w be
possible.

Big Canya siaomo, wo anreGpaimne pIsHANNE SO N poie” 23310 30 Q0n0sor oK m-x KOpeiin Wopasy.
koan sinnosiana rpyna Canya € pose’aswow. Mertow sanol cratTi € nolymosa mikcnns Miccn 3a
AOMGMOTOKY F=X YEACTHI BIANGELINE KYTIB T2 GCTANGBACHIE 00X LT | AOCTATHLA ¥ M O06H, KOl
NIE SO A P RO

1. Imtroduction. Geometric constructions by ruler and compass have a long tradition;
also the algebraic condition for a (finite) construction 10 be possible is well known for a
long time. The restriction to these two tools has its reason in their simplicity and
therefore in their reliability. A wol that allows the division of every angle into n equal
parts can — in theory — be constructed as a mechanical device. Of course, every
division of an angle into # equal parts can be executed by giving the cosine function
of the new angle by an algebraic equation referring to the cosine function of the
original angle, and for every # there is a polynomial P, of degree 2 and with
integers as cocfficients such that P (2cos{a)) = cos(nee). In this form the
polynomial P, will always have leading cocfficient 1. The question, put in
“geometric™ terms, then has this form: Which real algebraic nuwmbers can be
constructed by ruler, compass and divider of angles starting from a given real field
F? On the other hand, the “algebraic” form of this question is: Which numbers can
be reached by iterated exiensions of K of the form K|x] where Puix) =k for k
e K and some natural numbers n?

First answers in this direction are known: If the Galois group is a 2-group, ruler and
compass suffice; for the case that ruler, compass, and triscctor (a device allowing the
division of any angle into three parts) are at our disposal, the Galois group must be a
{2, 3 }-group with a condition on the subgroup which is the image of the real subfield
of the splitting field. It will be seen that this is in fact the only condition necded in the
general case.

In order to find a comparatively short formulation for our result, we use the
following notation: An extension L of a field K is called a subrormal extension of
K, if there is a sequence of fields

K= ﬂ]CTlgTzi;...CTF =L

such that T,,, is a normal extension of T; for 0 =i < 5. (By an obvious induction
argument on the length of the series the following can be shown: If M is a normal
extension of K and L is a subnormal extension of K such that K¢ L < M, then
Fix, < Gal(M, K} is a subnormal subgroup of Gal({M, K). This may explain thai
wording.) We will prove the following theorem.

Main Theorem. Let K be a field of real numbers and a a real number which
is algebraic over K, and let N be the smallest normal extension of K that
containg a. Then a can be constructed by a succession of forming (real) square
roots and division of angles if and enly if the following two statements are rue:

(i) Gal(N, K) is soluble;
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(ii) there is a field L of real numbers such that (K, adc L o N and L isa
subnormal extension of K.

The procedure follows mostly the sieps taken in the case of roots, luoking at the
case of cyelic Galois groups first and proceeding by suitable iteration.

2. The primary step. We may restrict ourselves 1o the case of a normal extension
N of degree p, an odd prime, of the real ficld F. We begin with a sitvation most
similar to the division of an angle inw p pans. In particular, we use the identity

cos(P +y) + cos(f—7v) = Zeos(P)eos(y).
We consider first a similar situation.

Lemma 1. Assume thar F is a field of real numbers and N is a normal
extension of F of degree p. Assume further the existence of an element a € N\F
with minimal pelynomial Q(x). Denote the zeros of Q(x) by ag =a,a,a3,...
cos gy in such a way that for some o € Gal(N, F) we have o(a;) =a;,,, where
the ineices are taken modulo p. If 2co8(2n/p)=ce F aml

aj—caj+a;,;=10,

. " :
then the zeros a; are of the form tcos(o + 2in/p), where 2rcos{pa) and 1

belong 1o F. j

Proof. Let & be the p-th root of unity such that § + £~' = ¢. The system of
lincar equations given is solved by the requirement a; = ls‘,‘f +uE™, and the fact that
ag and a are real numbers yield that p is the complex number which is conjugale o

L. If r is the absolute value of A, then A = re™ for suitable @. But then a; =

=2reos(oe + 2jm/p), and il Pg(2Zcos(p)) = 2eos(pp), then :-"{!’P(r'ix} -
- 2cos(pp)) has the zeros a;. The coefficients of this polynomial have to be
contained in F, and only the constant term and the cocfficients of odd powers arc

different from zero. Further, the coefficients of P, arc intcgers. So 1% and

2tPcos(pat) belong to F, the result follows.

We will now gencralize Lemma 1 by deleting the lincar relation among the zeros of
the minimal polynomial. We want o show the following lemma.

Lemma 2. Let p be an odd prime. If N is a normal exiension of degree p o of
the field F of real numbers containing cos(2n/p). For every b e N\F, there is
a linear combination a of the zeros of the minimal polynomial of b over F such
that a and its images wnder powers of © € Gal(N, F) satisfy the equation af
Lemma 1.

Proof. Let by=05b,b,, """’P-1 be the zeros of the minimal polynomial of b,
and assume that they are ordered such that ob; =b,  , where indices arc taken
module p. We have the identity

sin{f + v) + sin(f =v) = 2cos(y)sin(B).

We will use this for ¥y = 2n/p and for multipliecs B of ¥ Let €, =

is a polynomial in cos(y) of
With these identitics it can

= (sin(j7)) (sin(y)) ", Notice that ¢, =0 and that ¢
degree j—1 for j=1,...,(p—1)/2, funher ¢
be shown that

1

el

=l
ag = 2 ¢ub;
j=0

is a collection of elements of the desired nature,
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The attentive reader may have noticed that the element & constructed in Lemma 2
is not said to belong to N\F. If a & F, this clement clearly would not help for our
construction. The following observation allows us o overcome this.

Lemma 3. (A) Lemma | and Lemma 2 remain true if cos(2jn/p) is taken
for cos(2m/p), where je {1, ... (p=-1)/2}

(B) Nor all elements constructed in this way in Lemma 2 belong 10 F.

Proof. Part (A) is true because the proofs given are correspondingly valid for
these cases.

For part (B) we assume the contrary. We aim to show that the element b defined
in Lemma 2 will belong w F  already. We define cf(j, k) to be
(sin( jkm/p))(sin(kn/p))~'. Now we have the following equations, with & = (p —
-1)f2

=1
E‘;’: = Hp.
f=0

[

2 (s Db; = b,)

j=1

]

Iy,

&
2 (s 2)b; = b,_;) =

i=1

&

2 U k)b = by ) = uy,

i=1
s0 that we have &k + 1 lincar equations over F. Obviously wug e F, all other u;
belong to F by our assumption. For given m = 1,... , k the factor e(j, m) diffcrs
from ¢(j, 1) by substitution of cos(2n/p) with cos{2mmn/p), and the lawer is a
polynomial of degree m of the first. 'We consider the system of cquations for k=0,
Arguing as for the Vaudermonde determinant we find that the coefficients on the lefi-
hand of the equations form a lincarly independent set, so all b;— b, ; belong to F,
and, using the element of Gal(N, F) we find that b =by ,=by 1 =by,2=...=by—
—by=b;_—b,. Now using the first equation we have that phye F, a contradiction
o our construction. So not all w,, belong to F; Lemma 2 is proved.

Corollary 1. Assume that the following is true;

(i) N isa field of real numbers,

(i) N is a normal extension of field F oand |N: Fl= p. where p s an odd
prime.

(iii) cos(2n/ple F.

Then there is an extension G of F such that G is a ficld of real mumbers,
|G Fl=2" and N 2 Gleos(eey), cos{ata), ..., con(a, )] with ssrs(p=1)/2
such thar cos(pa e G for all j.

Proof. Let N = Flb| for some eclement b and let ${x) be the minimal
polynomial of a over N, By Lemma | we have &k = (p — 1)/2 many different

constructions of lincar combinations of the roms by =b, b, ..., b, |, namely
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&
w, = ¥ el j,iXbj=b,_)),
j=1

and we find by Lemma 1 that there is an element ¢; for every ¢ such that 4"-2 and

2tf cos(py;) belong o F such that u; = r;eos(y; ) The extension of F by means of
all r; just found leads to the extension . Over ' we have the equations on w; as
well as the given value

p-1
Hp = Z b_‘-
j=0
and the equations found from the above by the use of the galois automorphism:

k
v = 3, ol jiXbj_y = bp_jq).

i=1

Now every b; can be computed from these equations since the system of cocfficients
of the b; is lincarly independent. The numbers s, r will decrease whenever some u;
belongs to F. The proof is completed.

Corollary 2. If N is a real field and a normal extension of degree a prime p
of the field F. Then the elements of N are contained in a ficld reached by almost
(p—1)/2 steps of extensions, each describe by division of an angle imo p  equal

irts.
i Remark. The construction given here may be considercd the analogue of the use
of iterated pure equations (extensions using polynomials x"—a) for the solution by
radicals (see [1, p. 177]).

3. The criterion.

Theorem 1. Let x be a real number which is algebraic over the subficld F of
R. The following statements are equivalent:

(i) x is contained in a subnormal extension § of F which is comained in R,
and the Galois groups for the successive normal extensions taken are cyelic;

(il) x is comained in a subnormal extension W of F which is contuined in R,
and in a subnormal extension W oof F such thar Gal(W, F) is seluble;

(iti) x can be reached by a series of steps cxplained in the Corollary.

Proaf. The equivalence of (i) and (i) follows from Lemma 2 and Lemma 3,
Assume now that (i) is satisfied, we want to show (ii). Let V' be the minimal normal
extension of F that contains 5. Then the Galois duality connected with the Galois
group & = Gal(V, F) will map § onto some subnormal subgroup K of & and, by
minimality of V, the intersection of all conjugates of § will be trivial. Now the set
C(G, K) of all composition factors appearing in the normal chain from & 1o K
coincides with the corresponding set C(, 1) by a classical theorem of Wiclandt [2].
So (ii) is true with W= V. But also (i) follows from (ii) since (G, K) g C(G, 1) is
always true.

Our Main Theorem now follows from Theorem 1.

4. Constructions with p-divider of angles. From now on a p-divider is
supposed to mean a device to divide any given angle into p equal parts. We will use
this for odd primes p only, and assume further to have ruler and compasses at our
disposal. The use of compasses is equivalent to using a device dividing any angle into
two equal parts. For instance, Theorem 1 yields the following proposition.
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Proposition 1. Let g be a prime such that g — 1 = 2"p" where m, n are
natural numbers and p  is some odd prime. Then the regular g-gon can be
constructed by ruler, compasses and p-divider.

Proof. We obtain that Q[cos(2m/2)] is a normal cxtension of the rationals, of
degree (g=1)/2 and consisting of real numbers. Furthermore the Galois group is
eyclic. The result is therefore a consequence of Theorem 1.

Further Remarks.

1. Thg statement of Proposition 1 for p=3 and p =5 was shown in [3].

2. If p#2 and the real root z of the polynomial xF-a with « € K i not
contained in K, then this root is not constructible by use of a p-divider over K.

3. Allowing all interscctions of definable conic sections leads w a wider variety
than using only triscctors. The intersection of xy =2 and of x -y = 0 is not
constructible by trisector by the previous remark (see also [3]).
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