W. Holubowski (Inst. Math., Siles. Techn. Univ., Gliwice, Poland)

NOTE ON SYMMETRIC WORDS IN METABELIAN GROUPS

ЗАУВАЖЕННЯ ЩОДО СИМЕТРИЧНИХ СЛІВ У МЕТАБЕЛЕВИХ ГРУПАХ

We completely describe n-symmetric words in a free metabelian group.

Наведено повний опис и -симетричних слів для вільної метабелевої групи.

The problem of characterizing of n-symmetric words for a given group G was initiated by E. Plonka [1, 2]. The properties of n-symmetric words are fully described by the group $S^{(n)}(G)$, introduced in [1]. The n-symmetric words depends on identities in G and $S^{(n)}(G) \cong S^{(n)}(F_n(\operatorname{var} G))$, where by $F_n(\operatorname{var} G)$ we denote n-generator relatively free group in variety defined by G. The group $S^{(n)}(\mathfrak{A}^2)$ (\mathfrak{A}^2 —the variety of all metabelian groups [3]) was described for n=2 by Macedońska and Solitar [4] (another proofs one can find in [5,6]). The case n=3 was considered in [6] (see also [7,8]). In our paper we extend these results describing $S^{(n)}(\mathfrak{A}^2)$ for arbitrary n.

We prove the following theorem.

Theorem. The group $S^{(n)}(\mathfrak{N}^2)$ is an infinitely generated free abelian group.

In order of the proof we give also full description of n-symmetric words in this case.

Let F_n be the free group on x_1, \ldots, x_n . A word $w \in F_n$ is called *n-symmetric* word for a group G if $w(g_1, \ldots, g_n) = w(g_{\sigma(1)}, \ldots, g_{\sigma(n)})$ for all g_1, \ldots, g_n in G and all permutations σ in the symmetric group S_n . We have a natural epimorphism $\phi: F_n \to F_n(\text{var } G)$. Let A be the group of automorphisms of $F_n(\text{var } G)$ induced by the mappings $x_i \to x_{\sigma(i)}$, $1 \le i \le n$, where $\sigma \in S_n$ (symmetric group on n elements). The set

$$S^{(n)}(G) = \{ v \in F_n(\operatorname{var} G) : v = \alpha(v) \text{ for every } \alpha \in A \} = \bigcap_{\alpha \in A} \operatorname{Fix}(\alpha)$$

is called a group of *n*-symmetric words for G because $\varphi^{-1}(S^{(n)}(G))$ consists of all *n*-symmetric words for G. So, in the case of free metabelian group we can carry out all our calculations in F while working modulo F''. We denote by $[x, y] = x^{-1}y^{-1}xy$ commutator of elements x, y.

Proof. Let $w \in F_n$ and let w be the n-symmetric word for free metabelian group F_n/F_n'' . From Lemma 5 of [6] we have $w \in F_n'$. Since F_n' is generated by conjugates $[x_i, x_j]^u$ ($u \in F_n$) and such conjugates commute modulo F'' we can assume that

$$w = \prod_{i < j} \left[x_i, x_j \right]^{w_{i,j}} \bmod F''$$

where $w_{i,j}$ are polynomials in commuting variables $x_1^{\pm 1}, ..., x_n^{\pm 1}$ with integral coefficients.

1014 W. HOLUBOWSKI

Any permutation σ does not change the number of variables of monomials in $w_{i,j}$ (the action of σ on w is given by $w^{\sigma}(x_1, \ldots, x_n) = w(x_{\sigma(1)}, \ldots, x_{\sigma(n)})$) so we can assume that $w = w_1 w_2 w_3$, where for k = 1, 2, 3 we have $w_k = \prod_{i < j} [x_i, x_j]^{w_{k,ij}}$ and $w_{1,ij}$ are polynomials in variables x_i, x_j only, $w_{\geq ij}$ are polynomials in which every monomial does not contains x_i, x_j and $w_{3,ij}$ contains all other polynomials.

We have $w^{\sigma} = w_1^{\sigma} w_2^{\sigma} w_3^{\sigma}$ and $w_i^{\sigma} = w_i$ for i = 1, 2, 3. If we put $\sigma = (ij)$ transposition interchanging i and j, then

$$\left(\left[x_i, x_j \right]^{w_{2,ij}} \right)^{\sigma} \ = \ \left[x_j, x_i \right]^{w_{2,ij}} \ = \ \left[x_i, x_j \right]^{-w_{2,ij}} \ = \ \left[x_i, x_j \right]^{w_{2,ij}}.$$

It means that w_2 is a trivial word.

Since S_n is n-transitive, applying to w_1 permutation τ such that $\tau \colon i \to k$, $j \to m$, where $\{i,j\} \neq \{k,m\}$, k < m, we conclude that $w_1 = \prod_{i < j} [x_i, x_j]^{u_1(x_i, x_j)}$ for some fixed word u_1 . Applying to w_1 a transposition $\sigma = (ij)$ we conclude that $[x_i, x_j]^{u_1}$ is 2-symmetric word for F_2/F_2'' and by Theorem 1 of [5] u_1 is a sum of polynomials of the form $x^r y^q - x^q y^r$ with integral coefficients.

Applying to w_3 a homomorphism which send $x_i \to x_i$, $x_j \to x_j$ and $x_k \to 1$ for $k \neq i, j$ we conclude that the image of w_3 is a 2-symmetric word and so the polynomial w_3, i_j $(1, \dots, 1, x_i, 1, \dots, 1, x_j, 1, \dots, 1)$ have the same form as u_1 . It follows that w_3, i_j $(x_1, \dots, x_n) = q_{i,j}(x_i, x_j) s_{i,j}(x_1, \dots, \hat{x}_j, \dots, \hat{x}_j, \dots, x_n)$ where polynomials $s_{i,j}$ have no constants and does not contain x_j and x_j .

For any k, l, k < l, there is a permutation which send $i \to k$ and $j \to l$. Applying such permutation to the word w_3 we conclude that $q_{i,j} = q_{k,l} = q$, $s_{i,j} = s_{k,l} = s$ for some fixed s and q. Applying to w_3 any permutation which fixed s and s we conclude that s is s and s and

So any n-symmetric word has a form

$$w(x_1,...,x_n) = \prod_{i < j} v_1(x_i,x_j) \prod_{i < j} v_3(x_i,x_j),$$

where

$$v_1(x,y) = [x,y]^{u(x,y)}, \quad v_3(x,y) = [x,y]^{q(x_i,x_j)s(x_1,\dots,\hat{x}_i,\dots,\hat{x}_j,\dots,x_n)}$$

and u, q are the sums of polynomials of the form $x'y^q - x^qy'$ with integral coefficients, s is n-2-symmetric polynomial. Inverse statement is easy to check by direct computations.

The group $S^{(n)}(\mathfrak{A}^2)$ is infinitely generated because we have a natural epimorphism $S^{(n)}(\mathfrak{A}^2) \to S^{(2)}(\mathfrak{A}^2)$ defined by $w(x_1, \dots, x_n) = w(x_1, x_2, 1, \dots, 1)$ and $S^{(2)}(\mathfrak{A}^2)$ is infinitely generated by [4]. Theorem is proved.

Remark. From results of [9] it follows that in the free metabelian group any nontrivial relation occurring among the set $[x_i, x_j]^{w_{ij}}$ is a product of transforms of Jacobi identity $[x, y]^{1-z}[x, z]^{-1+y}[y, z]^{1-x} = 1$. So, the word $[x, y]^{(x-y)z}[x, z]^{(x-z)y} \times [y, z]^{(y-z)x}$ is nontrivial 3-symmetric word for $G = F_2/F_3^x$.

- Plonka E. Symmetric operations in groups // Colloq. math. − 1970. − 21, № 2. − P. 179 − 186.
- Plonka E. Symmetric words in nilpotent groups of class ≤ 3 // Fund. math. 1977. 97. P. 95 – 103.
- Neumann H. Varieties of groups. Berlin: Springer, 1967. 192 p.
- Macedońska O, Solitar D. On binary σ-invariants words in a group // Contemp. Math. 1994. 169. – P. 431 – 449.
- Gupta C. K., Holubowski W. On the linearity of free nilpotent-by-abelian groups // J. Algebra. 1973. – 24, № 2. – P. 293–302.
- Holubowski W. Symmetric words in metabelian groups // Communs Algebra. 1995. 23. P. 5161–5167.
- Holubowski W. Symmetric words in nilpotent groups of class 5 // London Math. Soc. Lect. Note Ser. – 1999. – 260. – P. 363–367.
- Holubowski W. Symmetric words in free nilpotent groups of class 4 // Publ. Math. (Debrecen). 2000. – 57. – P. 411–419.
- Bachmuth S. On centre-by-free solvable groups // Trans. Amer. Math. Soc. 1965. 118, № 6. P. 93 – 104.

Received 31.01.2002