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I-RADICALS, THEIR LATTICES AND SOME CLASSES OF RINGS
I-PAJTMKAJIH, IX TPATKH I AEAKI KJIACH KIJIELLb

We describe some J-radicals in the categories of modules over semilocal rings. We give the
characterization of rings over which the set of f-radicals coincides with the set of hereditary idempotent
radicals. We prove that the lanices of [-radicals in the categories of “modules over Morita-cquivalemt
rings are isemonphic®,
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The notion of an [-radical was introduced by O. Horbachuk in 1972, It was applied in
torsion theory and in structural theory of rings (sce, for example, [1]).

Our paper is also devoted to describing properties of rings with the help of /-
radicals. The main results of this paper are Theorem 4 and Theorem 5.

We shall generally follow the notation and the terminology of [1-5]. Let R bea
ring and let £, — €, . The idempotent radical cogenerated by £, is designated as
rig2, ).

Theorem 1. Let R be a semilocal ring and led £y C £y . Then r(f})) is the
Sy (82 bradical in R-Mod.

Proof. Set T:=T(r(£2;)). It suffices to show that T = {M|Me R-Mod,
Jy(8)M = M}, Let Me T. Suppose that M = J (M. We set K:=
v= MJ(J, (€2 )M). Therefore K= 0. Since J(Q,)K =0, K = r(K, J (£2,)). By
Theorem 1 [5], K e T(58}). Thus, there exists an isomorphism B:K= @, P, where
[Pelae A} Q. But K=0. This implics that A # @.

Let ue A andlet M@, P,— P, bea natural projection. It is clear that
M fo=z0, where c: M —= M/(J, (£, )M) = K is a natural cpimorphism. It follows
from this that Homg (A, P,)20. But P, e £Q,. Therefore M & T. This contradicts
the assumption that Me T. Thus, Me T= J, (£)M. Let D be a left R-module
such that J, (£ )0 =0 and let Pe ST.l If de D, then d =iyedy + ... +ipdy, where
(i, b S 4y (82y), {dy, ... di}c D, Since J (S0P =0, fid)=fliydy +...
vt gl ) = i fldy) v L+ 0 f(dy) = 0, where fe Homg(D, P). Hence Homg(D,
Py=0.

Lemma 1. Let R be a ring and let 1 be an ideal of R. If I* = I, then r,
preserves epimorphisms and ri(M)=IM for every lefi R-module M.

Proof. Define S5 by the rule S: M — IM for cach left R-module M. It is casy to
sce that S is an idempotent radical in R-Mod and T(8)=T(r;). Hence § = r;. Itis
clear that 5 preserves epimorphisms,

Lemma 2. Suppose R is aring and Ir(1, R} is Boolean. Then:

L. Every idemporent ideal of R has the form Re R, where ¢ is an idempeotent
of B which is central modulo J(R).

Il. Card {I|1 is an idempotent ideal of R} = Card (Ir (1, R)).

1. For every left ideal 8 of R there exisis an idempotent ideal 1 of R such
that re=r;,
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IV. Every I-radical in R-Mod preserves epimorphisms.

Proof. 1« Corollary 1 [2].

Let A, B {l,...,n} and let A # B. This implies RE,R #REzR (sce proof of
Corollary 1 [2]). Thercfore Card {RER|Tc {1,...,n}} =2" By Lemma 4 [2],
Card {r, | I=RE#R, T {l,...,n}}=2" And now by Theorems 2, 3 [2] Card(Ir(1,
R))=2" Hence {r,|I=RER, Tc{],...,n}} =Ir(1, R). Now apply Lemma I.

Corollary 1. Let R be a left perfect ring.  Then there is a bijective
carrespondence

r—=Ti(r),

Farf

between Jans hercditary torsions in R-Mod and torsion-free classes of torsion
theories cogenerated by classes of simple left R-modules,

Proof. Itis elear that Card ({r(£2,)]| €, = €,}) = 2", where n = Card (£2;). By
Theorem 1 and by Theorem 3 [2], {r(£2,)|Q, 2 Q;} = Ir (1, R). By Lemmas 1, 2,
we have that {F(r(Q,D|Q, c Q,} = {{M|Mec R-Mod, IM =0} |7 is an
idempotent ideal of R}. Therefore {F(r(,)|Q,c Q.} = {T(r)|r is a Jans
hereditury torsion in R-Mod } (sce [4, p. 58, 59], Theorem 3”}.

Now apply Proposition 2.3 [4].

Corollary 2. Let R be a perfect ring. Then for every hereditary torsion r in
f-Mod

T(r) = F(r(Q2)),

where $3y = {w|we £;,IMe T(r): Me w}.

Proaf, Since R is right perfect, every hereditary torsion in R-Mod s Jans
semisimple.

MNow apply Corollary 1.

Theorem 2. Let R be a semilocal ving. Then every lradical in R-Mod  is a
semisimple torsion if and only if R =M, (T))x ... x M, (Tg) for some local perfect
rings Ty, ..., Ty.

Proof. (=) Suppose that every [-radical in R-Mod is a semisimple torsion. By
Corollary 1 [1], J(R} is right T-nilpotent. Thus, R is left perfect. By Theorem 3 [2]
and by Lemma 2, every semisimple torsion in R-Mod is exact. Therefore R is a left
semiartinian ring (sce Theorem 3.1 [6], Corollary 3.2 [6]). Then every hereditary
torsion in B-Mod is semisimple. Thus, every hereditary wrsion in B-Mod s exact,
By Theorems 3.1, 3.3 [6], R= M, (T)) = ... x My (Ty) for some local right perfect
rings Ty, oo Tioo But R is left perfect. Whenee T, ... . T are perfeet rings.

(<) Now apply Corollary 2 [1], Proposition 8.16 [4] and Proposition 1.9.1 [7].

Theorem 3. Let R be a ring. If every hereditary torsion in R-Mod is an [-

N

radical, the R is feft semiartinian,

Proof. Suppose that every hereditary torsion in R-Mod is an  f-radical. Then
§Q, isan l-radical. Whence $Q, = rs for some ideal § of R. It is clear that for
every maximal leftideal m of R Rfime T{Ej = Tirg). It follows from this that
Rim=S8{Rim)=(85+m)/m. Therefore &+ m =R for every maximal left ideal m of
K. Since every proper ideal is contained in a maximal left ideal of R, ¥ =R. Thus

S0, M) = M for every left R-module M. By Proposition 8.15 [4]), R s left
semiartinian,
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Proposition 1. Ler T be a left semiartinian ring. Then Ir(1, T) is Boolean if
and only if T is left-right perfect,

Proof. (=) Suppose that Ir{1, T) is Boolean. By Theorem 2 [2], J(T) is right
T-nilpotent. Since T is lefl semiartinian, J(T) is left T-nilpotent. In view of
Theorem 2 [2], soc(gR) is a ring direct summand of R = T/J(T). By Proposition 2.8
[3, p. 184], R is left semiartinian. But soc(gR) is a ring direct summand of R.
Therefore R = soc({gR).

(=) This is clear.

Set

tor(1,R) := {r|r is a hereditary torsion in R-Mod },
tor(r, R) := {r|r is a hereditary torsion in Mod-R },
Ir(r,R) := {r|r isan l-radical Mod-R }.

Theorem 4. Let R be a ring. Then the following are equivaleat:

1) tor{1,R) = Ir(1, R}

2) wri{r,R) = Ir(r, RY;

3R=M,(T)x...xM,(Tk)

Jor some local lefi-right perfect rings Ty, ..., Ty

Proof. 1) =+ 3). Assume 1). By Theorem 3, R is left semiartinian. Therefore
tor{1, R} is Boolcan (sce Proposition 8.15 [4]). Since tor (1, R)=Ir(1,R), Ir(1, R)
is Boolean. By Proposition 1, R is perfect. Now apply Theorem 2.

3) = 1). Apply Corollary 2 [1), Proposition 8.16 [4], Proposition 1.9.1 [7].

Corollary 3. Let B be a ring. Then the following are equivalent:

1) R is semilocal and every [-radical in R-Mod (Mod-R) is a semisimple
tarsion;

2y tor{l,R)= Ir(1,R) (torir, R)=Ir(r, R));

3) R = M (Th) % . x My (Ti)
for some local left-right perfect rings Ty, ..., Ty

Let R and § be a pair of equivalent rings. Specifically, assume that there are
covariant functors

F: R-Mod — 5-Mod, (1)
& 8-Mod — R-Mod (2)
such that there exist natural isomorphisms
i FG = 1g g0 (3)
BE:GF = 1p. s (4)

Let PR(1, R) denote the class of preradicals of R-Mod and let p e PR(1, R),
te PR(1,5). Sct

sp(M) = ImfFliy,p) for every left-module M, (5)
gUNY = Im g Giin,) for every left-module N, (6)
where
imp: pIGIM)) © G(M),
Hw.e: HF(N)) < F(N).
Itis well known that spe PR(1,5), gre PR(1,R), gisp)=p, sigt)=1 (see[T]).
Lemma 3. Ler R, § be a pair of equivalent rings (see (1) = (4)) and let
pelr(l,R), telril,5). Then spe Ir(l,5), grelril, R) (see(5), (6)).
Proaf. [t suffices to show that gp e Ir(1,5). Let [ be an ideal of R such that
p=rp Set d(M) = IM for every left R-module M. It is casy to see thal & is a

ISEN 00416053, ¥ep. vam. wypu., 2002 m. 54, K° 7



F-RADICALS, THEIR LATTICES AND 50OME CLASSES OF RINGS 1014

radical of R-Mod. Ivis clear that & prescrves epimorphisms. We shall prove that gd
also preserves epimorphisms.
Let
p: M= N =0 (7
be an exact sequence in S-Mod. [t is well known, that ¢ is an exact funclor (see
Proposition 21.4 [8]).
Then the sequence

Glp): GIM)Y = GIN) = O (8)
is exact, beeause (7) s exuct. Since o preserves epimorphisms, the sequence
d(G)): d(GIMY) = d(GIN)) = 0 (9)

is exact.
Since f is a natural isomorphism,
@ fus = [nFGLO). (10)
d is o preradical. Hence
Glplingg = inged (L)) (11}
I follows from (10), (11) that @ fuF(isea) = (9 fupFlivd) = (WFG(@)) Flinga) =
= FGoNFlina)) = [WFIGI9)ina = fuf lingd(Glg))) = fuFlina %
x F(d(G(g))). But F s exact (see Proposition 21.4 [8]) and (9) is an exact
sequence, Thus F{d(Gp))) is an epimorphism in §-Mod, It follows from this that
ImfiFling = ImfuFliy HF(d{G{p))).
Therefore  Im g fF lingdd = Im fy Flina. But Im fuF (ing) = gd(N),
I @ fug (faga) = @UIm fuF Gisga) ) = @(5d(M)). Then we have @ (sd(M)) = sd(N).
Thus d(p): (M) = g (N) is an cpimorphism in 5-Mod. Then gl (M) = (d(S)M
for every left S-module M (sce [7, p. 21]). Thus T(gd) = {M|Me 5-Mod,
s SIM =M} =T(ry}, where ry is an Veradical in S-Mod, V = (d(85). But T(gd) =
= TH_:-:!;]IJ (sce [3, p. 137]). Since o isa radical, I:;:‘}] is also a radical (scc [3,
p- 138]). Thus E:ﬁ; is an idempotent radical (see |3, p. 137]). But T[i.;:f}l]l = T{ry)
and ry i an idempotent radical. Therefore {_;E} = ry. But {_;-_c;‘-} = ,,:F} (see [7,
p- 50]). Itis clear that op = -,t?]l Thus gp = 5{;}’] = {;:f} = ry. It follows from this
that ¢p is an ¢ (8 )-radical in S-Mod.
Theorem 5. Let R and 5 be a pair of equivalent rings.  Then the lattices

Ir( 1, R), Ir(1,8) are isomarplhic.
FProof. Sce Lemma 3, Proposition 1.9.2 [7].
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