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PROPERLY POSED AND REGULAR NONLOCAL
BOUNDARY-VALUE PROBLEMS
FOR PARTIAL DIFFERENTIAL EQUATIONS

KOPEKTHI TA PEI'Y.JIAPHI HEJIOKATBHI TPAHH4YHI
SAJAMI JIJTA PIBHAHD 3 YACTHHHHMH NMOXITHHMH

The present paper deals with the proper posedness and regulanty of a class of 1D ume dependent
boundary-value problems with global boundary conditions through all time interval, The conditions of
the proper posedness of boundary-value problems for partial differential equations is established in the
class of bounded differemiable funcrions.  The criterion of the regularity of the problem under
consideration is also estiblished.
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Introduction. By investigating the real processes and phenomena. governed by
differential equations springs up. not only the necessity in the construction of the
solutions, but also the necessity in the study of dilferent propertics of these solutions,
In the case where the desired solutions are constructed, it is casy 10 study its properties.
Unfortunately such cases are very scare.  Therefore it is necessary o establish the
properties of the solutions of the differential problems by the indircet methods, with
respeet o properties of the dilferential equations. One of these oullines is the proper
posedness ol the problems.

The problems of the proper posedness of differential problems in the mathematical
simulation ol real objects, phenomena, and processes are the essential and the very
important part ol the problems of description of real objects in the mathematics” means,

The present papers deal with the regularity and proper posedness of a class ol 1D
time dependent of boundary-value problems with global boundary conditions through
the cntire time interval.

1. Formulation of problems. Consider in the stripe IT = R = [0, V] the
following nonlocal boundary-value problem for partial dilferential equations:

dl o h

o, 0) + ot (v 0 + cqn({xn, Y)Y + agn (x, ¥) = nglx),
(2)
Brote. 0)+ Paudx0) + Ban(e V) + Baudn ¥) = (x)

Here Pis) is an arhitrary polynomial with constant (complex-valued) cocllicients. o,
B,eC. i=1.2.3.4 wjixp: R= C, j=0. 1, — two given Tunclions, and  uix,

vi: v = C = thc unknown.
The unigueness of solutions of problem (1), (2) is investigated in [1]. The present
work investigates the proper posedness and the regularity of problem (1), (2) under the

condinion that
o o ¥ 0
:'nng( ; G A ; } = 2,
B,

B Bs BsJ
The conditions of the proper poscdness of problem (1), (2) are eswablish in
Section 2. Section 3 investigates the regularity of the problem under consideration.
First of all, let us introduce the Tollowing notations and definitions
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H, = {q:EC""ER]: ], = max sup|tp‘”|.‘x}|-:+m}.

m bsjsm g

Re(z) and Im(z) are the real part and the imaginary part of the complex number z;

P\ (6)=Re(YP(c)); Pa(a)=Im(¥P(ic)): Ng=N U {0}, A;;=c;B;- B, | <

Zi<js4; piA, B) —the distance between the seis A and B
Ny={xeR:flx)=0}, Nifl={zeC:f(z)=0}

Aps = A,

Alo) m f(YPlia)).

+B.Plic) +[ B+ + By Plic) ]‘-”'“‘3' ~[B, +Bs ]e,l"ﬁa-:t:

Ry(o,v) = B,
Ala)

oy + 0 PUG) + [ o + oy Pic) | ") — [ oy + ey ]

Alo)

Ry, y) =

Bzy= Az = C+(C+Bx1e'., A B CeC.

According to G. L. Petrovskii [2], we introduce the Tollowing definition.

Definition 1. Problem (1), (2) is said e be properly posed in 1 if for every
me Ny there exisis p and g in Ny so thai io every boundary functions
nglxde Hy and wlx)e H there corresponds a unigue solution w (x, v)e H,

(¥ye [0, ¥]) of preblem (1), (2) satisfving the condition that
[rgﬂtﬁlllﬂi-r. M € Galluato)l, + Gl G >0, € >0

Definition 2. We say thar problen (1), (2) is regular if the unigueness of s
salutions in the class of bounded funceions in 1 implies its proper posedness in the
said class.

2. The proper posedness of problem (1), (2).

Theorem 1. For the proper posedness of problem in 11, it s sufficient thae
Alg)y=0 f_,l"ar every real o),

Lemma 1. If AxB#0 the large zeros, 23 of 8(z) take the form

:¢=Ln[-g]+2t;jk"". geC. jeN
j=I

Proof. Beeause 5{:} = z{A + Be?) is the congruence function [3] for 8(z). we
have lim, _,,.|l2 -3 | =0, where {z };5 and {3 };7 are two sequences of
zeros of §(z) and &(3) respectively. Because I, = InJA [ B|+ily, +2xkx=m) +
+oll), k] =+, yo=arg(-A/B), wehave zy= InJA/B| + i(yg+ 2= kxm) +
+ W, We =20, |[k]| = 400, Il weinsert 7y in &(z) we oblain

"

0=58(zs) = bf;;.m‘x__*
Wy

where

Biy.n)==-C+ A[{In

"—Bt!+1'{'n-_,+2 XY KT+ p}{l—e“}—%f”' ]
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PROPERLY POSED AND REGULAR NONLOCAL BOUNDARY-VALUE PROBLEMS ... 1137

Let &, (x.p) be a function defined as follows

&) = x3(1/x. 1)

Then &,(0,0)=0 and 8,(0,0)/dpu =-2x mxixA=#0. This means that equation
B0y =0 defines p as an implicit function of

R=pix)y= > Lyl CjeC, jeN

i=

Therefore
Me= XLk, LieC, jeN
i=l
Consequently

Iy = [n‘ﬂ[+f{'f“ +2xkxm 4+ = Ln[—ﬂj + EQI.&'“.
B B
and this completes the prool ol Lemma 1.
Lemma 2. [f the condition of Theorem | is satisficd then for some M =0 and
we R, the following inequaliry

|AlS)] = M(1 +]a| M (3

herfels foor every G in R
Prooaf. The cstablishment of the formula (3) is obvious if P{ig)= const.
IWAp-Ay=A )y +Ay=0then A= 0 and (3) follows from [4].
The estimate (3) will follow from [S]il' A ;=0 and (A3 -Ax A 3 +Ay) 20
Let us examine the case where P(ic)zconst and A;(lA5s = An| +
+ | Ay + Ay |} 200 Here we distinguish the following three cases:

1) (A =AniA +Ay) = 0
I}AIZ—A31={].A”+A3"¥UL
3}.4'3—:“3_13“,.!4”"‘.-"!”:“.

Let g2 = [ YPUig)y ge R} Ifollows (rom the Weierstrass” theorem that o every
By =0 there corresponds My > 0 so thmt |Alg) 2z My for every o € R sauislying
the condition that |o|< &,. From here we conclude that in order to establish the
required estimate (3), it is sulficient o establish it for large scale values of & so that

la|zd,.
Case 1. {A|3_-4:|H-”l|4+-'4_1.|i = (.
It Piigi# In A=A then the inequality
14+ Axy
s |
iﬁm; = 1.1‘-"“ s |G lol2 8, >0,
14+ Ay

occurs for some Cy >0, 8§ > 0. From the condition N, =& we have g N N[ f]=
=&, from where we ohtain the inequality p( g2. N[ f])} = €, = 0. Hence |3]

|ata)] = |F(YPla))] =2 M > 0
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Let us consider the case where Pj(o)= In .A;'.L_.,i.l‘. and let oe R is foxed.
14 F Ay
Then
p(yPGaLNIFI) = |vPlia) -2 ] i4)

where k=k(g), 240 N[f] Il |[¥PliG) =242 C) then |Alo)| 2 M > 0. Let
us examine the case where lim g, el YPUG)=240a:] = 0. It follows from Lemma

lthat 2x k(a)x® + arg(=A [ B) - Po(a)=u(l), |g]| = 4o, from where we
have

k(ig) = Caa”(1+001)).  |o]|— 4ee, (5)

where p=deg Py(g) (> 0). By virtue of Lemma | we obtain

| YPlio) —ziay]l 2 | Py(0)=Re(ziay)] = |E Rﬂ{g;ﬂi—j . (6)

i=l

If Re(;)=0 (V¥ e N) then

Az = Agy

+f2xkxn+arg(-AlB)+elad)
Ay + Axg . : : ]

ey = In

where eig)=al(l) |o|— +e. Conscquently YP(ig") = z4q) for some o’ € R,
and this contradicts the condition that g2 M N[ f]= &.

Let Re(G;) =0 for 1Sj<jo— 1 and Re(L;,) # 0. Then for large-scale values
ol | k| we have

[

TR AN
et 2
J=1
From the formulae (4), (5). and (6) we obtain the following inequality
plYPlLo)LNIFI) =2 Cyx (1 +|a|)y™, & =0 (7

Now we can evaluate [A(g)]| in the examine case, that is, in the case where
1My |y 4| YPUIO) = 24y | = O

A = 1f @ mpmiiay = |2 = Mea) .. ypiioy =

- e et AL+ A =2 )
=|3—?Iﬂu—AE+AH{ } + = i |+£ TZ}E‘" M
¥ ; I-3 Y =3 = ¥Pig)
L=kla)
and we have
T=Ilggm _
lim e = B and lim s = 1.
[o]— 4o A+ Ay l6]=+= I=1Iyg
Hence
1A 1{-"-|1- —a"’lﬂ]'
Ay 2 | SR - |
| | e == ¢ |:=vpuion

k=kig)

By using (7} we obtain the required resull.
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Cﬂﬂ.‘z. I..CI AIE—A:_‘|=ﬂ. AH-!-AHIU.
fiz) inthe present case reads

A+ A -
f{:} = —AIJ_ + [%:-}-Al]}f'p
and [3],
Nif] =
= {=mn=x+iviig=In ot d In Exkxn+nrg[ﬁ"—-}l:f + o1},
14+ Ay Ag+Ay ) 2

Y =23k X ®+arg e :FE+H'”]'-|H—>+°° '
B A|4+A_“ 2

where the signs “+" and “-" are used if £ — —== and & — +o= respectively. Thus the
large zeros z; of f(z) onthe plane C={z=x+iyv} take the form

sp=xp+ivk =s=In|k|(1+ail)) + 2ixkxm{l+a(1)). |k|— +e=.
That is the large scale #eros 2 of f(z) are asymplotically close to the curve x =
=-In|v/2n| (as | k]| = +=), while the values of the polynomial YP(ig)= P|(c)+
+ Pyla) (under the condition that P{ia ) # const) are very close to the curve v =
= Ay x™ (A, oy € R) (for large scale values of |o]). Hence p{ 2. NIf) 2 G >

>, from where we have |Alg)| 2z M =0,
Case 3. Let us consider that A ;- A2;#0, A4+ Ay =0. Then
o fl] -
fiz) = i&"—lr,——*l: + Ajle =1).
Let us denote by
A.T e A"!‘

fiz) = R S Ajqe

the congruence function for f{z). Then the large scale zeros 7, of fiz) [3] are very

close to the zeros 3 of f(z) (as |k|—= +e). Thatis z4= 3 = o(1) | k] = +e=.

On the ather hand, the zeros 5, =&, +ing of f(z) are solutions of the following
syslem

t‘ﬁ‘ﬂlﬁ'ﬂ = af - b7.

(8)
eﬁhinn =an + bE
where
a = RE[M]. h = Rc[m].
YAy YA;3
Conscquently
sin(n-@g) = Ee ™5 9)
where
singy = _—ﬂw Cosfy = L--
e+ ik |a+ib|”

It is scen from (9) that for the large scale values of &> 0, system (8) will not have
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1140 E. KENGNE

any solution (£, n) satisfying the condition that & < —k. It is obvious that the said

system (8) is unsolvable in the sivipe || = & for which the quantity |€ + in| is very
large. and we are interesting ourselves only in the solutions of (8), that coincide with
the seros of - f(z). Because we are interesting ourselves only in the large scale zeros of
fiz) we may lake into account only the solutions (£, 1) of system (8) for which £ —
— +o=, Under this consideration (9) gives

N=n=gpy+hxnm+olll k=kEelZ &+ (10}

Il e # 0 the second equation of (8) gives
E=E, = In|kl(1+a(1)).  |k]|> +==. ()
A comparison of (10) and (11) shows that for large scale values of |o| p ( §2.

N[ F1) 2 Cy =0, Trom where we obtain |Ala)] 2 M = .
I =10 the second cquation (8) gives

=M, =&kxm+ ol Iki-—i+ﬂ=. (1)
and from the lirst equation of the said system we oblain
E=& = Wmlk[(1+001)).  [k]> +o (11"

Formulac (107 ) and (117) give the required resull. and Lemma 2 is completely proven.
Lemma 3. If condirion (3) is savisfied then 1o every j& Ny there correspond

mf e B e Cf =0, i=0 01, sethe Yye [0 VY] YoeR,

o' Rio, v)

== < ¢ (1+]s])™. (12)

e

Preaf. In order 1o prove (12), it is sullicient to establish the following result

d'Ria, v
da’

where R(G. v)=Qig)e "0 A(G), and Q(ic) — an arhitrary polynomial with
constant (complex-valued) coefficients,
It is casy o verily by induction that

i ¥ i
LROD) - (AT Y, Hyylo. et NP (13)
do k=0
where Hy(a. v} are polynomials with respeet o g and v,

I Re(Piig)) =0 then estimate (127) follows (rom (13) and Lemma 2.
Il Re(Plio)) =0 then by rewriting (13) in the form

T % i ]
o .‘li;'l'r:!r i, 5 {ﬂl{ﬁ]] I-j E Hy (0. ."']'f" v+ k==Y | Mig)
IF

< C;(1+|o])™ (VYoeR. Yyel0Y]) (12')

kel

(with Alte) = Atg1e~ Y7999, and by applying Lemma 2 on A'(g). we obtain the
required result, and this completes the prool of Lemima 3.

Lemma 4. If Ny = @ then the unigueness of selutions of problem (1), (2) will
be vielared in H,, (¥ me Ny).

FProof. Ttis clear that problem (1), (2) will have one and only one solution in /o,
il and only il the only solution in the said space of the corresponding homogeneous

problemy (10 (2) (wplxd=w(x)m0) is the trivial Tunction nix, v)=0,

ISSN (N -6053. Yep, vam. sovpee, 2002, m. 54, N8



PROPERLY POSED AND REGULAR NONLOCAL BOUNDARY -VALUE PROBLEMS ... 1141

Let gpe Ny and let (A, B) be a nontrivial solution of the following homogeneous
syslem

(o +y)A + [rxl + 0 Plicy )+ (o +cx4Pﬁc.,}}fr”‘“"’]£ = 0,
(B +Bu)A + [ﬁl + B2 Plicy ) + (B + B, Pligy))e’ o) IB =0
whose determinant coincides with A(g,) = 0. It is casily seen that
wix, v) = {A+ Be-“”u"'}:"""“

is a nontrivial solution of the homogeneous problem (1), (2) (wplx) = u (x)= C).
Morcover Wje Ny, 3C =0 such that !ﬂ'"u{.:.‘, .'n']l,r‘lc']'.-."'| < Cp (¥i(x.y)e M) and
this completes the prool of Lemma 4.

Proof of Theorem 1. 11 the solution w(x, v) of problem (1), (2) and all its
derivatives appearing in equation (1), and also the boundary functions  wg{x) and
wy(x) are absolutely integrable, and vig, v), vyia), and v (o) are their Fouricr
transform respectively, then it is casily scen that v(g, ¥) will be solution of the
lollowing nonlocal boundary-value problem for the ordinary differential equations with
the parameter o € R

2 : ' .
d-vig, v} Pﬂ.mchm.\} - 0. (1
dv® dv

oy i, 0) + 0w (0, 0) + ovia. V) o+ agvido, ¥ = viag),
(27)
Bivio, ) + Baviic, 0) + Bavia ¥) + Bviio. ¥ = v(g).

Therefore
vig.v) = Ryla.vpvgia) + B (o, yiv (g (14)

On the basis of the formula (14) and the estimate (12) we obtain [2, 6 = 10] the proper
posedness of problem (1), (2) in the elass of bounded smooth functions. Theorem | is
complelely proven.

A, Criterion of the regularity of problem (1), (2) and conclusions.

Theorem 2. The nonlocal bewidarv-valne problem (1), (2) ander the candition

{ﬂ! oy Oy Oy
“UE(B, By By By

Praaf. If for every polynomial Piv) problem (1), (2} possesses one and only one
solution in the class of bounded functions, then by applying Lemma 4, we have Ny =
=&, By applying Theorem | we oblain that the problem under consideration is
properly posed (in 1) According to Delinition 2. problem (1), (2} is regular, and this
completes the prool ol Theorem 2,

It follows from Theorems | and 2 that the algebraic properties of the polynomial
Pis)y do not affect the proper poscdness of nonlocal problem (1), (23 in the class of
bounded smooth Tunctions, and therelore, do not affect the regularity of this problem,
Comrary 1o other nonlocal problems [or partial differential equations |5, 6, 10], for
every polynomial Px), there exists at least a properly posed and regular problem (1),
(2). In other words, for every polynomial P(s). one can indicate the boundary
conditions (2} for wlach

] = 2 v alwavs regilar.
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[“l oy oy 0y ] ’
rang =
By B By B

and Ny =&
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