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COCONVEX POINTWISE APPROXIMATION
KOOINYKIJIE IMIOTOYKOBE HAB./THXKEHHH

Let a function f& C[-1, 1] change its convexity at the finite collection ¥:= {y...._..y, } of 5 points
¥ € (=1,1). Foreach n=N(Y), we construct an algebraic polynomial F, of degree Sn which is
coconvex with f, i e., changes its convexity at the same points ¥, as f and

_1 :

|
| fi)-Pix)| mz(.r."" ] x€ [-1,11,

L

where ¢ is an absolute constant, .(f,f) is the second modulus of smoothness of f, and if 5 =1,
then N{¥)= 1. We also give some sounterexamples showing that this estimate cannot be extended for
the greater smoothness.

Hexah chyukuia fe C[-1,1] aminme coos onykmicTs ¥ chinsecHiomy mabopi ¥Vim {y.,.... ¥, } s
Towor ¥, € (—1,1). [na koxuoro a=N(Y) Gynvereca anrefipaiviuil muorounen P, crenena

£n, AKMA € KOONYKAWM 3 f, To6TO 3MiHIOE CBOK ONYKMICTE B THX CAMHX TOMKax »,, wo @ f, a
TaKoM®

|I iy 3
| fix) = P, (x)] s cmz[f. lnx J xe [=1,1],

ae ¢ — afcoMmoTHa cTana, @, (f, ) — apyrui Moayas nenepepaiocti f, i akwe s=1, o N(Y) =
= 1. Hapenewo Tako# KOHTPOPHESADN, WO TOKAIVIOTH, JOKPEME, HEMOMINRICTE NOWHPEHHA WiEl
OUIHEH 008 Glaslol rAaaiKkocTi.

1. Introduction and stating the results. Recall the classic estimate of approximation
of a function fe C[=1, 1], by algebraic polynomials P, of degree = n: for every
nzk-=1, ke M, there exisis P, such that
If €)= Pox)| < cang(f.py(x)), xe€[-1,1] (1)
where ¢ is an absolure constani,
dl-xi

= L
Palx) = uz + 5 .

and wp(f,1) is the k-th order modulus of smoothness of [

This estimate is called the Nikolskii's type pointwise estimate, and was proved by
Timan (k =1), Dzyadyk (k=2), Freud (k = 2), Brudnyi (k > 2). See [1] for the
details.

Telyakovskii [2] for & = 1 and DeVore [3] for k = 2 proved that in (1) the
function p, may be replaced by the function

i
5(x) = ‘“;" :

thatis for k=1 and & =2 there exist polynomials P, such that
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COCONVEX POINTWISE APPROXIMATION 1201

If @) =Pl = cop(f.8,0)), xe[-1,1] (2)
Yu [4], Gonska, Leviatan, Shevehuk, Wenz [5] proved that in contrast with (1) the
estimate (2) generally speaking is invalid for & > 2.

Starting from the papers by Loientz, Zeller, DeVore, Newman, Shvedov, Levialan,
Yu and others the problem of approximation of monotone and piccewise monotone
funcias by comonotone with the functions polvnomials was investigated. See the
survey by Leviatan [6] and our paper [7] for details.

Let A% be the set of convex in /:= [-1, 1} functions fe C:=C[-1,1].
Denote by ¥, the set of algebraic polynomials of degree = . Everywhere below ¢
stand either for different positive absolute constants which may differ even in the same
line or for positive constants which may depend only on a number s

Leviatan [8] for every function fe A and each n = 1, proved the existence of a
polynomial F, e P, M a'), such that the estimate (2) holds with &£ = 2. [t was
mentioned above that it is impossible to have inequality (2) with & > 2, anyway for
k=3 Kopotun [9] proved the validity of (1} for fe A®) and P, e AP If & >3,
then even the estimate (1) fails w hold for convex approximation. Namely, recently
Yushchenko [10] constructed a function fe A% such that for each sequence

{P, }o, of polynomials 7, = Asl¥e P, we have

P

3)
11-(.|rfprl lr !

|.J  su p|1

Here and below
Br 1l e= max|f ().
rel

Earlier Wu and Zhou [11] proved () with @y, &2 5, instcad of w,,

As 1o the estimates of piccewise convex approximation, the authors know three
papers |12 — 14] on this subject only. We will use the methods of these papers. In [12,
13] the unitorm estimates for coconvex spproximation invelving @, (f,1/n), k < 3,
were proved. In [14] the pointwise estimate (1) for & =3 was proved but for so called
nearly coconvex approximation.

The main result of our paper is Theorem 1 where for the first time an estimate for
pointwise coconvex approximation is oblained. Moreover in Theorems 2 — 4 we show
that this estimate is the final ore in some sense.

We need some notations. Derote by ¥, s M, the set of all collections Y :=

= { % }im oOf points y;:

-l <y <..esy < 1.
Lt {.‘L{”{Y} denote the set of all functions fe C, that change convexity at the points
¥, and are convex in [y,1]. Thatis fe AY'(¥) iff f is convex in [3,1],
concave in [y, ¥ |, convex in [y, )], and so on. Recall that if a function f is
twice differentiable in 7, then fe a‘”{r] means that

foMxyzo0, =xel,

where
Ny := I @& -y))-
i=1

ISSN O041-6053, ¥ep, smam, sypo, 2002, m, 54, N9



1202 G. A. DEYUBENKO, J. GILEWICZ, . A. SHEVCHUK

Theorem 1. If Ye %, and fe APNY), then for every n 2 N(Y) there exists
a polynomial F, € P, such that

F, e a%(y), (O]
and
[ f(x) = B(x)| = ecwy( f,8,(x)) (5)
where N(Y) is the constant depending only on
r-.E.'fl:_P"' = Yis1)s
if s>1, and

N(Y)=1, if s=1

Theorem 1 readily implies Corollaries 1 — 4.
Corollary 1. Under the conditions of Theorem 1, for every n 2 N(Y¥) we have

|f @)= Pyx)| < cwy(f,palx)), xel
Denote by W', re M, the class of functions fe C, that have absolutely
continuous derivative f (r-1) in I, and such that Lf ':']'{J:}| = 1 almost everywhere in /.
Corollary 2. Let r=1 or r=2, and Ye 7,. If fe ANy, then for
every n 2z N(Y), there exists a polynomial Pye ACNYYN P, such that

f=F 2 g (6)
8,

whence
[-h] <. (6)
Pa

The following Theorems 2 and 3 show that if 5 = 1 then Corollaries 1 and 2 (and
hence Theorem 1) cannot be had for smoothness larger than 2.

Theorem 2. Foreach r > 2, Y e 9, and n € M rthere exists a function
fe a‘“{f} MW", such that for every polynomial P, e ﬁm[}’} Ne, the
inequality

“% > C(Y,rin"" 2

holds, where C(Y,r) = const, depends onlyon Y and r.
Theorem 2 implies Theorem 3.

Denote by C", re M, the set of r times differentiable in / functions fe C,
Cc%:=cC.

Theorem 3. Forno Ye ¥, ke M and re M {0}, such that k+r > 2,
there exist constanis C=C(k,r, Y) and N =Nk, r, ¥) independemt of f and n,
such that for each function fe APNY) NC" and every n 2 N there exists a
polynomial P, e A®rmn P, satisfyving

If () = Pylx)| € Cpp)g(f,palx)), xel (N

I5SN 0041 -6053. ¥Yup. sam. sypn., 2002, m. 54, N* 9



COCONVEX POINTWISE APPROXIMATION 1203

Remark 1. 1f s # 1, then we conject that Theorems 2 and 3 fail o hold, that is (7)
and (6") hold with C=C{k, r,Y) and N=N(k,r, V) forall &'s and r's, except the
known negative cases. These negative casesare: (r=0, k24), (r=1, k=23), see
Wu and Zhou [11], and (r =2, k> 3), see Gilewicz and Yushchenko [15].

Corollary 3. If Ye %, and fe APNY) N C', then for every n 2N(Y),
there exists a polynomial P,e P,, such that

P,e ARY(Y),
If @)= Px)| < b, (x)a(f,8,(x)), xel,

and
If ‘)= Fyx)| € coy(fpax), xel, (8)

where w,(f ", ¢) is the (first) modulus of continuity of [~

Remark 2. If 5 > 1, then in Theorem 1 and in all its corollaries one cannot
replace the constant N(Y) by a consiant independent of Y, see say [13].

Remark 3. If in (8) one replace p, with 8, then, for 5= 1, the statement of
Corollary 3 is, generally speaking, invalid, see Theorem 4.

Theorem 4. Forevery Ye 9, ne N and A > 0, there exists the function

fe A¥NYYNC', such that for any polynomial P, e ﬂtzl(}'} MNP, satisfying
Pa) = fED, PO =M, PED =D, RO=D O

there is a point x € I, for which
Ir'@) =P 2 Alf’] 2 %Am;[;",ﬁq(x}}-

To formulate the last Corollary 4, we denote by Lip'[t.. 0<a= 2, the set of
functions fe C, such that

Wz(_f,f} = ()(l'“}, =0,
Corollary 4. Let 0 <o <2 and Y e ,. Then fe A®Ny) N Lip o iff
there exists a sequence { P, }”_, of polynomials Pye A*)(Y) N ®,, such that

l [-F
alil
We prove Theorems 2 and 4 in Section 4. Theorem 1 is proved in Section 3. To
prove Theorem 1 we need Theorem 5, which is of separate interest. We prove
Theorem 5 in Section 2. To formulate Theorem 5 we need some notations.

Let x;: =Xjni= cos(f n/n), j=0,...,n bethe Chebyshev partition of 1. For a

fixed ne M and ¥= {y, E:t € 7, denote

= 1), n— e,

0, = 0i(nY) := (xju%,2), it yie[xj.x_)

where x,,q:=-1, X,,2:=-1 and x_, :=1. Let
5
0=0(nY):=Jo.
i=1
We will write je H, if x;& (-1,D\ 0.

ISSN 0041-6053. Yep. smam. scvpu., 2002, 1, 54, N1 9



1204 G. A. DZYUBENKO, J. GILEWICZ, 1. A. SHEVCHUK

Theorem 5. Let Ye %,. If fe APNY) then for every n = N(Y), there exists
a polygon L having the knots at x;’s, with je€ H only, such that
Le A®NY)
and
[f @)= L(x)| € cwy(f,8,(x)), xel, (10)

where N(Y) is a constant depending onlyon Y. If s =1, then N(Y)=1.
One should emphasize, that the polygon L in Theorem 5 is not allowed to have
knots at a:,-'s, if X € (R

Below foreach j=1,....n, wedenoteby [;:=1/; ,:= [xj-,xj -1 ] For any
interval E, let |E| be it's length in particular |.’J | =xj_—x;=: hj. We will use the
following well-known inequalities without special references

hiey < 3hy,
Palx) < By < Spu(x), xel,
Palx) < 28,(x), xe IN(ILULy),
and Whitney inequality

|80~ h0)| < 0o 85 [ab]), xe [ab),

where {; is the linear function thart interpolates g at the points @ and b, and

ws(g,r,[a b)) is the second modulus of smoothness taken over the interval [a,b].
2, Proof of Theorem 5. Sei

(1) 1= oy( f,1).
If s=1 thenput N{¥)=1, if s> 1 then choose N(Y) satisfying
Ioi{ﬂf F}nafﬂi:"! Y) N fZF,
forall nz N(Y) and i=1,...,5-1. Fix nz N(Y). Denote

0, = O)(n, Y) =: {’T"’-E,-)‘ P=1...5

thatis y; and y, are respectively the left and the right ends of the interval 0.

The following four cases are possible: a}'£| =1, ¥.#-1; b) o= 1, ¥, =-1;
c) ¥, * L ¥=-1;d) Y, * 1, ¥, #==1. Let us consider the case a) only. All other
-:.ases are similar. That is cverywhcrc below in the proof of Theorem 5

y =1L Fo=-1

We are going to define the functions L, foreach i=1,...,s If i#1 then denote
by f: the polygon, consisted of three intervals, such that E,[—]} =0, E,-[j,-' =1,
Li(y:) = L) =0.

Similarly, if £ 1 then denote by L, the polygon, consisted of three intervals,
such that L (-1)=L (v;) =0, L,-{EI_] ==1, L{l)=0.

Remark that if i isodd then L, € A)(¥) and L, € A®)(Y). If i is even then
-L; € A®)(Y) and -L, € A¥X(Y).

ISSN 0047-6053. Yup. sam. aypu., 2002, m. 54, N° 9



COCONVEX POINTWISE APPROXIMATION 1205

For every i=1,...,5 denote by [, the linear function that interpolates the
function f atthe points ¥; and y;; denote by [, the linear function that interpolates

the function f at the points v, and ¥,
Put

Ly@) = 27 )~ RO +D).
2

For every i=1, put

(L) =i )L, i CDEE) -EE)20 A
Lix) := =

(1) - L(F))Ei(x),  otherwise. (12)

Evidenily,
Lie A®(Y), i=1,..,s (13)
For i=#1 let
- " L(x), if xely.mk

Then in the case (11) we have

L)+ L) = h(x), xe0;, (14)
and, in the case (12),

I () + Lix) = Li(x), x€0; (15)

Now, for i# 1, we prove the inequality
[Lix)] < copyx)), xel. (16)
To this end, we consider, say, the case (11). In this case, if xe[-1,¥%], then
Lix)=0, and (16} is trivial. If x e O,, then Whitney inequality implies
|f @)= k)| < ecal]O]),
and
[f @)= 1,)| s col|O)]),

hence
i) 1,x)| < col|0)]), xe 0,

Therefore (16) holds for x & O;. In particular

L) < cotpa0) 5 o L),

H

MNow, if x2 |y_‘_I, then

|Li(x)] < fm[]](l-x} < m(i]{l-xz) <

n
< coff,(x)) < colp,(x)).
If y,Sx -:|_1-'-i’, then p,(¥;)= p,ulx), whence

ISSN 0041-6053. Yp. mam, wypw., 2002, m. 54, N* 9



1206 G. A. DEYUBENKOQ, J. GILEWICZ, . A. SHEVCHUK

L] < |Lly,)] S colpa(n) € colpa).
Thus (16) is proved.
For i =1, the similar arguments vield

|Ly(x)| S m[—';], xely,
fn
whence

|Ly(x)| < em(n—lf](nx) < m(ll) <

n
< ecolp,(x)), xel amn

Denote by L™ := L (x) the polygon with the knots at points x;'s, j€ H, and
points y;, i=1,...,5. thatinterpolates the function [ at these knots and also at points

—1and y, (that is, generally speaking, L (1) #f(1)). Evidently

L' e A¥y). (18)
Whitney inequality vields

[f)-L'@)] < colp,x), xel. (19)
Finally we show that the polygon

= Lix) = L' () + ), L)
i=]
is a required one. Indeed, (18) and (13) readily imply L € A“)(¥). Relations (14)
and (15) mean that the polygon L does not have any knots, except x; with je f.
Inequalities (16), (17) and (19) yield the estimate (10) for xe I\(f,U1,).

So we left with (10) for x € f; and x € [,. By ils construction, L is a linear
function in f, and in 7,, and L(-D)=f(-1), L(M)=f(). We put g(x):=
1= f(x) = L{x). Then we have g(=1) =0, g() =0, ws(f,0, 1)) = wylg,r,ly) =
< wr) and wy(g,1,1,) = @), where @s(gr,[a,b]) is the second modulus of
smoothness taken over the interval [a,b]. Besides, inequalities (16), (17) and (19)
imply

1 1
lelly, = m[ ] and [glf, = m[ 3 ]
Then, say, for x e I}, we apply Marchaud inequality and get
I-ﬁl

£ =L@ = 18] = |&(x) - gM)| S o(1-3) j +relnD s
&.0x)
< e(l1-x) j’ “"': }du +e(l-x) j }du + ca(B,(x)) <
o Ba(x) w

< efl- x)o(5,(x)) _[ = +ell-x 2y 1, ;"‘{ﬁ{(’;)}'
1-x

< cof,(x) + en’| 1 |0(8,(x)) < cl8,(x)).

Similarly one checks (10) for x € I,. Theorem 5 is proved.

+ Cﬂl{a"[x}:l =

ISSN 0041-6053. Yip. sam. xypi., 2002, m. 54, N* 9



COCONVEX POINTWISE APPROXIMATION 1207

Corollary of Theorem 5. If L is the polygon guaranteed by Theorem 5, then

TG )% - %p0%y03L ] 2 0, jeH, (20)
b
|EF TR A | B .-:ml:‘;_;}. f=1 . .0=1, (21)
fl
and
[%;-10%jsx; 0L ] = 0, jeH, (22)

where [J:J- TSI TR 2 } are the second divided differences of L.
3. Proof of Theorem 1. Following [16], we put

cos® 2n arccosx " sin® 2n arccosx
{x —x'-]}z {x -.:Fj- :]2

i
(j-1/4)n
n

1 (x) := ljl,,[.r] —

where ¥, = cnsw and xf=msﬁ? with ﬂ:-] =
f—3/4)n
ﬁ}} = (i )

numeérators which are contained strictly in the interior of fj, and that the f{ are
algebraic polynomials of degree 4n -2 with the following property

t(x) <

y JSnf2, and

, j>n/2. Notethat x; and .r}:' are zeros of the respective

ooy B
(Jx=x; [+4)’

Following [7, 9, 13, 14] we consider two polynomials of degree = cn

= cty(x), xel.

1. F .
Ti(x) = T; o(x;Y) := - Irf"(u}l'l{u}du. jeH
L |
{1}*1 = .szi[rg,.. if j‘ilEH). where
1
dj = [ @N(w)du,
-1
and

() = o jl T, _y(u)du + (1- o) j'l Ty y@)du, jeH,

where 0= a <1 is chosen from the condition

T;' [l} =1= Xy
Denote
0 if x=a;
x(x,a) = ael, (&) = xxx),
, x=»a,

x=xp)s = @ -x;)% (),

h
T (x) := ’_L'_,
i
X=X ‘H'j

ISSN 0041-6053. Yxp. sam. xypu., 2002, m. 54, N* 9
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1208 G. A. DZYUBENKO, J. GILEWICZ, I. A. SHEVCHUK

hiT(x) = epy(x), x€l (23)

We have the following lemma.
Lemma 1 (7, 13, 14). For each j € H, the polynomial t; satisfies

T EONE)M(x; ) 2 0, xel, (24)

GEY = &), D =0, ) = 0-x5), (25)
lx—x; )= 1 ()| € T x), xel, (26)

lx; )= 1 @)| s I x), xel. (27)

Lemma 1 implies Lemma 2.
Lemma 2. For each j€ H, the polynomial t; satisfies

lx=x))y = 1;(x)| S -2} (x), xel (28)
Proof. If xe (I;1UI,) the (23) implies
hTH(x) € en’pr(x) € e(l-x7),
whence (28) follows from (26). If x < [, then by (25) and (27)
|Ge=x))s = 70| = |((x=x)) = 7;(0) = (A= %), = T;M)| =
1

_[ [;(I- ()— t_:- {u]]du

x

< cu-x]ma}xr}m = c(1-0)T}(1) £ c(-)T}(x) < e(1-x*)T}(x).
raly

|
S CAOREAGIEE

Similarly one proves (28) for x € f,. Lemma 2 is proved.

Proof of Theorem 1. Let L be the polygon guaranteed by Theorem 5. We
represent L in the form

=1
L(x) = I(x) + 3, [-t;.,.x,-..r,-_,;r,]gzj X)X, =
i=1
= i)+ %[-"nnxrﬂ-t:f—liﬁ-. = Xj )X = X)4s
je

;L J(x +1)+L(-1), and where we used (22).

where [x):= [xn,x"_l,,

Put
= l{x) + zl.rﬁhxj,xj_.;l.]{xj_] —.xﬂ]:!'l'j{x}.
The inequalities (20) and (24) imply

[-’fj +1XjsXj_jil ]{xj =1 —.rj,,]]t:{x)l'li_'x] =

= ""r'—;x {x_li-r;-ﬂv Xia Xjps ](-"_f—l_-ﬂ'+|]1:;'(x]l'l{x} > 0,

xel, jeH,

that yields (4). To prove (5) we represent the difference f— P, in the form

ISSN 0041-6053. ¥xp. mam. xypn., 2002, m. 54, N*9



COCONVEX POINTWISE APPROXIMATION 1209

f&) = Py(x) = f(x) - L(x) + L(x) = Plx) = f(x) = L(x) +
LED ) EFRIE TR 4§ (CIRES Y (CEE MR CES
jaff
=t f(0) - L(x) + 3 oy,
JEH
By virtue of (10},

If @) - Lx)| s colB,(x)), xel
To estimate o (x) we use the inequalities (26), (28) and (21). If x& J; and x & [,
then

wih; )

loy )| s c—=- by T ) = col ) s

J'

»

.&
< cmipnt;r))[ +~—(-}]T‘Lr} < colp, ()7 (x) S cold,)} ),

where we used (23). If xe [, then

ks
EASIE c¥nj (1-x7)x) £ cold, @) ),
i
where we again used (23). Therefore taking into account that (23) implies

|| E_:=| l';z“ = ¢, we gel

< cw(d,(x)), xel

E,u,mi < cof8,(x) T THx) € cofd,(x)

JEH ie M

] ol
51|

j=1

Theorem 1 is proved.
4. Proofs of Theorems 2 and 4. Let us recall some well-known facts. Estimate

(1), Dzyadyk [1] inequality [p) "Bi| < ¢|p,"P,| and Trigub [17] estimates of

simultancous approximation imply the following. If feW’™ and P, e®,, nzr-
-1, then

where one may assume thar ¢; 2 1,
Let yy & (=1, 1). Then Bernsi¢in inequality provides the existence of a constant
ny, such that foreach nzny and P, € F,, we have

TAG E%Ha I xe [y =8,rdm ). (30)

ll‘

17171 @)

= E| +l'.-:

If'_n
|p;

Lid

Denote by

j "~y +1) 2 du

S(x) := 2=
Jﬂ 1 '""{u + I}"zdu

cy 1= I|.S":’ ”(x}f

.|'E| Iﬂ

TSN Q01 -0053. ¥ep., mam, xypn., 2002, m. 54, N° 9



1210 G. A. DEYUBENKO, J. GILEWICZ, I. A. SHEVCHUK

and remark that
S(-1)=0, S50)=-1, §Y-1)=50)=0 j=1,.,r-2
§'(x) £ 0, xe[-1,0],
and

Q
| Sxydx = -
=1
Proof of Theorem 2. We fix y,e (-=1,1), put ¥ := {y;} and recall that

ﬂm{}’} is a set of continuous in [ functions, which are convex in [y, 1] and
concave in [=1, y;]. Then we fix an arbitrary large n = ng, satisfying y; = 8,00 ) =

>—1, and cyc3 £0,1n%28](y,). Put

n
0, if x<y-8&
Sy(x) o= s("ﬁ-"'i} if y-8<x<y;
-1, if x>m,

f@x) = | Ss)du.
=1

Evidently,
fe &%),
f-1)-fQ) = =f(1) = 1 -y, + 055, (31)
and
s Ol = 5§ = ex8™".
Mow Theorem 2 follows from the inequality
fl;‘_“’ > ﬁauﬂf-{ (32)

for each polynomial Ppe ﬁ{:}[}’} MNP, To prove (32) we assume to the contrary
that, for some polynomial P e A®(Y) NP,

Ph
Then (29) and the choice of n imply

1 g 22
H < 204 &n=s, (33)

" & -r:zc3i5"' < 0,18n%2,

p" ‘[
In particular

lf (£~ P'p| < 015.
Since (x—-y,)P(x)20, xe /, then

ISEN 0041 -6053. Yip. sam. wypu., 2002, mi, 54, N 9



COCONVEX POINTWISE APPROXIMATION 1211

1
P(l) - P(y) = [ P(x)dx < PO)(1-y,) < (0,18-1)(1-y),
¥

P(y, - 8) = P(-1) < P(=1)(1+y,-8) < 0,18(1+y, - ),

and
1P| = Powy s Py s 018 - 1.
Therefore (30) implies
3
P(y) - Py, —8) € 8P (y) + %—P'"{y, _@8) <

< 8P(y) + 0,28 P’ = 0,88P(y) < 0,85(0,15-1).

Hence
P(1) - P(-1) = (0,18-1)(1-y) + 0,18(1+y, - &) + 0,88(0,16-1) =
< -0,66 -1 + y.
Thus, by (31)
f) = f=D = PQ) + P(-1) > 013,
that contradicts to (33), since (33) implies
If® - fED - PO+ PEY| S [f@ - POI+[F ) - PED| £

2- 2r=2 1 ]
g —35 = 5 0,18— < 013,
200" 5 S 015 < 0

Theorem 2 is proved.
Proof of Theorem 4. For the simplicity let y; =0. Choose a number b >0 from
the condition

bnt(A +1) < 1.
Put
0, if xe[0,1];

f(x) = —i, if xe[-b0];
1, if xe[-1-b],

X
f&) = | f@)da.

-1
Let us show that this function is a required one. Indeed, assume to the contrary that
there is Pye AP([0}) satisfying (9) and

| f(x)-Fix)| < Alfll = A, xel.

Then ||P, | <A +1 and by Markov inequality
e

Since P, e AY{0}), P.=D=f(=1) and P,()=f(1), then P(x)< f'(x),

< n3A +1).
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xe[-1,-b)U[0,1]). Show that P)(x)<f'(x), x € (—b, 0). Indeed, otherwise the
graph of P, would intersect the graph of f* at least at two points in (=b, 0), and
hence a point © € (~b, 0) would exist, such that P, (@)= f""(8)=-1/b. Therefore
1/b = || Py || < nzi;fﬂ. +1), that contradicts to the choice of the number b, Thus we

have, P,(xl)=f (1), P(x)s fi(x), x€ 1, and P.(x)<f'(x), x € (b, 0), which
is impossible. Theorem 4 is proved.
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