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ON THE CONVERGENCE OF FOURIER SERIES
WITH ORTHOGONAL POLYNOMIALS INSIDE
AND ON THE CLOSURE OF A REGION
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W study the mate of convergence of Founes senes of crthogonal paolviosmls over an area inside and on
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1. Introduction and main results, 1ot 67 O O be a fisite regon bounded by o Jordan
curve Lo ENT let B ) be aoweight Tunetion on €7, and Ber {I\',,{;]IP\ZU be a unique
syslem of orthonermal polyncmmals /W00 0= 2™ 5 L ay, = 0, over the region O

with respeet o the weight function b {z), e,

I e 1. 1= .
ARG, = »r

// MEIEREE) k) TR TS

[

where s a0 two-dimensional Lebesgue measure on 47,

Lot A (8, GF) be the set of analvue functiions f on &7 sanstying the condition

LA, = W e /J,J'Irr'ﬂ{:lifr.':};"rr'r-' T (n

Farevery f € Ag{h.7) and cach o = 01,2 the [ollowisg quantity &, and
series correspending to f are defined:

' 3
iy 1= w,{f): Jlr/ Al )z (e, =0 x ()
e
HIH
T
()~ anKu(z). i3)
T

The soletion of the problem ol the convergence of (3) to f in &5 depends on the
caompleteness of the system of polyvaomials in Aa(h €7 with respeet 1o norm (1), Tt s
well knowan that (see, cog (L] i the weight function is bounded above and below by
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1300 F. G ABDULLAEY, M. KUCUKASLAN

positive constants, then the system {!'.',,f:}}:___ o 0f orthogonal polynomials is complete
in (3,
We set

W

Sﬂr{f: -1} V= E.: i ﬁ-;_-{::l_

kb
and
walz) = |flz) = Sa(fi2)]. z€G.
Then we have
lim wo(z) =0, =&,

=0

and, consequently,

s

fiz) = Zu,rh',,t:}. z € . (4)

ep =1k

In this paper, we investigate the rate of convergence to zero {w, (z)} — 0 0 -+ 20,
first, inside the region & and, second, on the closure of the region & for different weight
functions. Qur aim is to determine the rate of convergence, depending on the propertics
of the region & and weight function fif 2).

MNow let us give several definmtions.

Throughout this paper «. ¢y, 3. ... arc positive constants and =, 2, 2. ... are suffi-
ciently small positive constants, in general, dependent on .

Definition 1. e say that

al G e Clp.o). p=12..... 0 <o < Lifz=z(5). 0 €5 < pusl is
a natural represemiation of L. = = () is ptimes contivuously differentiable, and
2'PH5) € Lipay

b G e Cyif L = NG has a continuons tangent #(=) := 0(z(s)) for every point
z(s):

o) G CalA), 0 = & < 2.0 L = 4G consists of the union of finite Cy ares such
thai they have exterior (with respect to G) angles A ym ar the corners where two arcs
meer, 0 < A, <2, A= n;in {As}

Let

hz) = D). D)€ HYG). 0<a<l, and D()#0. z€G.  (5)
where H*(G) is the class of analytic functions f in (7, and f € Lipa on G
P. K. Suetin [2] proved that if L € C'(p + 1.at) and I(z) defined by (5) is such
that D(z) € W HYG) (ie. D € HYG)). p = 0.0 < a < 1, then, for all
e Fe& G, we have
O
w(z) £ e[d(F, L))" ——E, (f. A2), (6)

FTTLRAE

where ¢ is a constant independent of z and » and

F

Eolf. Ax) = n},i“u ([[h{;]l If{z) - I’,,{ujll'"fhf) . deg Py
o
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ON THE CONVERGENCE OF FOURIER SERIES WITH ORTHOGONAL POLYNOMIALS (.. 1301

is the best approximation in the class A (4. &) by algebraic polynomials F,(z).

One can see that the rate of the convergenee wy(z) — 0, n — oo depends on the
distance from the compact subset F € (7 to the boundary countor L.

Let #{z) :=d{z. L)y =inf {iz = | : ¢ € L} and, for A > 0,

1 2
. < 2
3-a 53
1 2
U{}L} &= a‘i_ 5 = Jl < 1. {T:'
1
-, A=l
2 =

Theorem 1. Let Loe Ca(X) for some A, 0 < & < 2, and let L(z) be defined by (5).
Fhen .
wal(z) < cd TS EL (S A2 ™" (8

fere ald pr such that 0 < j < min {% _,f—l} e = O(A), and 0 < g < oomin {1; A} if

o = i A) Here, o iy independent of = amd o, and O X) is defined by (7).

Corollary 1. Under the conditions of Theorem 1, if X = 1, then
wulz) < ed(z) S En(f. Az)n™* (9)

forr all yro (0, i] i_'.l"'% <o = land pe (0 a)ifi< o< i
This shows that if 0 < o < l, then (9) is better than (6) in the case p = (),

Definition 2 [3]. We sav that L is o K-quasiconformal (I = 1) are or curve if
there is a K-quasiconformal mapping f of a region D containing L such thar f(L) is
a e segment or a circle, respectively.

Let F{ L) denote the set of all sense-preserving plane homeomorphisms [ of regions
I3 containing L such that f{ L) is a line segment or a circle and

Kp= wf K(f).
= iy

where () is the maximal dilatation of the mapping ;. Then L is a K-quasiconformal
curve il and enly if Ay, < K < sc.

In case where Lois a A-quasiconformal curve or a piccewise [ -quasiconformal
curve, estimates of the type (6) were investigated in [4] and 5], respectively,

We now choose a weight function as follows:

he () and hiz) = ez 00 (10}

Cur aim 15 to investigate the same problem on the closure of &,
In the case where L € ('(1.a), 00 < o < 1, P. K. Suctin [2] proved that, for every
F e A, ie, for f analytic in & and continuous on &, one has

Wh 1= INAX w, (2] < enEL(f. G, (11

seda

INSN IR -60F 3. Vige, anemn, wcygne,, 202 me. 54, Ne 16



| 302 F 0 ABDULLALY, M. KUCUKASLAN

where
E (f.6) = il max |F{=) -- FPu(2)]
P celd

15 the best approximation of f & A7) by polynomuals 1 (z), deg PP, <,

In the case where L is a K'-quasiconformal curve, a similar result of the tvpe (11)
was established by F. G. Abdullaey in [6].

We now give several results similar to (11) for different regions and obtain, by
using some known results, the subelass of analytic functions that can be expanded into
uniformly convergent serics on €7 as in (4).

Theorem 2. Ler e E"rﬂ. -:!I.:l ﬁ??" same N 0= ) = 2 oand ler f = _4_[?] Then, _ﬁjr
arbitrary = = 0 and A" = max {1; A}, we have

wo € en* YE (f.6)

Corellary 2. Suppose that the conditions of Theorem 2 are satisfied and | ¢
€ WIMHMG), r +a > 4. A = min {1: A}, Then

g '-.':.l LR v {IZ}

Jor all w < (r +a)h. = A

Thus, every [ € WWYWIHSEY, v+ 0 > J.:I can e expanded imto series (4)
waiformiy comvergent on G,

Let o be a conformal inapping of ur: (i) < 1} to ¢ with 0 (0} = Z5 and 5 (1) > 0
for arbitrary fixed zy € €7,

Definition 3. We say thal O i o E-gquasidisk, 0 < < 1 ifany conformal mapping
¢rcan he extended to a Q-quasiconfermal self-lioncomorphism of the plane C. where
Q= :_'_-:- b this case, the curve L = WG i called a b gnasicivele. The region G feurve
L} is called a grasidisk (quasicivele) i 6@ is a b-guasidisk (h-guasicivele) for some b,
0<k<l

For example, let & be the region bounded by two circle arcs symmetric with respect
1o the c-axis and y-axis, each crossing r-axis at £4, where 8 = (1, and the angle between
the arcs is w(1 — &), where 0 < & < 1. This region s a b-gquasidisk.

Theorem 3. Let & be a h-guasidisk for seme b0 < b o< 1 amed let | € ,"[{f,'j_
Then

wy = e "YEE 1.6,
Coroflary 3. IfG isa k-quasicdisk. 0 < & < 3 and [ & WOV H(G), rda > P

Hresr
wy < en” Y, (13)

wihere 17 := [(r + o)(l — k) — (1 + k).
Thus, f can be expanded into series (4) uniformly convergent in G

SISEN O T-605 3 Vep agmn wevpr, 202w 54 N [0



ON THE CONVERGENCE OF FOURIER SERILS WITH ORTHOGONAL POLYNOMIALS ... 1303
Remark 1. If L = G is a KN-quasiconformal curve, then k& = i—;'—: Therefore,
(13) is satisficd for every @ = K — r. This is better than [6] (Theorem 3) for i < /2.

In some cases it is difficult to find the quasiconformality coefficient & for a given
region. Mevertheless, the rate of convergence must be found for such regions, wo. There-
fure, we give this rate depending on other parameters.

Let w = &(z) be a conformal mapping of @ = CG onto A = {w: |w| > 1}
normalized by €(o0) = oo, P(=) = 0, and ¥ = &1,

Definition 4. We sav thar 7 < Q:}, 0 < d.4 = L if the following conditions are
satisfred:

i) L = i)7 is o quasicirele:

iipd eLip3. =€ 0 and ¥ € Lip~, |w] = L.

Theorem 4. Ler 0 If.}:', Jow some 3 oand 4. 0 <= 3.5 < L Then, for every

fe ll:ﬁjl we have
wly .::" 'r'”-i. -E:u[f-ﬁ-]' L€ E'

witere [, = min {2; J;}

Carollary 4. Suppose that the conditions of Theorem 4 are satisfied and f €
€ WIHNG). r + 0 2 £, Then

Wy =on {14}

where 17 1= (r + a)y = ..

s, f can be expanded into the wniformly convergent sevies (4) on G

Remark 2. 0) If G is a convex region, then ¥ € Lip1 [7] and € € Lip 1 [, p. 582].
Henee, forevery f e WITHYG). r 2 1, 0 < o € 1, we have

Wy S e,

where = r +a — 1.
b) f & & Cy, then G € @ for all 0 < 2,5 < 1. Hence, for every f ¢
e WWHYG). r+a > 1, we have

Wy ST
where 5 1= (v 4 o) — 1 — = for arbitrary = > 0.
¢) If & is an L-shaped region, then & € Lip 5 and ¥ & Lip % [9]. Hence, for every
Fe W ESCY), ¢ 4 o = 3, we have
w, S
where 1 := (r -i-n]l% - ::
d) Let L be quasismooth, de., for every 2, 20 L, if #(zy. z2) is the smaller of the
lengths of the arcs joining =, and = on £, then there exists a constant ¢ = 1 such that

L

s(zp,22) S ez = 2.

ISSN N T-6053. Mip, swom. wevpn,, 20002, . 54, 5 i



1304 F. G ABDULLAEV, M, KUCUKASLAN

let & € Lip3, 3 = %{1 - -:r-m'min 1)1 and let ¢ e Lipy, 5 = ﬂ_fﬁf? [10, 11].
Then, for every f € W H(G), » + o > 2=, we have

W S,

where 5 := (r + a)y - 4,.
e) If L is e-quasiconformal (see, e.g., [9]), then & & LipAfor 3 = ;5=
bR = [T
. Harcsin L3? - ;
and ¥ & Lip~y for 5 = TiL—w.~|.TE-ET" Also, if L is an asymprotic conformal curve, then

® € Lip 8 and ¥ € Lip 3 for 3 < 1 [9).
Hence, for every f € WIIH®(G), r > 1. 0 < a < 1, one can also calculate w,,.

Definition 5. We say thar

a) G € Q(A} if L = OG is a quasicircle and, for every = € L, there exist r = O and
0 < A < 1 such that the closed cireular sector of radivs v and apening Ax lies in 10
with verfex at z,

b) G e Qa(A) forsome A 0< A< Land 3. D=3 <1, if

)G e QA)
i eLipd |w = 1.

Remark 3. If & € Qga(A) forsome A, 0 < A < 1, and 3. 00 < 3 < 1, then, for
every f € WH(G), r+a > 4, we have

we Sen
where 1 = (r + a)d — ..

2. Some auxiliary results. The relations « < b and « = b are equivalent 10 « = o
and cpa < b < egh for some constants e, ¢y, and . Let & be a finite Jordan region,
let zp € G, let w = (2. 2g) be the conformal mapping of & onto the unit disc 17 =
= {w: Jw| < 1} normalized by ¢(zg. z0) = 0, ¢"(20.20) > 0, and let ¢» = =",

Let & be a quasidisk. Then there exisis a quasiconformal reflection y(-) with respect
to L such that y(G) = €1, y(f1) = G, and y(-) fixes a point of L. The gquasiconformal
reflection y{-) satisfies the following conditions [12, p. 26]:

1
M) -zl=IC-2]. zel. e<|({<-,

1
lvef = lucl = 1. e<lKl< . (19
yg| = WO, Kl < -
! |
ye| =II"™". 1Kl = -

For t = 0, let
Lii={z: |le) =t if t< 1. [P =t if F>1}, Ly:=0L

Gyi=int Ly, and £}, := ext L,.

JEEN i 1-6005 3. Mep. weam. e, 2002, e 54, M 1Y



ON THE CONMVERGENCE OF FOURIER SERIES WITH ORTHOGONAL POLYMNOMIALS ... 1305

Lemma 1 [5]. Suppose that G is a k-guasidisk for some 0 < k < 1, 5y € L,
s,z € 0N {2 |z = 5| <d(an, L.-,,:I}. and w; = P(z5), i =1,2,3

Then the following assertions are true:

(i} the relations |zy = za| = |2) = 23] and |wy = | = |wy = wy| are eguivalent
Furthermore, |2y = 22| = |2y = za| and luy = we| = |Juy — uy);

(i) if |z — 22| < |21 — za). then
L3 L]
wy — 1y ] = <3 ury = Wy
— =
wy = Wy = 7 3 wry — g

where U < rg < 1 i5 a certain constant dependent on G and k.
Lemma 2 [13]. Ler &5 be a k-guasidisk for some 0 < k< 1. Then
| B(w;) — Blws)] = |uny — we]'T* (16)

Jor all wy, ws € 7,

Forevery R = 1, let L := y(Lg), G" :=int L*, and 12" := ext L°. Let B, : 2° -
— A be a conformal mapping such that &, (50) = o and 9% (o) > 0. According 1o
[14], forall z € L* and ¢ € L such that |z — t] = d{z. L), we have

d(z, L) =d(t,Lr) = d(z. Lg), (17

1P (t)] < |Pu(2) €14 (R -1).

Lemma 3. Ler G be a guasidisk, ler P (z) be an arbitrary polynomial of at most
nth degree, and let R = 1 + £, Then

"Pnﬂc-qﬁj <ol Prt”r'[ﬁ‘] '
where ) = oy (G, c) > 0 is a constant,

FProaof. Let

: Py .
.F'{:]:= ﬁ. e . '“E}

It is clear that F' € A(T)"), F(oc) = 0, and, for every = € L,
IF(2)| = |Pul2)].
Then, sccording 1o the maximum modulus principle, we obtain
IF(E)] < max|F(z)] = max|P(z)], &€ ir. (19)
From (18) and (19), we get
1Pal€)] < [ (&)"* I Pall oy € € T (20)

Taking £ & L, in view of {200 -(17) we obtain the proof of the lemma.

ISEN 100053, Mep, vam. sevpre, 20002, m. 54, N 10



1304 F. G, ABDULLAEV, M. KUCUKASLAN

Lemma 4 [3]. Ler L he a K-quasicomformal curve. Then, Jor alf w, 0 < u <
< R =1, and zp € G, we have

mes ({2 © Y)(G1+4\G.- z0)) < 6~ (20)8" " (£). (21
where 8(z) = d{z, L), £ = & "{7), amd

|7l = inf {|w] : w € (¢ © y)( L1t 20)} .

Lemma 5 [3]. Ler L be a K -quasicomformal enrve. Then, for every n = 1, there
exists a polynomial F,(z, zo) such thar Pu(zo, 20) = 0, P!{z0, 20) = ¢'(z0, 20). and

Neo(-. z0) = Pl z0)ll 4, < n~! + 6 (20) [mes ¢{;}{GH\\G],3D}]* : (22}

Lemma 6. Ler G' € CalA) for some A 0 < A < 2. Then, for everv n = 1 and
0 < pu < min {2 } there exists a polynomial Pz, oo) such thar Pz, 20) = 0,
Fp(z0.20) = ¢(z u1~n]| and

llol-y z0) = Pul-.zo)ll 4, <47 ’-'"""Lx"{;ir]'”_ﬂ- (23)

Proof. Since & & Cg(A), 1t 15 casy to sec that L satisfies the Ahlfors three-point
condition [15, p. 81], i.e., L is a quasiconformal curve with some guasiconformality
coefficient o /7). Thus, by using Lemma 5, we get

(- z0) = Pal- z0)lly; < m =1 7Y z) [mes (WG RNG). zn]lll—i

for the polynomial P (£, z) such that P (zp. 20) = 0 and P {z5. z0) = (20, 20).

In the case where zp is fixed, the estimate for mes {@(y(Gr™~G), )} is given
in [16]. In the casc wherc zg is arbitrary, we add more facts to the process of the
proof presented in [16] in order to obtain an estimate for mes {@(y(G R~ G). z0) } when
NECESSAry.

Let =3 € L be a comer with exterior angle Aw and let b;(z3), ¢ = 1.2, be two sub
arcs of L that meet at z, and belong to a sufficiently small neighborhood of £, Without
loss of generality, we can assume that $(z,) = 1. Let b, denote the smaller length of
the arcs $(b,(z,)). We take

E; 1= {rf."g: 9] < meshy, 1 < < R} i

E. =W(E)., E..=y£E.), E,=wE.:)

Further, consider the mappings £ = £(=". zy) = (* - :1}'-‘_17. w = w(£, 5y}, and
w = w(&{zp,20)) = 0 and let & := E{zp.z0) = (20 - :ﬂ"‘-"«‘, E¢ = E(E..), and
Ey = w(E¢). Then G¢ := £(G) is a region with smooth boundary and L¢ isa (1 + =)-
quasiconformal curve, Hence, by using Lemma 4, we get

mes E,, < 67 1(£)8'° (24)

TSEN i 1-6053. Vep. anm. wovpn., 2002, m. 54, Ny 10



ON THE CONVERGENCE OF FOURIER SERIES WITH ORTHOGONAL POLYNOMIALS ... 1307

for all £ = 0. and the mapping w(£) and its inverse can be extended to the entire plane
(1 4 =)*-guasiconformally [ 13, p. 75]. Therefore, by virue of the Goldstein theorem, we
get

mes e Ee ) = (mes g )" (25)

for all 0 < 5 < (1 4 2)7 2 On the other hand, since #E, is guasiconformal, one can
show that there exists =4 such that

wmes £ = s{p = [w']). (26)
Since (p = |u'}) = ead! L+e)* (£") by virue of [3] (Lemma 2.1}, from (24) - (26) we get
mes £y -4 67 (&) (mes Eg)' (27)

for all = = 0. The estimate for mes L 15 obtained by the procedure used n [16] to
estimate mes F.. Using [ 16] and the mapping £ = £{z]), we pet

mes By, < 67 7% (o) (R = 1)* (28)

24 11
ol s
Lemma 7. Ler 7 € Cyg(A) for some A O < A < 2 awd fer e(2) he defined
v (5). Then, ,I"J: p & G oamd v = 1, there exists o polimomial 1,0z, 29) suweh Hiat
Talza. z0) = ;;.:'1 ]':' el

for ail U < p' < min {

LAY
< BT S (5g)n P (29)

o G TR |
i Il A,

S all pp suech thert O < = mlr:{ g T 1 oo =2 (M) and G <2 o < oominfl: A} if

o< {A). Here, o ix independent of = .r.um‘ .

Proof. By assumption. we have 41 € Lipa, = . 6 Hence, since L is quasicon-
formal {with o quasiconformality cocfficient (') = 1), by virtue of [17] (Theorem 3)
there exist polvnonuals 0 2) such that

1

e |
L =y
i

- i?.rr{a'l! <al" (2. Ly ). {2y
DG |
Lot Qnlz.20) 1= Qulz) = Gl 20) 4 it - From (30) we get

1 ¥
i - (a5 = - "
n: :;:I”t 3 dulz. zp}| =~ m (31

forall 00 = ;" < evmmn §1: A}

TXNN GO D008 8 Mgy vernn, v, JUGE . 54 A [0



I 308 F G ABDULLAEY, M, KOCUK ASLAN

Then

L

Ay

|
=B n) — -
- HU{-}"(,[{.;}LH.J Pzl +

1 . oL
oy - @m0, 1 - i, +

+ I :ﬂ]";'l-_r ”ﬁ][_] = Q- 20)
< T FER (za) (F"‘ + 1"“:!4"") +m#

forall b < u < 1uil1{1 . } and 0 < p" < romin{1: A}, Defining m1 = n if g < p,

n = [ur{:’] + Lif ' = g oand 1, o= Y02, we complete the proof,

Lemma 8. Ler G & Co(A) for some A, O < X < 2 and Ter hiz) be defined hy (5).
Then, for every zq € G, we lave

S IKe(zol? = QUlxal? 84 (zg)n ") (32)
k=
fer all py = 3-:‘:,-_%-; aief gz = 2amin { ez '}

Preaf. 1t is well known that the function that minimizes the integral

J{f):= //h{:]|f|{:}|"!rh‘:: (33)
42

in the class of functions f analytic in & and square integrable over & and takes the

value folmy. zp) = = f}[" Bl _: Ay for 20 € G is fulz. 2u) ':H'""’ [2].

On the other hand, the polynomial that munimizes (33} in the class of polynomials
of at most (i = 1)th degree and takes the value Ay lor 2y £ G s

a=1___
3 Kz Ki(z)

5 e k=0 : ]Au|"‘

Qu-1(z) = 'J"ﬂ_"T‘_—_~ and I(Q,, s — (34)
> JE ks E Ifu{,.u}l
[t k=

SSEN PN TonnA S :lu"xlr: RUTLTA T MY am 54 AE IO



ON THE CONVERGENCE OF FOURIER SERIES WITH ORTHOGONAL POLYNOMIALS ... 1309

= ffh{:j|f},...|[$-¢u]' :
='_'r-|--j:: fifz

-:Hf B(=) Lfals- 20) = T—y (2. 20)|2 dere (35)

We also have

ig, =

¥
i, <

where 17, -y is an arbitrary polynomial for which T, (z0. o) = Ag. Taking 7;,_; as in
Lemma 7, we get

Ao |2
L o O (i)
> IKe(za)l®
k=
and, conscquently,
=1
2 Kzl = 22 —om.u*' Hi (zo)mH2). (36)

ki)

Let m = n. Relation (36) yiclds

E IKE(za)}® = O(Xol? 67" {zo)n~*2) = (| Ag]? A8 (29 ) —H4),

[T

Taking the limit as i — 5¢, we gelt

=
3 IR ()i = O Xl 874 (zp)n— 1), (37)

Le=n

3. Proof of theorems. Proof of Theorem 1. By using the Minkowski inequality,
we obtam

-;..,?“{;_'} = |.|r{:-} . Hrr{_lr--'-]l =

", (1] .t
= Zu;,.h].{:] —Lug Mz :I‘ Z apfp(z)| =
L eth =0} |A SR |

: :

< ( > 1":-!:) ( > unc;n"') . (38)
homproe ] kezzan -1

It s well known that

Bt ) = ( 5 w)

TR |
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1310 F. G ABDULLAEV, M. KUCUKASLAN

in Az(h, G). Hence, by using Lemma 8, we complete the prool of Theorem 1.
Now let G be a finite region bounded by a Jordan curve and let Tulz) be the

polynomial of the best approximation of f(=) in &. We have

Ta(z) = Y et Ki(z). (39)
k=0

where
= [ MOT O R Gder
e
Then
L |
walz) = |f(z) = D arki(z)) <
k=) I
< |f(2) = Ta(z) + [Tu(z) - qu-a'\’n-f:} =
bl
< E(f.G) + [1,(z) - mem )| (40)
k=M
Qn(z) = T,(2) — 0 _paeKi(z) is a polynomial of at most sith degree. Then, by
using (2) and {39], we get
€2, (= . ur.-}ffn-[-:}‘
I
Tol€) = A KK (z)doe| <
I‘- 0%
< [ VRGO - 1013 Rl Rw(e) | dor <
o l=tn

< max [T, (z) - /(= iff N c}jZ?{ITC}m }jfrn,:.

lk=0

By using Hélder incquality, we obtain

< eE,(f.G) (i!h’;f.:}l!") N {41

ke =i}

F(z,) = 3 Ke(OR(z)
[ =T ]
be a bilinear scnes, We apply the mean-value theorem to F{z.¢) in the disk [z —

< d(z.L), € G. Then

= ¢ . ....._!.._.. ; aF * i
f] F(z, QI dar; < m,q:_f_}[ |F(z. Q) da.
i

|z=C|=ddiz. L)

gl <
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n 2
_v2
(Zmuﬂ ) < e j [ ©| 2 ROk g
e
= ed (2. L) 3 |Ka(2)|
ki)
S IKW()P < ed 2(z, L),
=0
Then, by using relations (40), (41), we get
wy € eEL(F.G)d™ (2, L), : € G. (42)
Mow let = € L, Then, according to Lemma 3 and (17), we can write
wy £ cEy(f. )"t Lg), €0, (43)
where t € L is such that f{z, L) = |z — #|.
Proof of Theorem 2. If G & Ca(A) for some A, 0 < A < 2, then
an~ <d(z, Liyi)= oan=Ae, (44)

where A® := max {1; A} and A, := min {1; A}. The required result now follows from
(43) and (44),

Proaf of Corallary 2. If f € WU HY(G), then, by using [12] (Theorem 4.12), we
obtain

f(z) = Pal(a)l =d™ (2. L141), 2€G, (45)

Taking into account Theorem 2, (44), and (45), we get (12).

Proof of Theorem 3. 1f (- is a k-quasidisk, 0 < k < 1, then, according to Lemma
16, we get
iz g 1) 2 en—tHR, (46)

The required result now follows from (43) and (46).
Proof of Corollary 3. It follows from [18] (Theorem 2) that

I£(z) = Pa(z)] € n=(r+elti=), (@7)

Relation (13) now follows from Theorem 3 and (47).
Proof of Theorem 4. 1f (7 ¢ QE. then, by using [12, p. 58], we obtain

en~ % < oz, Lija)sen™, (48)

where . := min {2, } . Relations (43) and (48) now yield Theorem 4.
Proof af Coroflary 4. By virtue of Theorem 4, relations (48) and (44) yield (14).
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