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SPECTRUM AND STATES OF THE BCS HAMILTONIAN
IN FINITE DOMAIN. IIL. THE BCS HAMILTONIAN
WITH MEAN-FIELD INTERACTION’

CIHEKTP TA CTAHH T’AMIJILTOHIAHA BKIII
B CKIHYEHHIH OBJIACTL IIL TAMLIJIBTOHIAH BKIII
3 B3AEMO/IEKD CEPE[IHLOI'O ITOJIA

Spectra of model Hamilionian with BCS and mean-ficld interaction in finite volume and periodic boundary
conditions is investigated. Model Hamilionian is considered on states of pairs and waves of density charges,
and their excitations. It is represented as sum of three operators that describe noninteracting pairs, interaction
between pairs, and interaction between pairs and waves of density charges. The last two operators tend 1o
zero in the thermodynamic limit and spectra of model Hamillonian coincide with spectra of noninteracting
pairs with shifted by mean-field interaction chemical potential. 11 is shown that model and approximating
Hamilonians coincide in the thermodynamic limit on their ground and excited states and both have two branches
of cigenvalues and eigenveciors.

BrBueio cOek THH MOREILHONS FasMi AL Tonian 3 piacvonion BKL 1a cepeainoro noad i ckiiueniomy ob' i
T MEPIOARYMHY FPANHUIEE YMODax, Moaea=mA rossiasTonian podragHyTo Ha CTAHAN Nap, XERAL FyCTIN
Japany Ta 1x yamens. Ha upx cranax sofe il FasMutbToH 2 IPeICTARACHD TPLOME GNEPITORAMI, WD
OIMCYSOTH HEBISCMOLION MaPpH, BRCHMONIG MiK NApasMi T8 SMUTEs rycTinn 3apaay. Ocradme asa one-
PATOPH NPAMYIITE A0 HYAR ¥ TCPMOIHNAMIMHIR FPAALE, TOMY CNEKTP MOLCARIOND TAMIIBTOHIANA JCHMMT-
TOTHHIO MIAETEC 31 CREK TPOM HERIFMOATOHIT NAP 3 ICYHEH I BIFMOLICE CEPEANLOTD MOAR KIMIUIHM
noTentianos, Joneneio, Mo MOASAEHNA TH ANPOKCHMYKHHA TaMiTETOHIEHN 30IraANTECA ¥ TEPMOMITHIMIMHIR
FPAMHLLE WD EXHIX CCHOBHIEX T2 30y AseHn cranay | obHARL SE0TH AR FLAIKH RASCHIE JHA%CHE T4 BAACHNY

BEKTOPIB,

Introduction. We investigate spectra of model Hamiltonian with BCS and mean-ficld
interaction, proposed by Thirring and Ilieva [1, 2], in finite cube with periodic boundary
condition. We used approach developed earlier in Petrina’s papers [3, 4]

From general Fock space is extracied the subspace of pairs and waves of density
charges invariant with respect of action of the model Hamiltonian, In this subspace the
model Hamiltonian can be represented as sum of three operators that describe noninter-
acting pairs, interaction between pairs, and interaction between pairs and waves of density
charges. The last two operators tend to zero in the thermodynamic limit and spectra of
model Hamiltonian coincide with spectra of noninteracting pairs with shifted by mean-
ficld interaction chemical potential. Spectra of ground and excited states are determined
asymptotically exactly as V¥ — oo. We show that the model Hamiltonian is thermody-
namic equivalent to the approximating Hamiltonian on the ground and excited states. We
also determine the ground and excited states of the approximating Hamiltonian and show
that the model and approximating Hamiltonians are thermodynamic equivalent on them,

It follows from the obtained resulis that the model Hamiltonian has two branches of
spectra: the first one connected with noninteracting pairs, with shifted chemical potential
and their excitations, and the second one connected with ground and excited states of the
approximating Hamiltonian.

Author expresses gratitude to professor W, Thirring and N. lieva for fruitful dis-
cussions during his stays in ESI in 2000-2001 years as guest of Auvstrian Academy of
Science.
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SPECTRUM AND STATES OF THE BCS HAMILTONIAN IN FINITE DOMAIN ... 1487

12. The model Hamiltonian and its action. [. The Hamiltonian. Consider a system
of electrons enclosed in cube A in the three dimensional Euclidean space with periodic
boundary conditions. Denote by L the length of the edge of the cube A centered at the

origin. Denote by & the quasi discrete momenta which take values & = EI#n, n =

= (mny,nz,ny), where the numbers n;. ¢ = 1,2, 3, run through the entire set of integer
numbers Z. Denote by o the vector of spin of electron & = (1, —1) and by k = (k, o).
In that fultows we will denote by & the vector (K, 1) and by —k the vector (—&, —1).

Denote by ni' the operator of creation of electron with momenta k and spin o, by
;. — the operater of annihilation of electron with momenta & and spin . We will also
use the denotation

+ + & +
a; =ag,, Gr=ag), O_,=0_; ,, Ok =0_f_1.

In what follows we will use the same denotation as in our previous papers [3, 4].
Consider the following model Hamiltonian [1, 2]

k‘z
Hy = Zﬂruk(i-r;: —j.:) +
3

7 . g A + -
+V Ell*tt Gy al ao gt + V gt’kbk'ak A’ Qo =

=Ho4+ Hg+ Hy (12.1)

where V' is the volume of cube A, V = LY v = v_y is potential, p — chemical
potential , 7 — mass of electron, ¢ — coupling constant, g < (. We supose that
2

potential has a support in layer I) of the Fermi sphere -2-—~ —p| € wy, w >0
m

Hamiltonian (1.1) differs from vsual BCS Hamiltonian by the last term Hyy known
as mean-field term.
2. Action of Hamiltonian. Consider the following states

Ty =

=ag, ...apal, ...a7, Z Z falky,- .. ka)ag aly, ... af a2y 10) =
n=0k; #...7kn
o +
= gy ﬂi-"l —i'a T —HZ nl Z Sn(k ]Iﬂ'-rﬂ"kl. a* —‘f 10) =
n=
ng
=2 foner: fo=1, (12.2)
=0

where all momenta (p)y, (p'), (k) belong o D, but (p); and (p"); belong to the
2 2
i ; i e X _
< 5 ). and (k),, belong to the domain Dy (k|0 < =
—p < w), ng will be fixed later. We suppose that p; # +p for arbitrary &,j C
i ) R |

domain Dy (p| —

2
Mote that all our results remain true if we wse the domains Ly (p| — W< 2‘”— — =
Tt
’\:2
< r...ru)., D”(kl-u;u < e B = :..:) with some wy, —w < wy < w. We will discuss
m

later how to determine the parameter wy.
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1488 D. YA. PETRINA

Instate fip, (p;) the sequence of functions f = (fo, fiki)...., fulki,. oo k). .)
has a support in {3y, functions are symmetric, and f bc!ong:-, to the spax.:t '?'l‘lJr WIth

norm

Wy = vr 3 Ualknseen s ka)l? (12.3)

n=0 = ky#E. k.
and corresponding standart scalar product of two sequences f € H{ and g € HE.

We say that the state f.), ), corresponds to the wave of density charge with the
operators a} ...a}« +-"1 et "pr and 1o the state of pairs with the sequence f. The
reason why |hr: state fip, ip) 05 constructed in such a way will be explained later.

Now consider action of Hy on the state fi,, (o,- By analogy with calculation

fulfilled in our previous papers [3, 4] we ablain

Hpag, ...agaZ,. ... —P:an Z Jalky, ... ka)afaty .. af aty |0) =
k1 ikn

n=

E ZABE) ()

)}m&', ik

n f2k?
+ EJ ( 21

+% "[thvpfn{k!... o Kn :'-' Z l;_-lbk;f"l:kl..... J.....kﬂ_:l]'i'
i=1 1=jgi
]
'U'
+2 (z i +§ju,.) (z g +zvﬁ)mk.,_“ ,m} 3
im=] im] im] im]
xag, .. af,:arp "“t;JF”‘tlﬂ::'-‘t ..oy al, |0} (12.4)

Formula (12.4) implies

[
Ha Sy oy = [Z, (;j “) £t Z (‘1,—1 —ﬂ) f] Jipnon +

+{A + B) gy, ion + Qk.p.p' - Fipdetw e (12.5)

where [ is unit operator, the operator A is defined by the third and fourth term, the op-
erator [I — by the fifth term, and the operator (J;. . ,» — by the last sixth term in (12.4).
Now we suppose that momenta py,... ,py, —Phy-.. ,—p) exhaust all domain Dy
and p; # +p;.(i.7) € (1,... ,1). This means that after action of the operator Hy, all
the momenta k...  k,, 1 < n < ng, again belong 10 Dy,
3. Investigation of the operators A, B, Qy p,;5. a) The operator A acls on
Sulky, ... ky) as follows

(AfInSulky,-.. , n;l =

=30 (2 - 2) uttr k4 v Sl

L f=1
and it has alredy been investigated in our paper [3]
The only difference is that functions f,((k),) have suports in Dy, summation
with respect to p in (12.6) is carried out over Dy;. Momenta (&), of the operators

k)| (12.6)

-
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SPECTRUM AND STATES OF THE BCS HAMILTONIAN IN FINITE DOMAIN ... 1489

ay al, ...af al, in(12.4)belong alsoto Dy because momenta (p)i, (—p')r of the

operator a;f, .. a; ﬂ‘fp .a* . exhaust the domain D;. This fact means that after the
(]
action of the Hamiltonian My momenta in Hy fip), 5, of the operators n:. uf,,. ‘e
+

<cap at, belongio Dyy. Thus we can consider the operator A determined by (12.6)
and with potentials v, vy, that have supports in Dy,
As known the operator A has eigenfunctions

1 :
Sa((k)n) = —ssym(f}kr) ... £ (kn) (12.7)
with eigenvalue F = E; + ... + E, where functions f](k) are defined as follows
o
AW = —g——, =y _ A0 (12.8)
=t dut By
2m
and numbers F; are determined as solutions of equation
v
5 LT
1= 3 - 2 (12.9)

peln -2—1 - +2u+ E
2m

Obviously E; dependon L, E; = E(L).

Thus we can use all the results from our papers 3, 4] concerning the operator A. The
operator A is selfadjoint in H{ ;; i.e., in Hilbert space H{' consisting from sequences
T = (fo. frlks)s-oy fu((k)n)s-..) of functions fu({k)n) with supports in Dy; with
respecttoall ki =1,... ,n

In what follows we consider only functions [fo({%).) that satisfy conditions
supiiy, [fallk)a)l £ f £ =0, 0 2 n < ny, uniformly with respect to V.

b) Using this fact that summation in action of the operator B is restricled to Dy we
obtain the following estimate

2 =
i e ]||B.r:;.-]r ip* }v = ?ﬁzfd 4 (12.10)

for sequences j € My ,; (see (5.8) from [3]).

We use denotation from [3, 4] where

v

and Ny is number of quasimomenta in Dy, It follows from (12.10) that the aver-
ages (Sipye.tpe Bf{ph (1 )y,, tend to zero as V' — oc for arbitrary f such that
suPry, s l(E))l = ™ It is casy o prove that || 53 fig), (), ||\, tends to zero as
¥V — oo onsuch f.

c) For the operator (. o+ we have the following cstimate

=sup |ugl, a=
ke

| Ftprntedes @k oo Fipatoys v | <

<> P T (iwﬁivp-) x

n=l kygt.. .5k i=l i=]

(Ee o)

gm=] g

Wl skl =

ISSN 0041 -6053. ¥Yup. seam. sypu., 2002, m. 54, N¢ 1]



1490 D YA, PETRINA

< EQ"U‘z i E [ﬂ' + ”2‘.\"2" <

. ¥n Tli
m=]
lglv*( +2)* (& anf™ 2 _ ol +2 . 2 agr
B e — ool Helh, Gealleil SN i a f
< = :5‘( jll+m" - (af? + a?f%l*). (12.11)

It follows from estimate (12.11) that averages {fi,5, (01 th-w‘f{p]r.l.p‘h};’ exist
for fixed V and L.
Now put vg = v in [ and consider the following cxprcssion

im] im] i=m]

= vjim ChiV)= I1m —-—{_ﬂ+i’}, n < ng. (12.12)
V(D)

) (27)°
domain [y,
In what follows we suppose that the mumber ng tends to oo as V — oo but in such
a wety that limy o :Tm =,
It follows from (12.12) that expressions C'yy exists and is independent on n, 1 <
=n = ng,

Motethat | — o0 as V — oo, l = a;V,ay =2 . V(Dy) is volume of the

gl

Jim Gy (V) = lim_ —{n+!}- Jim S0 = "‘Ei =Cp. (12.13)
E?bviuusly lhul
1 r
%-,; > muvwatatatap =CH(V) Y va}ag

= kg k
on Jiohwn

MNow we are able to explain the choise of the operator "P: Y- 5 ufp p,, num-

T

bers [ and ng. With these operators and numbers the constant Oy is :nd:p-:ndl.‘:nl: in the
thermodynamic limit on numbers n, i.c. is the same for arbitrary _1" n = fg.
Denote by Cp the following constant

= % > uff(k) (12.14)
k

where f(k) is the eigenfunction of the operator A (6.1) with the lowest eigenvalue Ey.
d) Consider the following operators

{phedp'i®

Car Y _ wmeajag (12.15)
k
and
[ - —y
Eng = Oy g "*“:ak - é Zk‘ vy ag }f’ vk-u:k,ﬂ..kn (12.16G)

MNow show that in some sense the operator £y tends to zero as V' o— oo, We have
according to the definition of the operator {1y ., -

Extfiph oy = E Z {CM I_Z{m- + g, :I+L{EP‘ + vy ] -

n=1ky @ @k, tml

gt (Bt

i=1
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SPECTRUM AND STATES OF THE BCS HAMILTONIAN IN FINITE DOMAIN ... 1441

+ + .+ + ot .t + .+ e
* fnlki,... ,kn:lupl coe@gal,...elapal, .oapg T, 0y =

=i > {Cnf{ﬂtrn.+2u!}—%u{ﬂ+!’}v{n+l}}f,,{kl....,k,.}x

A=k ... ek,

xag, ... a;’!atp.; - '“:p:“:.“jk. ...af at, |0). (12.17)

According to definition (12.13) of the constant Cyy, the expression Cyy— %u[nﬁ-ﬂ

tends to zero as V' — oo,
Further we have

. 1 3
lll'll I 7 l(-fl:p}h{]?r}]!EMI':th{Pr}J}V| =

Zuin + I}

NIt 2o |y, - 2 e

< g 3 0 - L)
ng

< 2v(a+ay) Jim 3 ':‘T_.r?“ o P E%v{n +1)| =o. (12.18)
n=sl "

We used in (12.18) the fact that series are convergent uniformly with respect to V/
and the existence of limit (12.13).
e) Let estimate the operator
i Pﬂ_} ! P‘
+ i | T,
Hy—-A —C,q,;?u;u;ﬂ; - Z (E_m —p).’ - Z (2m _u)f

=1 i=1

on states I{F}l-{ﬁ'h‘
Consider the following expression

1
Jim = (f{pn.[mr- (H;. ~A-Cwm ) wajag ~
k

B

i (— —u) E;(%Tz - ;c)f)f{ph.tp':u) : -

= Jim_ F (fiwdeurer (B = Et) fizpe,imr )y = 0. (12.19)

In proving (12.19) we used representation (12.5), (12.16) and estimates (12.10),

(12.18). Note that the average ( fi.1, (505 B-fiph.{p‘h};’ lends to zero as V' - oo even
1 : ;
without the factor v The factor v is necessary 1o estimate the average (S, 000
Ent fintwy ) Obtained above result will be used in Section 14.
Denote by ©50(V) the following operator

Cu(VMaen = SV ey 0Sn<ne (12.20)
Obviously that

v Z'Uk'vkrﬂ* uka_,,,a = Cn (V) z t.l‘kf] ag
Kk

On I{F}I (p*ie II..E.

z“k"* ag axal ek fipy i = Cu(V) E vkagagfipy - (12.21)
k e
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1492 D. YA, PETRINA

MNow consider the following average

!
'or"IEI:n (-'F{P]‘:.l:i?"}r’ (I’”II —A-Cn(V) Z llkugﬂk & Z (;:I ) s
E i=1

" #

- Z (};ﬁ o )'r)ftp}i.(p‘}:) y - vh_{nw (fl.’ph.{r"}n Bftph.{p’h)v =0. (12.22)

It was used in (12.22) identity (12.21) and estimate (12.10).
Thus the operator f{ 4 asymptotically coincides, in sense of (12,22}, with the operator

A+cﬁ,{v;}:m HHE(__ -.#) *g(i”‘)h
= A, +Z(——.u+1,- 1""{”)‘:1-?(;;1 . )I

where in the rencrmalized operator A, the chemical potential is shifted by —uvCy (V).

Note that eigenvalue of the operator A, are the same as of the operatop A. The
eigenfunctions of the operator A, are given by formulae (12.8) with eigenvalue E; of
the operator A. As known the lowest eigenvalue Ey is negative, there is the gap different
from zero between Eg and the next eigenvalue E;, and the eigenfunction f1'(k) is
uniformly bounded with respect to V' [3, 4],

Now prove the above formulated results. The eigenvalue problem for the operator
Hy, = Hy 4 20C}; (V) is defined by the following equation (for f7, )

2

Haofi6) = (G = 20+ 2005V) ) A) + & Y vuwnfo(p) = B (8.

2
P
The solutions of this equation is well known
Chy s n ;
Ak = — - » Ch=g X wlil)
~ak 2 = 2wl (V) + E; s
m

where eigenvalues E; . are determined as solutions of the following algebraic equation
2

9 Yo
2 5 : (12.23)
l"C”n S +2p - 2eCN(V)+ E

It is obvions that solutions E;, of equation (12.20) are given by formula E;, =
= E; 4+ 2075, (V) through solutions E; of the equation
2
) i
-4 5 i

2Dy — =L + 2u + I
L

The eigenfunctions (k) are equal 1o
1) = e
= i + 2p+ E;

and does not depend on the shift of ch:mu:al pulcnua!
MNow we are able to investigate in detail the spectra of the Hamiltonian H . Namely,
taking into account (12.12)-(12.20) we represent (12.5) as follows

ISSN Q041-6053. ¥ip. sam. avph., 2002, m. 54, N 1S
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i I ¥
F -D? " piz ali]
HafGonorn = [; (ﬁ —p+ el (V) ) I+ E e — - v0L(V) I'|x

*fipnipn + (Ar + BNy i
o : : (12.24)
Fortrn = % --'“;a“fp; i -“fp; Z mfn”fn- .o kn)afaly . o.ap ol [0).

Ky ka
The operator A, is defined as the operator A (12.6) but with shifted chemical po-
tential g — C3 (V). The operator A, and B act only on the functions f,((k)s) in
Sipteipy- 1t follows from (12.25) that to investigate the specira of Fy it is sufficient o
investigate the spectra of the operator A, + B. The spectra of the operator A, is defined
according to (12.6), (12.9) and (12.23), (12.24) and is known. For the operator B we
have the following estimate (see (3.9) from [3])

] | i . P ] —
1Bfally < L yiga, =2 5T w2 (12.25)
Vi Vv ;
Py
from which one concludes that for fixed n the operator & can be considered as a pertur-
bation of the operator A, as V' — oc. From the well known theorem of linear algebra
(see, for example, [5-7]) one concludes that the eigenvalues of the operator A, + B

1 B
differ from the eigenvalues of the operator A, by values £ (Tr:) that are proportional 1o

V%‘ where rn is the multiplicity of eigenvalues of the operator A4,.

The obtained above result has two disadvantages:

1) for n~ Vi the operator i3 cannot be considered as perturbation of A,

2) even for a fixed n the space HI’ and operator A changes together with V, we
have not standart problem of perturbation of spectra [7] with fixed space, fixed operator
Ay, and perturbation £F8 with a smal parameter £ and the fixed operator B.

Therefore even for fixed n the function £ (i ). in general case, can change with V',

£(3) = (3

i = | and it can be estimated effectively only if all eigenvalues are simple
5). Im our case v = 1. all the eipenvalues are simple (sce [3), Section V1), and we can
B P

3 g ; 1
oblain a desired estimaic for £ (F )

Namely, denote by E(L) the point of the spectra of the operator A, + I that corre-
sponds to the point E'( L) of spectra of the operator A.. Then

|Hm-£wﬂsg%m—uwﬁ

and the function E(-E—) has the same majorant for all V'

s(%) < %n{n ~ 1olju] (12.26)
(scc [5], Section 16, formula (16.50)).

Now obtain analogous estimate for the eigenvectors that corresponds to ground state.
We use the fact that there is the gap between the eigenvalues of the ground state and the
excited states. Namely |Ey(L) = EiL)| = A >0, i = 1, where A is the gap in the
spectra of Mo, (see [3], Section V).

ISSN 00416053 ¥ip, sam. wypn., 2002, m_ 54, 5% 1]



1494 [ YA. PETRINA

For given fixed n fP(k)... ff(kn) = f2(ky,... .ks) is the eigenvector of A,
with the lowest eigenvalue Ef = nkEy and on distance greater then A from the rest of
spectra E'.

Denote by fP(k;,... k) the eigenvector of the operator A, + B that corresponds

. -1
to the lowest eigenvalue EZ, |E2 — E9| < gullvinin - 1)
Then according [5] (Section 16, formulae {15 50)) one has the following estimate
o _ Lo guuvlln{n - 1) c@llinti=D 1y 0

where summation is carried out over aII cngcnvalucs E? of the operator A, in subspace
of n pairs, and N is the number of all ET. It is easy to show that

N = (VT* (2m(u +w;]5)

vi .
where e (2miu+ u]]% is the estimate for the number of all eigenvalues of the opera-

tor Ha, (see [3], Section VI, (6.1)). This means that || f2 — f2||,, does not tends to zero
as V — oo,

13. Approximating Hamiltonian and its coincidence with model Hamiltonian.
1. Approximating Hamiltonian H,, s and its coincidence with Hy in the thermody-
namic limif. Consider the following approximating Hamiltonian

k2 P
Hn.,.n\ = ZGEEE (E - #) +Cgy z"k“;ﬂ-.k +Cg Zl'kﬂw-kﬂk +
k k k
+ Oy Zu*ﬂ:m.+CM Zﬂkﬂ:kﬂ_k —y'lcﬁv. (13.1)
k k
Note that we use in H, 5 the constant Cyy (12.13) independent on n and V. Now

we show that Hy tends in some sense to H, 4 as V' — oo on certain states @y, 1),
defined as follows

e + o+ a3
IIIJ'{:li']r-f.J'J']: i TRRRL LA 'H_FFQO, (13.2)
P = Zﬂ ! Efa -‘:1}9«&-, =ky E‘,—j f?{kn]ﬂ:,“:knlu} i

= Z Z’ fﬁkt | B ff{k“}u;__"’ ufk. B a:nutk,. 10)

n=0k#... 4k,

where f{(k;) is eigenfunction (12.8) with lowest eigenvalue Ey(L). We say that
Do)y 15 the ground state of the model Hamiltonian Ha with given fixed (p), (p')i
with the same restrictions on g, (p);, (p'); as in Section L

Note that the ground state $y), (o), is the asympiotic, as V — oo, eigenvector of
the operator

i
Hor=Ha-%_ (21 - p+ "C.'-.F{V})

> (;.m r +vﬂ'ur{‘r’})f - 22w, (13.3)

ISSN 00416053, ¥YEp, mam. xypa., 2002, m. 54, N% 1



SPECTRUM AND STATES OF THE BCS HAMILTONIAN IN FINITE DOMAIN ... 1495

N = Z g p.
It follows from (12.22) that

NHA 2yl = 1B, 0 v
hecause

(A-f—“‘?) O(K) ... F0(kn) =

(Recall that f{(k) does not depend on C3;(V'), i.e. it is the same for different C':;_"I{V]I.)
According to estimate analogous to (12.10) one has limy o [[B® g, ol =0
and from (13.4) we obtain that

Jm 5Py iprnliv =0

and conclude that ®y,), (), i the asympiotic, as V' — oo, eigenvector of the renormal-
ized Hamiltonian Hy - with cigenvalue zero.
Consider the following expression

(Ha — Ha )P io) o =

= 'u:w a:r -py —1-1 {l E [n }: 'fn a‘f: ﬂ'tkl n

n=]

DI WV{EE LA W LR L.;er-“‘”“*- H

n=2Z

y Z g vy, fT(k;daf ot .. .ka..}niﬁcf;_m}] =+

1=j#i

+f7§ (g”k' +§up‘) (Z” +1“ )

i=1

1 —
x i 2 Mk aty, . 30 fka)af,a%,, 10) -
: kg ko

mp+l A
-Cp > 2. :1 Z Rk )a) at, . L“ pkak Zf’ (kn)ay at, |u}] =

w=l =1
na=1
-) 97'ChV = 121"{& Jataty ... 3 (ko)) at, [0) +
n=Il} ky
ma=—=1
+ Y a-lc*v Zh“l}ﬂu. aty, .. 2 flka)af ate 10) +
mi==il kn
ag—1
4+ 'z v f] = 1k Jag al, ... 1ikndag aZl, -
PR z f"{k}l 3 ket ot > ftka)a at, |0}
n=1 kmk; ... knek, e ky k.,
i ZCM l(Zm_ +Ztr ) + (Zu. + Zu,,:)] %Zﬁ{kl}azafh
nml tm] fmm ] fem Tk

Z flkn)at aty 0) + g~ CEV x
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x%Zr?{k.:a;atk, Zr:’{kﬂu}ak% g |n:'}
Tk ky,

=a, .. n:‘afp,i ..,ufp;{z Z(——— Lfnl:hlﬂh s

n=2 ju]

,.— S vk vn, ST (K )ay aty, Zﬁ{kn}a: at, | })

1 4 #E

I (Eu,. +zu,,,) (M +Zu,,.)

i=1

vy [(g ol zup,) + (g R, J] } 2

=1 i=] jurl im1
l 4
X *Zf?{kl Jay, at, ... E:_ fRkn)ai oty (0} +

ng=1

+208 B whg S Rakal, -

kmiky ... hmky

- 1 o 3 .
3 (ka)ad at, 10) + 97! BY o Y fitka)af ety ...
kn "
o fkngdaf, aty [0) —

kg
fg+1

~-Cp L {“ﬂ Ul Efokl}ﬂh —ky -

o ZT}kiﬂ-:lﬂtk. S z J'?l:j'k-‘“'ﬁ'q‘'}4'1"-1'.||u.1I-*I']:‘i'nux:ﬁl |D}} -

Ry kng 1

- +
= BO(p),, o)1 — EMPyrn + CoBr®iy ooy + 05, - apaly o0l X

Pt =py =P

13V
x{ g_ﬂnf_ Z f?{kl}u:: n:h T Z ﬁ{k"“]arﬁn ﬂjk"u |U} -
3 ks kng

ng+1

1 ¥+ .t + +
-CH lgl: m %f;’{kﬂ"h“—k. . ..kzt’k.ﬂ.k.ﬂ-_h waa

G ,rf'{.i.-.,uﬂ]m:“watknw;ﬂ}}. (13.4)

kng+1

The operators BB and £,y were defined according to (12.4), (12.5) and (12.15),
(12.17) respectively and they are equal to the first and second terms in (13.4), the op-
erator [, is defined by the third term in (13.4).

Mow estimate the following average

1 I
= ?{'I'{#Jr-fﬂ'h*{”ﬂ - "f-‘-a'l-ﬂ’fph.w"u]'v =

FSEN 0047 -6083. ¥ap. saamn. sovps., 2002, e 54,067 1
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1 L
m_ (P (B = En + CaB)Pey )y +

1
: + + +
+.,r1'_'?mﬁ(¢{ﬂr-tp'}nﬂp: .agal,..al x

-1
x( C% VZID“: ey at, .. Zﬁ{k"n}uk" at, 0) -

ng+1

1
-Cp Z_I: m?ﬁ(-’fﬂﬂzﬂ:m“'Z"’hazﬂtm
. i L

55 fi’ikwﬂﬂlﬂn*.ﬂihw|D})) . (13.5)
v

kgt
The average (13.5) for the operator B and £y were estimated in the Section 12
and according to (12.10) and (12.18) they are equal to zero, The average (13.4) for the
operator B, is the same as in paper [3], namely

1 . 1 =
v |(¢'{ph,fpfhsCBBI‘I’{ph.(p'}J-,:l < [Calyvafe f2. (13.6)

Mote that in estimates (12.10), (12.18) and (13.5) we put f = sup,, |7 (k)]
The modulo of the last terms in (13.4) can be estimated as follows

(Bl = 120D 12 hne)| < Cal s oy 127 < Cl oy £ (13.6)

()ng

and analogous estimate for the second last term.

According to the definition of the number g it tends to =0 as V' — oo and therefore
the last expression tends to zero as V' — oo,

Taking into account all the above desribed facts we conclude that

; 1 '
Jim = (Ppytpe (Ha = Han)® i) o0 v = 0. (13.7)

2. Hamiltonians Ha and H, . on excited states. Consider the following excited

states of the ground state
Bg)m, (9 ) mg Pl = gy -+ g, Oq 0l o oag all iy ), (13.8)

where {q}m1 = {qh wee :Qm]_]- {q;.}m! o [qar =Wy 1“:-::;: -'Q:nij bElﬂ'ﬂg o .D.ij'. In
the excited states (13.8) there are i, electrons with momenta (g)m, and my pairs with
opposite momenta (g’ bm, (all from D;p). We do not especially fix spin of electrons with
momenta (g)a.,. letall be +1.

Consider Hp on ®4),. (41, (51, (p*)e- By analogy with (12.4) we obtain

LT l TRy 2!’}’2
H.ﬂ.‘i"{q}m,,{q‘}m, Aphi(e'h = Z ol Z { [Z 2"* ™ Z (2—:": —2u)+
e | T

i=1

+:};(£ "#) +i(§§1_ﬂ) +Z(§—2ﬁ)ﬁ{kh”l )+

n - B
+%§.vl‘.vl‘fﬂ{kl1-..uﬁ1--- z Uk.ﬂﬁ-_.lfn{juh___‘ 3 e rt,}_

I1=j#i
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LT i T2

g e o
-2 DR TR (T -, ,,}—— 3 kv fo{ﬁ.l,...,q],,,.1k..}+
1=j#i Le=jsti
(Z%+Zw+2%+zm)*
im ] §=] im]
x (Z"r+2% +Zv~.) (s k) =
=] i ]
xal .. u;mlaq,a i a;mufﬂ“u;'l...u;afﬁ .alatal, ..,a:ﬂa:knlﬂ}] +

LT

g + + O P
+F Z z 1.,"+,1q;f2{k1,... ka)ag, g, agaZ, Y.ag al, X

Jml k.41

- g = 4 +
x i =
ap, - gy ..alyagaly, ooaf ey ap el |°}}

[ ) £ 2

=]
+A + Big), (¢)mg T @i}, .lfq'll...,.l:ph,{p'!u] x

X P4y 0V mg ol Nt F Clghmy Pladmg (0 mg (2N )0 (13.9)
Jalky, e Ren) = FRlk) . .. falkn) = J((K)n):

Representation (13.9) is also true for general fn(ky,... k) with restrictions im-
posed in Section 12,

In (13.8) the operator A is defined as before for the state Py, (p),, the operator
Big)m, (g)m, differs from the operator B by additional terms connected with momenta
(9)my+ (9" )m; and it includes all the terms with sign “minus™; the operator
Q{q}m; 8 b ()N differs from the operator QIPJJ J{p'), by the two additional terms
connected with momenta (g)m, , (¢")m,: the operator Clg)m, is defined by the last term
in (13.9),

MNow proceed to estimate the above defined operators. The operator A acts only on
the functions f2((k).) exactly as for the state $p), . (p),-

For the operator By, (q),., We have the following estimate (see estimate (8.6)

in [4])

F

(‘%ﬂ-.. (" deng (10,02 )er Bl my (@hmg Pladony (8 Vg (Bhe (0'e ) o =

< Ig]lrgwcﬁf’e“f!, my 20, mp20. (13.10)

By little modification of estimate (12.11) we obtain the following estimate for the
OPEFMOT Q(gun, (4 )umsy ()e-(0" N1

7 I (‘I'{q:m. A Veng (P02 )1+ RUgeny (7 Yoz (8015 Bl Ghmy (7o .:pzr.m.) 1 =

g 1 . my mg ] £
<SS 5 e k(4 S T+ 3o
n=1 ky ...tk fm] f=] =1 i=1
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14599
"y i mn
>< (Zu,,: +3 vy +Z"’*-) <
i=1 i=1 =1
- 1 N}
< E%ﬁ%tﬁim1 +mg+14+n)(mg +14n)f" <
< z Iyl {m. +mg 4 L+ n)(mg + 14 n)f? < E|g|u?{a +a;}?—ﬂ"
n=1 n=1
< |glv*(a + ay)2ea!”. (13.11)
Now estimate the operator Cyg) . We have
(‘I’:q}_. A8 g (0300500 C @) g Pl (@) g (e .{F"Jr) | <
LT g g
< Z PRI L R R P
= k.;é . =
M“lﬂvlsarl < 8l 2enr?
< . af
= v n ol Vv v ave . (13.12)

By using representation (13.9) we obtain the following analog of (13.4)

@

o
Jim = (‘I’mm, {a")mg o(p)ep)er (A = Ha A )yq).., -w”:---a-fplu-tr‘}:)

"
S (@) g ot

[B{'I']m-ph’}mg + Cighmy — EM + CpByg),,, .rq'm]‘i’twm. (4" Vma (PP }r) +

+ IJ.m = | & O +
Voo V ( (@emy A7 Vemg (PYe [0 Je s B Z '[ﬂn-l ,u;l ,n;:{.'a“r-"l' ]l)

1
; + + + ot
+J1_’:'LF(’@M”l'w}“"m"“’r]”a‘“ -agagaly...ag aZy
+ 4 + f97'CRV
:-:a;'l...amﬂ i non 2L (

10 i Z fk)ag at, .. .Z ff'{k,,&}u;_oaj g 10} =
k; kng

x

ng+1

—Cs Z .[n -E!"*ﬂ% Lo 2omalaly,
k.

b fﬂkmﬂ}ﬂr_ﬁ.ﬂtknﬂ,iiﬂ})) ; (13.13)
Vv

knq+|

Note that in the operator Exr and By, (g7).., the terms connected with the mo-
menta ()m, s (9 )m, are added. For example

C-E B:{‘ﬂnj rfq']l-lnq’fq}H\.'!{q':mﬂ‘l{P]rfl:P'}l o
- ol + + + + .+ +
—'ﬂ_,h .-.-.uqmﬂq;.ﬂ_ql ﬂq:“ @_ aP:I. ..IGPIG_PE_...G"P: E4
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f Y ufl (k)= Z.a‘“{kxlah aty, - Z,f"{k at, |0). (13.14)
——
k=(q")mg

The following estimate is true

L

1
v ‘ ('ﬁq}..u @z 0000 CB B (ghn, (0 g Bl@)imy () (0D N ) | S

< Ga%u{m| +ma + 1)afies” (13.15)

The operator £)¢ acis on Qh}m“w Apde (' 85 follows

Nimg

EMP(G)my (I mg BHP N =

-5 5 %[cu(zumzuwz»pﬁzr- 423w -

n=1k;,.. k =1 i=1 i=1 i=1
'“(Z”‘ﬂ +E”¢' + Z”ﬁ +Eu;, ) (Zuq +Z"'Pi +Zw¢,)] x
i=] i=1 el =] tm]
x falk,. .. skn)ag, ...ag q.a Y a:_‘nu_h:rx;, cas 0T e
..at :aklﬂi‘ki"' sy [0} (13.168)

Use the following identity for the expression in square bracket
...] = Crv(2my + 2mp + 20+ 20— my) — L2 (mg + 1 +n)v(2my + 2ma + 20 + 2n).
2v

Obviously

gul
o 2V
We obtain the following estimate 2

" qu
_— l = [
Jﬂpgvtmz"':'bnj im M-

1
Jim - | ('1’(«}.; (@m0 000 EM P (), () .{m-,{pf:u) | =

il

A a™ qu
< lim —_— fn Cag = =—=(m
= Voo e at/ a7 ™

(13.17)

2v(my+mz+l+n) |[Culv a” 5,| _
® v + v m:ﬁf =10

because the series converges uniformly with respect to V' and each term tends to zero as
V — oo
Note that $(g),... (¢}, (w)i(p) 15 OFthogonal o 3777

their scalar product is equal to zero,
We have the following estimate

Mg iy
vy d % sy vl 2
(g B by (8 Vomg (PP N E % tv}mk.tq‘}.ﬂ,.cpn.tp‘n)V

o vy P
o !trq. {?im,l[q ]mg-rfp]h-“-"}l

4
Vv
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From representation (13.3), estimates (13.6'), (13.10), (13.12), (13.15)—(13.18) and
estimate (13.17) for £y it follows that

.
Jim £ (‘I‘m....,{q'lm,.tp}.,{p'h+iHn — Han }q’w}n..{ﬂ'l-.,.(r}:.{p‘h)v =0. (13.19)

Summarize the above obtained results in the following theorem.

Theorem 13. The Hamiltonians Hs and H, s are thermodynamically equivalent
on ground and excited states ¢'Iw}m. {8 D mg (Bl s T =0, mg = 0 in sense of (13.7)
and (13.19).

Now show that the excited states $oy - ), (p), 15 the asymptlotic eigenvector of
the renormalized Hamiltonian

! i

Hpr=Hp=3_ (5?% - p+uDM{V])I -3 (i -p+ vc,.,,{m)r—

e o \2m
myg 52
-Z(?—m' -p+ucM[V})r— @N (13.20)
i=]

with eigenvalue equal to zero.
There the operator Cag(V') is defined as in (12.20) but with O3 (V) = é%;(fﬂ: +

+n+1) instead of -i%;{n +1).
It follows from (13.9) that

Hp e ® (g )y (000,00 = (Big'tmy + Cla)mg )Bia"Vms (5111000

Ey(L
because (Ar —~ "'é }n) fo(ky) .. fO(kn) = 0.
According to estimates analogous to (13.10) and (13.12) ones
Jm 1By, P dmg edisornlly =0y MM [1Cq), ®igrmy (30 (e1ell = O-
This implies that
Jim [ HArP(gt)mg onuenll =0 (13.21)

and, thus, ©egy - ), (o), i5 the asymptotic eigenvector of H, . with eigenvalue zero.
We have proved the following theorem.
Theorem 14. The ground and excited states ﬁt-w':l-.,.tph.{p':lu ma = 0, are the
asymptotic, as V' — oo, eigemvectors of the renormalized Hamiltonians Hy . (13.20).
Note that Hp . changes together with @y ), (o), If one considers the Hamil-
tonian fy - with the following two operators

! 1 *
Har=Hy - E (ﬁ- -+ vc.u'['f"})f - Z (EL-:‘ -+ UCM{V})I (13.22)

i=l 2m i=1 2
then @*E‘q}m_* Ap).(p), 15 the asymplotic, as V' — oo, eigenvector of the Hamiltonian
{13.22) with eigenvalue
2
nEy+ 28q, + ... + 264}, Eq=§—m—u+vC'M,

We are not able to prove the theorem for excited states $g) - o). (p)r,(p), With
my = O electrons with momenta (q),, because in this case (see (13.16))

ISSN 0041 -6053. ¥up. sam. svpn., 2002, m. 54N 1]
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q
CH{EV}ZU*&:&‘-’ T Z‘”ﬂ’iﬂiﬂkﬂfku_;’ IEIJIE‘qul...., A Yemg PN R e =
k ke’

= Cl(VImi®(y) | (ghms (oo h

and the last term does not tend to zero as V' — oc. Note that the theorem is still true if
one considers the states with ; electrons with spin 1 and myy ¢lectrons with spin —1
and impose on their momenta in Dj; the same conditions as for (p);, (p")i, but 2m,
electrons do not exhaust the domain Dy;.

14. Hilbert space of excited states. I. Ground state of the model Hamiltonian for
gquasiparticles. Consider the following operators

o = ugap + ugal,, ay = ugay) + Wed_k,
g = Upl_j — w;ra,':', -:r:&. = uka"_'k — Wit (14.1)
1 - f1(k)
= I ke Dyj.

Up = e, W = e
VI+ (k) V1+ (fI(k))?
The ground state $,) oy, (13.2), but with summation with respect to n from 0 to

oo {in this section we will consider only the such ground state), is the vacuum for the
operators o, k. One can check that

ax®iy i =0, aekPiy e =0 k€ D (14.2)

As known the function f7'(k) has supportin Dy; and g = 1w = 0,k € Dy, and the
operators (1.3) reduce to the operators ag, u:',a_k.ufk for & Dy.
Consider the states

= &t 4 + + ot
Pladmy oIy = g - O, B O gt -0 aTo P i) (14.3)

that is excited states of the ground state $,), ey, With my quasiparticles and mp pairs
of quasiparticies. By direct calculation one can show that the states wig) (4., 2TC
linear combination of the states ¢'{¢im,1{¢}m,.¢p14 Ay 0= my .E my,0 < m; = mg
(see (10.8), (10.9) from [4]). Therefore, by using (13.19) we obtain

<y
Jim 2 (€@ )y s (HA = Han) (), .[q'J.-.,)V =0 (14.4)

States @), (¢')m, are orthogonal for different g, q',my,mz and they constitute a
base of Hilbert spase HY = Hp.
It follows from (14.4) thar

Jim = (f, (Ha = Hop) =0 (14.5)

for arbitrary f thar are finite linear combination of Pladmg (0 Vg
2. Ground state of the approximating Hamiltorign, Consider the approximating
Hamiltonian

k2
Halﬁ L EHEHJ&(H -+ vf}'”) +
k

+ Ch E uku:ﬂi‘_ + Cg z Vgl ilg — ‘t;_lf;zni".
3 k

ISSN 0041 -6053. ¥ip, san. xypu., 2002, m. 54, N 1]
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It can be diagonalized by using linear canonical transformation
g = Updp + w;.afk, (rz_ = uka: + wead_ g,

ok = Updy = H-"kﬂ:- ﬁ+k = H.tﬂ'i'k = W,

(14.6)

\.-f'_\/ Ek-t—{: M_J_\/ VEL+ChuE +Cﬂu,‘

£ = (E—_u,+u(;,u) ke Dy,

ke Djue=1,u, =0,
The spectra of the diagonalized approximating Hamiltonian

i 1 -
Hon = 3 Euofor {33 [e- VET ] -ch) -
= ZE&QEGE + VCy,
k

Ey = ﬁff + 'C-'E;T»‘E1 Ey =&, kc Dy,

can be determined exactly. Namely the state

(14.7)

Fr + +
Bloy (o = Gpy - Op @l -0l X

L=l

%) = Zf.{h]m.,. P, (R e 1)
k.,

n=0" _— B (14.8)
5 —

up
is the vacuum for operators (6.3) because

ok Pl oy =0 k¥, (), =0

Note that the summation with respectto n in &8, . (14.8) asweliasin P
(14.2) is carried out from 0 to oo, It dues not change the previons estimates (13.5)-
(13.7) and (13.10)—(13.19) because for &, (py, and Ty o i

N T I S L L ) L 2 = anf* 2 _
Jim 272 Y atfr—— < lim gl® Y] ——(ao+ey)? =0
n=ng4l n=rng+1
{14.9)
1o w— a"fi"uim +ma+n+i)?
—_— =
LTy L ! =
n=ng+1
e n f2n
"‘_:VIE"“WL‘;‘MZ "EH (a+a)2=0

Recall that limy ..o 1ip = o0,

{The contributions from tl‘r;‘r]hwh, 'iﬁm_q P > ng in estimates
(13.5)=(13.7) and correspondingly (13.10)—-(13.19) tend to zero as V' — oo, We could
also use @,y With 0 < n < oo in the previous sections. We used 0 < n < ng
only for the save of simplicity.)
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% is bounded uniformly with respect to V' and estimate
with corresponding f = sup, [f7(k)]. Consider the

The function f#(k) =

{14.9) also holds for ﬁ?ph.tp'h
slates

ol .ol atat ...-::*.. al . o, (14.10)

= _—
Plgtmy 9z = P 0 g, B @ G =ty TPILP N

They are excited states of the ground state fb?m‘ ' with m; quasiparticles and
mqg pairs of quasiparticles. Repeating calculation fulfilled for Py (4’ )mg ONE CAN
proof that

]

A3 =] f—
Jim (‘me..mm,r'{"’rh - Hﬂ-ﬁ]"f":g:...,{ﬂm,)v =0,

et 4 ; (14.11)
Jim = (f,(Ha = Hap)f)y =0

where f are arbitrary finite lincar combination of 7, A s
The states ¢, .t-:r'} are cigenvectors of [, 5 with ¢|gn:nvalu¢s VCy + Eg +
+ E,,., +2E; + A2y E .+ Ep HEy .+ Ey e,

Hu.m?f',].m“mm = (VOv + Eg, + Eh: +
+2Eq; + ...+ gy +Epy + vt Epy + Epp oo E P ()mge (1412)

According to (14.11) the states g:fq,}ﬁ are also eigenvectors of the model operator
Hy in the thermodynamic limit (see detail in [4], Section 11).

Thus the model Hamiltonian Hpy has two asympiotic as V' — oo systems of eigen-
vecrors 1) '1'{-:“],..,.“:]; (p), With the eigenvalues nEg +2E,: +... + 26, + &, +.

-t Epy + &y + ... + &y and 2) of, - Hr‘H'."I ' the e:gﬂmafues V{?v +

+2E +... 42, +E, 4.+ &y + & + ... + £y (in sense of (14.11)).

Mote that parameter wy from definition of the domains [y, Dyy should be defined
from the condition of minimum of energy of ground states of the operators Hy or H, 4.
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