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ON THE STABILITY OF SEMILINEAR NONAUTONOMOUS
EVOLUTION EQUATIONS IN BANACH SPACES

AND ITS APPLICATION TO STRONGLY

PARABOLIC EQUATIONS

PO CTIMKICTh HAIIBJIIHIHHUX HEABTOHOMHHX
EBOJIIOLIIIHUX PIBHSIHb ¥ BAHAXOBHUX [TIPOCTOPAX TA
1 3ACTOCYBAHHSA 10 CHJILHO MAPABOJITYHUX PIBHAHb

The paper is concerned with the exponential stability of the sero solution of strongly RORAUIONOTIOUS
parabolic cquations, Conditions are found on me-dependent coetliciens of a parabolic eguation ender
which its solutions converge exponential v 0 as 1 — =,

PO NAARETHCA CRCMONCIILEALIED € VIBKICTL Y I0AMRH O Podi' A3KY CHALING BEARTMIOMITIX napu-
GO PInAh, FOE I YN I BT B 9ECY Koedpinue i mapadasivim o piniaina,
MPE AKX W00 POIRAIKI CKCMOICIEU 0 3o nied o 0 npin @ —» e

1. Introduction and notations. Throughowt the paper £2 s assumed 1o be an open
bounded subset of B” with the boundary 9£2. As in [1], we will use the following
standard notations: Q,=Qx [0 0], T=adQ2x[0. ] Q=0 x [0, +=), [, =
=g x|0, 0], x=(xy, ..., x ) L wix.ry=(m (x.r)...,0,dx, 1)) is a complex

5 ar i
vector function: @ = (o;.....a,) o, e N Ja|l= 3 o D" =

im|

¥ 1
=" o o 1Dl = X D[ dx = dxy. . dx; CT(Q) s the
space of infinitely dilferentiable functions which have compact supp-ml in L2; H'rlfﬂ}

is the space of function w(x) having generalized derivatives ol u; in L,i22), |et] £
=l l=i=s and

II T
"H i Z j z D“!I,I_:f.-.' < oo
|=d 1{y i=

0 0
HUQ) is the closure of C7(02) in Hj[.lil}: HI'l{Slf-J is the space of Tunction ul x. 1)

suchthat D"u; e Lo(Qy), d'u, ' € Lo(Q2y). |a| sl 1<i<s 1<SjsSk with
the norm

! &
lalpsg., = X | [Pl dsdr+ Y | ot | dxd;
Ll

||:i_-l:I;}jl I=I“I

1.0 : i . :
H 7 (L2 4) is the space of functions wix, 1) with the norm

r hi
"""ir’-"m,; = ¥ I |D":rrd.rdr;

x| =10 g

']
" i LA
HI'*(QT} is. the space ol lunctions w; € H (L) equal zero near Ty
With the above notations let us consider the following differential operator
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i nr
Lix.1. D)y = z D"’rrwf.a',f}ﬂ" + Z a,lx, D" + alx, 1,
|J“i.i-',r| w | |;.l|=l

where Gy tp, @ Qre 53X s-malrices, o, = f—l}l""l*[r"lﬂ;},. whose entries are
bounded complex functions on €. Morcover forall & & R"\ {0} and ne C"\{0}
the following holds Tor a constant ¢, > 0
EME = 2 L i O

2 (X DETEMA > |EI |l ¥ix.nNe Q.. (1

| prkleg] = mr

LE

where £" = EM  ES-,
By the same argument as in |2, p. 44], we can prove that i the functions ag, are
uniformly continuous on £ and satisfy (1) whenever |p|=|g| = m. then there

L1
exist positive numbers g, Ay py. Ay such that Torall «e HY (L)

L P WS
=" z {--l]"r.l"': J‘”I"’-’ Do DPuely = u““"lli"":lh = lﬂ"“"i:‘ﬂ:" (2)
Irllgl=t {1

L

(-H""|: Z (=i j ap, D'uD"rdx + 2Re Z J‘r.-‘,,DI”mT dx] =

Lpklgi=1 { lrl=1n
< l'|§i“ ”i‘,-ur;“ - 1|""|f§_1|;1|- i3)
Consider the problem
(0" D =, = 0, )
i - —
i ,c0 = Pleye HM(L2), [_:—:: - 0, j=Lm-=1 (5)
el

A functiom s 1) 15 said w be generalized selirion of the problem (4, (5) in the

i
space H"r'lfﬂm} if nix, e)e H™'L), uix, 0)=g(x) and forall T=0

e — e
(-1 I[ Z (-1 iy, DY D'y + Z a,D'um + awm :Id.i.'d." =

e lpklgl=1 I pl=1
0 il
- Jufidcdr =0 Yne H"(Qp). n(x.T) =0 (6)
Sty

As is well known, the existence and asymplotic behavior of generalized solutions of
(4), (5) are subjects of many swudies. We reler the reader o [, 3 — 6] and the
references therein for more information on this direction.  In this short note we will
proceed also in this direction by proving in the next section Theorem 1 on the
exponential stahility of lincar cquations. Using the argument as in [3] the stability of
solutions of a class ol semilimear cquations can be considered.

2. Main results. In this section we will prove the following main result of the
nole.

Theorem 1. Suppose that da, [, a p€ La(82..). and that there exists A >0

‘]'.lfll
such that a— (1" (A + )l e L5(82.). where Ly is determined from (2). If
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Ju,, da
L _Llepy, 1< |pllg]lsm p=const
de o
1
then the problem (4), (5) has a unique generalized solution wix, rye H™ (€_).
-3
(4] Fl &~

Moreover ||u "H"'m: Ce ""P"H i’

Proof. 1. First, we prove the uniguencess. Suppose that the problem (4), (5) has
two generalized solutions W' u’. Forall T>0 and be (0.7), letus sel

nixr) = j [u'[.r.‘r} - u"'ﬁ.l.'.t]nlrh.
I

for O=rsh and i rd=0 for h=1<T. From (6) we have

e j[ (=0, D' DM+ (=AM, +
i, leklal=1
* 2 a, D'+ am, ]n‘.m‘: - In,,ﬁ dydr = 0, ]
lrl=1 L

where a; =a — (- 1)"A L &, is determined from.(3), By (7). (3) and the Cauchy
incquality, from the boundedness off da, /dr. da fdr it follows that

I|“:| dudt + pyInte, Ol . 0 S
0,

< Cie) i j !D"nfrc.‘.nn +E _[ In, | evar.

[prl=10 g}, L1,
Therclore,
v, !'-'}IL..‘m —4 i _[ |D”I]|3d.uh. C = const > 0.
lel=1 g3,
Put

£l

=% |

lppl=1 g3

ID’HI X 1;}.“‘1'] o,

Then we have

e
(1=Ch)h) £ C [Jnydi,  be [0.1/2C]
]

By the Gronwall — Bellman inequality. Jir)= 0. Thus, ' =~ ¥ire [0.1/2C].
Following the argument as [or w'. w? on [1/2C.T]. we can show that i =t
Ve [1/2C. 1/C). Alera finitely many steps we get o' = u” ¥re |0,T]. Since
T=0 ixarbitrary, u'myt Ve, ).
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LU
2. We now prove the existence. Let {g (x)}7, © C7(£2) be an orthonormal

0
system in L2(£2) such that its lincar closure in H#"(£2) in the space H™ (£2). Put

N
W) = Z (",;NE-’I'P,,(.":L

i=1

where Cf{:j is the solution of the Tollowing system:

I[n,"'rﬁ, + 3 {—I:I’""I"'lr:M,D"nND"tp-j ]n'.r -

a [pklal=1
+ (=" { 2 ui,ﬂ'"rrﬁ + mrﬁ]ﬁf dy =0, (#)
Qlpl=l

satislying f_‘_‘:\'(n) = ﬂf. I=T1.N. here {;r_f‘:i are coclTicients of the lunction
"
") = Yafo 0. oo 25 g
k=1

in the norm of the space H"'(€2).
Pul o™ (x, 1 =0 ne™. Mulliplying (8) by r‘*"d{Cf{r!rl’}MF. taking the sum
in [ from | w N and then integrating in ¢ from 0 w1 owe get

J [u,” F}“';:,_N z (=1 :""r‘“inwﬂ’h*” ol + l,,v”?}d.\'rﬂ +

£y, Ipllal=1

+ {—I}”'j [ E ur_ﬂ”rzﬁ + r:,,r”}?;.f.rd.r =0 (ag=a-(=1Y"Ayld).
&, el
Hence, by (2)

=

2 .[ |“;~ |2d_1.-;.fr = “"||FN("'-‘”|;"'IHJ

i,

e+ € N dvdr + G0 [mg

£ If',iE]'_I- Bir :'1|"Nt'l"‘r}||u"‘t§h
i

i1,

where
Biry = I[ i |a"_if.'lt|. + i ||‘!PE: + |ﬂ;_,—{-]}""l.f|1]n'.r.

i -lpklal=1 E}F lpl=1
Thus,
] ! 3 )
oY et ] gy, S G | H“Il|r>~{-l‘.I'j|;‘mu”if-' + Cyf| 0" 1|me1.
[1]

By the Gronwall = Bellman incguality, we get

Mg ®)

|tn~[.t..'}ﬂimlm = (,'_qr'_ﬂ'H'IIJN]

Since ||q1” HH,.““ =L,
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Jo ]l S G (10)

Multiplying (8) by (I{C,.N{r]]hh. taking the sumin § from | 1w & and integrating in
1 from O 1o 1 one geis

Ll

NN N W N
I[u, w' o+ Yy {HI!"””’IHW{}"H D'ul & Agu™u ]d.rrh -

1, [pklal=1
i e ——
+ (=" [ Z. fr‘,,.',}"'ri”u,"" + agn™ u) }I.nﬂ =0 ()
£, el=1
By (11} and Cauchy incquality
Nl N 2 N2 N (2
: <
H"‘ ir.:ru.r 52 ”" {.x,n”ﬂ,,,[m s by "” ]u‘*-“m.u v DJH'F' |H"'1£2]'

Therelore,

2

-
g (12)

"

The incgualitics (107 and (12) imply |[:r” ||

iy S Dl Beng,, + 20|

i-"“"llil_r = O, where C is independent of
Ne M. Since {u™} is uniformly bounded on H"™ (€2 .). we can pick up from
{"N }T a subsequence converging weakly on H™ ={ Qo0 w niv, ). We will show
that w(x. ) is a solution to the problem (4), (5).  In fact, since HN: x, 0} = tpN(,r}
Yxyre ), :rH{_r. i) e .'-:I'h""":ﬂ,-}, it sulTices w show that wiv, 0) = @ix), #iy,

1]
re H'""'Il’ﬂr-]-. Multiplying (8) by o jir)e Lo (0. T, aking the sum in [ from | 1w
N, one gels

Junax + | [ > =iy, DY D'y }.4.;- +

i1 i “lpklgl=1
P , ’
* i-l]""j[ E uh,,D"H“'ﬁ-l-rm'\l_] :Iff.l.' =), (13)
@ -lpl=1

The above equality should be true Tor any function 11 & M, where My is the set of
functions of the from

y |

Y ding;(x),  dirye H(OT). d,(T)=0.

iml

o ) 0 . B .
Since M = LJ‘,M,__1 M, isdenscon H™"(€, ). wix 1) is generalized solution to (4),
(3). Moreover, from (9) we have
5 5T 3
2 < . 1
I L o
The theorem is proved.
In passing, we note that using the argument in [3] the stability ol the zero solution
of some class of semilinear equations can be considered.  In [act, we can represent the
problem (4), (5) in the Torm of an abstract Cauchy problem in the Hilbert space

I

H Q)
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%ﬂ = A(thu,

[

(14
0
m) = pe HM{G).

where the domain D{A(r)) = .:;'"'[ﬂj is dense on H"(Q). By Theorem 1, (14)
gencrates an evolution up-:rul.nr‘ 10 8 5 o such that  ||U0, 5)| = Ko~ Mi-s)
Yrz s, here K. A are positive constants independent of 1, s,

Therefore, il f: R, = H"(£2)— H™£2) is a continuous operator, which satisfies

the Lipschitz condition with respect 1o we H"(Q2) uniformly in re R, and

Ifwll < winllall™. m > 1. limsup,_,_(Injwin|/f) = 0, then the following
semilinear equation:
- = Al(rie + f(r, u),
it
(15)

0
uilly = pe H"(LY

has a unigue generalized solution (see |3, 4]

By the some argument as in [7], we can prove that, if in addition, the evolution
operalor {U(r. 53}, ., generated by (14) is regular, 1. e. there exisls a generalized
Lyapunov translormation = L{r )y ransforms this evolution operator into semigroup

{T ), where T(r-s)=1L .|[””“_ sILir), then the zero solution ol (15) is

exponentially stable.
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For definition of an evolution operator (or evolutionary process), the reader is refered to |3, 4, 6],
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