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ON SOME NONCOERCIVE VARIATIONAL INEQUALITIES"
MESIKI HEKOEPIIUTUBHI BAPIAIIITHI HEPIBHOCTI

We study existence and regularity of solutions of noncoercive variational inequalities.

BHBUAIOTHCA NHTANNA MPO iCHYBANILA TA PEryJIAPHICTL PO3D’ A3KiB IEKOSPLHMTHBHHX Bapiauifiuux He-
piBHoCTEH. ) '

Introduction. In this paper we study existence and regularity of solutions of two
variational inequalities that now we define. Let ©; and £, be open sets of R"
with €, abounded and connected CP set; let us suppose Q= Q, or Q,c Q.
Moreover, let us assume ae L”(;) with a=ay glmost everywhere (a.e.) on £

< o 0 d j -
(ap = const> 0) and, for I=1[2, A =- z —-——(a,f,—] being aér‘ e L7 (&)
ij=1 9x; 7 9x;
uniformly elliptic operator on £;. Letusset V)= H{’)(Q,);_or Vi= H'(Q)) and let
us denote by (:,-); the pairing between V' (dual of V}):and V. Given freV/
and denoted :
K= {(v,v)eVxVy: vy 2 v, ae. on Q},

let us consider the following variational inequality

i i i
(4, 19) € K: Z Ja,i;(u,)xi(v,—ul)‘\}dx + J'au](v,—ui)dx +
f'j=l Q1 Q1

n
+ E jai?}(ﬂz).\-,-("z—uz)xj dx 2 (fi, vi—up)y +{fo va—tha)y Vv, 1)ekK. (1)

ij=1 Q, _ _

Let £ be a bounded, connected, open c® setof R*. Let T be a nontrivial
triangle with vertices x!, x2, x3 and Tc<Q. Letus denote by I} the side of
triangle with extremes x! and x2, and by I, i=1,2, the side with extremes xf
and x3; letus set int Ty = Iy —{x!, x?}, intI; = I} —{x, x3} and let us suppose
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c {xeR? x,=0}, T-T, c {xeR? x,>0}. Moreover let us consider an open

0 ;
set Qg cig', where T is topological interior of 7T, and the operators A =
= Y D*(aD"), B= Z(—I)’"D-" (bUDI), me N, under the assumptions

|r|=2 lil=m
Is}=2 1o

x3 Eaﬂo, BQOHTO * @, anoﬂro | intTo, aﬂoﬂintl'} =@ for i= ]., 2,

ay e L@, Y, [a,DvDivdr2 ap Y, [| D[ ax WweH @), o = const > 0,

lr|=2;'1 l.\']:?.n
|sl=2
by eL°(Q), Y, [byD'vDivdx2 By Y, j|p’u\ dx VveH™Q), By =const>0.
lil=m Q lil=mQ
|il=m

Given fe(HZ(Q))’,_ beL”(Q) with b= by a.e.on Q (by = const > 0) and
denoted by ' '

K = {(v,v) e H(QXH™(Q): v S, on Q (ae. if m=1), v<v; on Ty
(in the trace sense if m=l)},

let us consider the following variational inequality

(ui,w})EK E jamD w DY (v —uy)dx + 2 Jb-sz&le(vz—ug)dx+

Irl=2 li=m ©
|#]=2 |il=m

+ [ buy(vy ~w)dx 2 (f, vi-w) V(,wm)eK, )
Q

(-,-) being the pairing between (H>(Q))" and H>(Q).

We observe that the inequality (1) with V, = H'(Q,) and the inequality (2) fall in
the so-called class of the noncoercive variational inequalities which was studied, for
example, in [1] and more recently in [2—5]. The mentioned authors obtained existence
theorems for noncoercive variational inequalities that we can apply to our problems
only in few particular cages, that we shall immediately point out.

The inequality (1) was studied in [6] but only when ;= Q, =Q, V =V, =

= HO (€2); our situation is more general and it needs to make significant changes in
technique used in [6] and the result obtained there is included in ours. About (1), found
the necessary condition for its solvability, we analyse the case when there is uniqueness
of solution and we study its H> -regularity (Theorem ]) The following Theorem 2
characterises the solution of the (1).

About inequality (2), that is absolutely new in literature, found the necessary
conditions for the existence of a solution, we establish that under suitable hypotheses
on the data they are also sufficient except when (f,1)>0 and

xU s ((f‘x|> (f:xz)]e_r-_ i=112
(KL D)
when (2) has no solution for m =1 (Theorem 4). Except the case when (f,1) >0

0
and x%eT, where only the existence of solution is guaranteed (Theorem 3), in the
other cases the solutions of (2) are infinite and some classes of these are obtained using
additional solvable variational equations and inequalities (Theorems 5, 6, 9).
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ON SOME NONCOERCIVE VARIATIONAL INEQUALITIES 725

Particularly when (f,1) >0 and x%eintI}, we recur to the variational inequality.

(w)eKy: Y, [a,D" D' (v —w)dx + Y, [ byDup D (v, — up)dx +

Irl=2 @ lil=m Q
[s=2 jl=m

+ J‘bug(vz—-uz)dx 2z (fiv - 5‘1) Vv, m)eKy, ©)
Q

where Ky = {(v}, vs) € H*(Q)x H™(Q): v, <v, on T, (in the trace sense if m=1)}.

About the inequality above, let us note that when m >1 it is easy to find solutions
of (2) starting from a solution (u;, uy) of (3), thanks to the local liptschitzianity of
and u,; this property fails for u, when m = 1. We get over this obstacle with
Theorems 7 and 8 which, in different hypotheses, assure, among other things, that the
difference u,—u; is locally near every point of intI, greater than a lipschitz
function equal to zero on T.

1. In order to (1), first of all we note that if V, = Hé(ﬂz) there exists a unique

solution [1] and if V= HI(Q.Z) the inequality (f5,1), =0 is necessary condition so
that (1) has a solution. .

If V,= H'(Q,) and (f;,1), =0, we consider the variational equations:

ueV: 2 [ ajuy, vy dx + jmwdx = (f,v), VveW, (4)
ij=lQ, Q 4
ue H'(Q,): E J-ab, UV dx = (fp.V)s YveH(Q,). (5)
‘_f 192

The equation (4) has unique solution; the (5), in the above stated conditions about €,

admits infinite solutions which are different two by two in a real constant. Let u; and
u,, respectively, be the solution of (4) and a-solution of*(5), it is trivial that (1) is

solvable if and only if

inf (i —uy) > —oo ©)
Q

7}
and that, if (6) is verified, all and only the solutions of (1) are the pairs
(u), g +¢c) with ¢ < inf (u;—uy).
: Q,
The (6) is, for example, verified when ne{2,3}, f, e [2(Q)), £ el?(Q,) and Q,
is C"' set because [7] both w and wu, belong to the space H*(Q,) and

consequently they are continuous on £,.
In the case (f5,1), >0, the (1) has unique solution; the existence of this solution
is given by a theorem presented in [1, 8] the uniqueness is obvious. Following we will

suppose (f3,1), >0, when V, = H (Qq) Let (uy,uy) be the solution of (1) and
remarking the upper limitation

i
e "H'(Q y + s "H'(Q., sc (Hf; HV,’ + | A "v’ + |luy “[}(ng) (C = c(ay, a)), )
we now show the following regularity theorcm '
Theorem 1. If Q, is C" set, a,} eC®(Q), fel? (Q,) it follows that:

o) for any open set G with G cQ,, it results: w, e H*(G), |y 2y +
+ uz g2 6y < C("fi n(}(gl)‘f“"f:z”,{?(Qzﬁ‘"“z“ﬁ(;zz)) (c = c(ajf,a,G,Q,));
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o,) if S'—L,_ cQ, then u e Hz(Qg)ﬂ Hz(G) for every bounded open set G
with GcQ-Qy, e H'Z(Qz), [l HH?(Qﬂ + [y ”H%G) + ][:.sgﬁh.z(nz) =

[ .

= C("fl ||1}(Ql) + [ £ ﬂ,{?(nz) +] “2”1,2(:12)) (¢ = (g, a,G, Q,));

az) if Q=Q,=Q and at least one of the spaces Vi and V, is Hé(Q),
then “.‘EHZ(Q): ey iE;ﬁ(Q)"’” ”2“};2(9) S C(“ﬁ"ﬁ(m‘"“ f |l.{,3(n)+“""2uL2{Q})
(c = c(ah, a,Q)); .

o) if Q=9,=0Q, di=d=a; and V= H'Q), then wyeH* (),
ey HHZ(Q)"' [ “2"53(9) = ¢ (“fi ",r}(Q)"' I ||L2(ﬂ)+ [l 2 ”LZ(Q))_ (c= c(a,-j, a,Q)).

Proof. The property ¢,) is a consequence of a result obtained in [9]. Let us
show o,) when V= H' ()); similarly in the other cases. Taking into account the
o) and since

uw € H*(G); : (8)

(c =caha,GQ)) )

Iz < ¢(1filzey +1 A2 20,)

for any bounded open set G with G < Q,—Q,. By virtue of equality Ay +au; =
= f; in the sense of D'(Q,—,) and of inequality (7) restricted to (9), we have only
to study the regularity of u; and u, ina neighbourhood of 9.

Let ¥ beapointof 9Q,. The assumption about , gives the existence of an

open neighbourhood U of X, with U < Q,, of asphere S,.of R", with the centre
in the origin and radius r, and of an invertible C™ application @ of S, on U,
having CM inverse @®7' and unit Jacobian, such that ®(ZF) = U™,
®({yeS,:y, =0}) =09Q,NU, where X} = {yeS,: y,>0}, U"=Q,NU. Let
us denote with H(ZT) the closure with respect to the norm of H : (Z,) of the space
of the functions ([‘)ECM('—E—.“‘.‘.") satisfying the condition: qu, €]0,r[: o(y) =0 for
|¥|> 1,5 let us suppose that for every ve-Hé(S,.) [resp. veH(Z!)] vo®™ s
extended to zero over Q, [resp. £,] and let us put: @i = wo®, &= ao®d, f=
= fio®, T ={yeS,: y, <0}, -

Ky = {0 +v) e HoS)x H(ER): iy +v 0@ 2 1y +v,007" ace. on U*}.

Setting x = ®(y), we get the equalities:

Z f%" Wi fb‘ = E _[bfak(‘”(b)\ (wo®), dy Vv, WEH(U)

L=l u ."xk—ls

(10)
E | @iy wy,dx z | b o @)y, (wod)y dy Vv, weH'(U),
ij=l y* k=1 £¥

where by, [resp. bz] is C%' on 3, [resp. TF] and it depends of & and the

v n
functions a,i, [ resp. a,%]; moreover the operator By =— Y, 2 b}:k—a— is
' , S et 9%\ OV )

uniformly elliptic.
Let us observe
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ON SOME NONCOERCIVE VARIATIONAL INEQUALITIES 727

b3 J B (@), )y, dy + 3, J.b.’%k(ﬁz)yb 1)y dy 2

hk=1 s, k=l T}
2 [ fndy+ [ fwdy—[advdy Vin,wm)ek. (11)
s, Tt S,

If we choose »"€]0,r[ and xeCy(S,) with 0<x <1 and x =1 on S., for
hefl,...,n} and se{l,...,n—1}, we have: .

i)y, €L(S,)  (Xitp)y,,, € (S, . (12)

" (xil ).'t';,:-'.r "_r}(s,) & ” (xﬁi)m';

2 = C("fl I|L2(9|)+[IJE’.”LZ(QZJ-FHMQHLZ(QQJJ
o 13
(¢ = c(a, a,%, D).

Namely, considering the functions

DI(xa@)(y) = (xﬁg)(y+f?-‘(x§!)()’)’

=D E) () = (xﬁ;)(y+r*)+(xﬁ;t)2(y—r*)—2(xfi;)(y),

where ¢ is a nonzero real number with sufficiently small modulus and ¢* = (0,...
,t,...,0), observing that
&

Di(xi) € Ho(S,),  Dy(xia) e H(Z),
o 2
(87512(’1)}(;;&1), axD;’D;(xﬁQ)) ek, for O<e< %

n 1/2
Z _[ b;k(D;(xﬁl ))y,, (D5 (i )).5';.- dy < cfy 11;;1(9,)[ “ D ((xul) W || 2(s )J +
1

hk=1§, h=

£ 3 [ bh(@), xD"D*(xumjkdy (c = c(af, ®)),
hk=1g,

" 12 "
> [ B DIy, (i@ )y, dy S el (nz)[z HD((xuz)),,)[[sz)] -

hk=1 £* h=
+ Z J- bhk(“?.)]h( XD rD (qu))\kdy (C = c(a§,®)),
hk=1 £} “
and using (7), (11), we come to the inequality
12 12
(S1ptamn)s,| + (B0 ) =
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!
sc (Hfl H{}(Q,‘, +{ f2 "E(Qz)"' (|4 "z}(nz)) (c= C(a;j: a, %, ®))

from which we obtain (12) and (13).
Let us show that

iy € H(Z7), (14)

X € H*(Z7), (15)
i, € H*(ZY), : (16)
I g2 ey Hloxm g2 cen) +HXE 2ty <
4 L} ' I‘
< c(|| flzay I Alze) ||Lgmz,] (c = c(ajja,x.®).  (7)

First of all, setting
N=7%00", K, = {0,v)eH}(S)XH(E!): vy >w, ae on I} },

n
F o= nf - X [ah)gn, - (@juny,)y, |, B = Fed,
i.j=)
v = (v},...,V,) = the unit outward normal vector to 9€2,,
o = surface measure on 02,,
taking into account (10), we have

n
‘z ‘[ ?’f!:k(xﬁr ).1"-’1 (vl _xgl)_\'k d}' + J 576&! (""I T xﬁ1)d)’ +
Cohk=ls, S :

n n
+ ), [ b))y, (v = xib)y dy = Y, [ afung (vae @ —nuy)vido 2
hk=1 T ' C =130,
2 [R—xi)dy + [ By -xi)dy Vv, vs)eky; (18)
Sy ' B
from (18), owing o) and (8), it follows that:

X € Higo(Z7),  By(xiiy) = F—axi a.e. oo Z7, - (19)
xi, € HE(ZD), B,(yiy) < E, a.e. on I}, (20)
B,(xit) + By(xii,) = K + B, — ayii,, a.e. on Z}. (21)

The relation (19) and the first one of (12) give (14). From (20) we obtain the following
relations

By(xiiy) € Lnc(Z7), @)

iy < bml| g i i
B, (xity) < ﬁ{Fz o+ 2 (b.;.:'k (xug)‘w, ).'-'k * (b’?” )A“':n (xitz )A"u :| -
nn (hde)#(n,m)

- (b_in))-" (xﬁ’l)y,, - . 2 (b,‘lik (xﬁz),\-;, )."'k a.e. on }:':‘-’
: (I k)#(n,m)

(Bi(x@))" € L*(Z) (23)
because of the second of (12).
Extending i, to zero over the half-space y, <0, let us consider the function
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ON SOME NONCOERCIVE VARIATIONAL INEQUALITIES C729

(xﬁl)(yll"'ryu) lf y"<0;

vO) =43
E 7".-' (X“l)()’h- <o Yp—ls _iyn) if Yn~ 0’

i—l

1

where (A, Mg, A3) € R® s the so,lutaon of the system 2 iy =1 Vje{o,1, 2}.

By virtue of (19) we have =

v e Hy(S,), ' 24)
|J\1!|[H§(S‘_) < cfxg "Hz(z;) (¢ =const > 0 independenton i ).  (25)

Introducing the convex set K = {veHé(E:): V2l -y a.e. on 2:’} whose
elemcntg are supposed cxtcngled to zero on S,, the relation (18) implies that w =
= i —y on I} is the solution of the variational inequality

weks: Y _[ z’;v},,(v.z_\,;r (v=w)y dy = j (F - axiy — Boy)(v—w)dy Vveks.

hk=1 £* =
Then, owing (22), (23), (24), it results [14]:
we H (2.1‘), (26)
“"‘E’“Hz_(zj = (||ﬁ||L2(2+ +||axtf1||g( LZ(E*' +||B]1|IHL2(E+) @7

(e= c(bhk}).

Then using (24) and (26) we obtain (15). The relation (16) is deduced from (21)
using the second one of (12) and (15). The upper limitations (7), (13), (25), (27) lead.
to (17). The o) and (8), (9), (14)—(17) are obviously sufficient to get o). The
03), which is known when V|, = ¥, = Hé(.Q) [6], can be established by topics
similar enough to those used above. . .

Finally, let us verify oly). The relation

2 J'a,j(ul)'lj(w u,)\. dx + J'aa](v]—uj)d}. + z Ja”(uq} (v — ) er
ij=l : ij=l 0

2 jf,(vj-u,)d“ [ An—m)dx  Yopv)ek (28)
Q Q

implies that Z J' aji (g + 1y ), Ve d.x = J(fl +f-, —auy)vdx VyeH(Q); then [7]

Q=10
iy € H(Q),  u+u, ”HZ(Q) =c (“fi ".(F(Q)"' £ ".{,3(.0_) +[ 4 !i.r}cm) (29)
(e = clay,a,)),
and . . _
[+ £ au)dx = 0. (30)

Q

Setting K4 = {ve H'(Q): v>0 a.e. on Q}, puttingin (28) v, = uy +v and v, = u,,
vi=u and vy = iy —v with veKy, wenotethal w = u —u, is solution of the
variational inequality:
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n
we Ky: z Iagwxi(v—w)xjdx 2 J(f, +fr—au)(v-w)dx  VveKy.
ij=1Q Q
Since because of (30) also w+1 is solution of the same inequality and since for

cif
yeC'(Q)-(0} and 0 < & < (miD([vO w+l+eveK,, weget
ol
n _
Z Ia,iji‘-‘_yjdx = j(f] +f—au)vdx  VveC'(Q).
ij=10 Q-

It follows that (7] we H*(Q), [[wlly2q) < c(||f, 20y 15 2y + 142 Ile(m],
Q)) and thenthe o) is true by virtue of (29).

where (¢ = c(ay,
Remark 1. About 0,), the belonging of u; to the space HZ(G) does not
depend on the fact that €, is c" setbut it depends only on the following conditions

a4y €L QINCR(R),  fieWNCie(Q),  fo €V N Coo(Qy).

Dealing with «,), taking in account the assumptions about a§, Q, and f, the
relations

IIIEHz(QE)nHZ(G), LtzEHZ(Qg)

hold admitting, more in general, a,_l_,- eL*(Q)NCA(Q) and fie VN LLL(Q). Let
us add that, if £, is bounded and il set, since

n

> ‘[aéf(ul)_\.; vy dx + _[au,vdx = (f,v) Vve c'(Q)), with suppvc Q;-Q,,
iJ=1 0,8, -5,
the hypotheses of Theorem 1 assure that u, € H*(Q, - ,).

We complete the study of (1) with a characterisation of the solution when suitable
hypotheses on the data occur. Forevery (v, v;)e VXV, let €,(v, v,) be the set'of
the points x € Q, satisfying the condition: therc exist ¢, >0 and a neighbourhood
I, of x suchthat vj—v, 2 ¢, a.e. on /,NQ,. Inthe case Q,cQ), V=
= H'(Q,) we give the following theorem.

Theorem 2. Let hypotheses of Theorem |, if € is bounded and C"' set,
the pair (i, u,) € H'(Q))x H'(Q,) is solution of (1) if and only if

w € HX(Q)NH*(Q-), e HX(Q,), wy2uy a.e on Q,
Ailq +A2h‘2 = fi +f2 —dat, a. e on QZ’
DAy 2 fi—au ace on Q,,

Au, = fi—aw a.e on Q (uy,u)U(Q-5,),

n n n
1o 2 | = 2 _ 2 2
Z ay (i), Vi = Z a&-(z?,)_q Vi = Z aj(uy) Vi Og-a.e.on 292,,
ij=I i.j=1 dj=1

n
Z a;f(ﬁ] ).r,-vjf =0 0y-a.con 09,
ij=l

with @ (resp. )" is the restriction of u, to Q, [resp. Q-Q,], ij the
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ON SOME NONCOERCIVE VARIATIONAL INEQUALITIES 731

-th - F;
J"' component of the unit outward normal vector to 0%;, &, the surface measure

on 99.
Leaving the easy proof of Theorem 2, we only add that characterisations of the
same kind are also possible in the other cases.
2. Passing to (2), let ¢, be the space of real polynomials at most of first degree
and let us observe that (2) can admit solution only when one of the following cases
holds:

(i) = 0 and  (f,x) = (fix) =0, €3))
(1) >0 a0 () m) |
(Fa 1)y a X [(f 1) P T 32)

Besides, if (u;,u,) and (i7,1,) are solutions 0['(2) itvesults o = wy+p, i =,
with peg, and p(x0)=0.
When the case (31) holds, if we consider the variational equation
ueH*(Q): Y, [a,D'uDfvdx = (f,v) Vve HY(Q), (33)

k=2 o
[s}=2

which admits infinite solutions, different two by two for a polynomial of g, the
solutions of (2) are all and only the pairs (4,0) with u nonpositive on QyUTj
solution of (33).

In the case (32) with x%e T the ploblem (2) is solvable because [1, 8] for each
peég —{0) with p<0 on QOUFO (f, p) = p(x% (f,1) < 0. Then we have
theorem. :

Theorem 3. If (f,1) > 0 and xc'e’}" the problem (2) admits at least a

solution.
In regard to the case

(f,1) >0 and x%eT}, =12, (34)
we previously give the following theorem.
Theorem 4. With the assumptions (34) for m =1 the problem (2) has no

solution,
Proof. Arguing by contradiction, let (i, uy) a solution of (2). We have:

S [a,D'wD pdx < (f,9) VoeCy(RY) with @20, = (35)
irl=2 @ )
ls}=2

Y [anD! i DF g+ E [ bu) g 0yl + Jbuztpcb. = (f.9)  (36)
20 r'ln )

Irl=
lsl=2
V(p e Co(R).
Relation (35) holds the distribution on R?
L@ = (£,9)- X [aDuD'gdx  VoeCy(R?)
: llr]|=1 Q

is nonnegative; then there cxi_sté a Radon measure | on R? such that

L@ = [odn  VoeCG(R). 37
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Using (37) with ¢ =1 on Q, we get:
w(R?) = (f.1). . (38)

Besides we add

[odu =0 VoeCr(R*) with suppoc R -{x',x*}. - (39
R? .
Relation (39) is obvious if supp ¢ < R2—{Qy,UTp}; else, taking peg, equal to
zero on I and positive on T-T}, the foregoing relation can be got from the

L

following :

A min p _
(y—ptep, py)ek f0r10<equx](p| G = (QOUFU)ﬂsuppcp.l
: p .
From (39) it follows that .
(R = p((x) + e () (40)

then relation (37) becomes L(¢) = n({x'}) o(x7) + n({x3}) @(x3). So, taking into
account the (36), it results: . !

> [ by oxdx + [bigds = p((x) o) + n((x*) o(x2).
ij=lq . Q

This last relation is false for u, € HI(Q), in virtue of (38) and (40).
The following considerations let us to find infinite solutions of (2) when m > 1.

With p;e¢; suchthat p;(x%) =0 and p;(x) >0 VxeT-{x if x0 = x/, x3,
pi(x)=0 VxeI; and pi(x)>0 VxeT-I; if x0eintl},

let us consider the variational equations

yeHNQ): Y [auD'uDivdr = (fiv) - v(xO){f,1) VveHQ), 1)

Irl=2 0
[v|=2 .
u e H™Q): Y, [ 6D, DI vedx + [bupvdr = v(x0)(f,1) Vve H™(Q), (42)
lil=m Q Q
|jl=m

and, setting K; = {(v,, ve) € H2(Q)x H™(Q): v;(x7) S vy (x7) and v,(x3) < vz(x3)},
let us consider the variational inequality

(. m)eki: Y, Ia,“.D"u;D"'(vl—ul)aLt + JbﬁD;;@Dj(vg—ug)dx}

Irl=2 o [fl=m Q

[s[=2 | fl=m _
+ J'buz(vg—uz)dx 2 (fiv—u) V(,wnek;. 43

Q

Since (f, py—p(x0)(f,1) =0 p;e¢,, equation (41) admits infinite solutions which
are different two by two for a polynomial of ¢,. Equation (42) has unique solution. If
x0 e intl;, equation (43), whose resolvent cone is made up by the pairs (X p;, 0)
with A e R, has at least a solution (u, u,) [4] and it is obvious that all the pairs
(uy +Xp;, uy) with AeR are solutions of (43). Under the following assumptions
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ay €Cog(QNL(Q), bieCo(QNL(Q), if m=2,
' (44)
fe(HE@) N (B*)
with 2 < p <+ o, remarking the continuity of the embedding from Hll(;‘z (Q) to

CE,C(Q), in relation to the solutions «, of (41) and to the solution u, of (42), we
get [10]:

weH @ with p=-Fo, weH@ i m=2; (45)

in particular u;, and u, are Che(Q).
The considerations above are also valid for the components of the solutions of (43)
because it is obvious that there exists a Radon measure [ on R? such that

w(R?) = p((x) + (") = (£ D,
S JagD'uDfeds = (£,0)-p((x'}) e GN+R((}) o (x®)  VoelF(Q),
Q .

S [ byDiuy Dl gdx + [ bwygdx = p({x)) 9N +r((x*)) 0(x?) Vo eC5(Q).
lilEm @ Q
|7l

Since for x° = xi, x3, we have

foreach veCll(Q), with v(x0) 20, . inf — > —o, 46)
: QuUintTy p;

let us suppose the following condition verified when x0 € intI;:
there exist a neighbourhood S of x* and e€]0,1[ such that 47
VxeSNQy |x—X| 2 € I x— x3| where X = orthogonal projection of x on T3,
which yields that

for each ve Co2(Q) with v(x') 20 and v(x*) 20  inf o — (48)
QyUinthy P;

In virtue of (45), (46), (48) we can give the following theorem.
Theorem 5. For m> 1 under the assumptions (34), (44), it follows that:

B if x0= xf, x3, let w, and u, respectively be the solution of (41),
equal to zero in x0, and the solution of (42), all the pairs :

- -0
(uy +up (xO)+Ap;, up) with A < inf = (o +u(xh))
QpUint Ty P

are solutions of (2);
Bo) if x0eintly and taking into account (47), let (uy, ty) be a solution of
(43), all the pairs

(ul +?"Pn “—:}_) “Vf:th 704 ,‘S inf Lb.’. ‘_.u[
I QuUintly  p;

are solutions of (2).
Finally in order to study the case
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(f,1) >0 and "xel, (49)

let us setting po(x) = x5 Vx = (x, %) € R?. Relation (49) assures that the (3) has at
least a solution (i, u,) since [4]'its resolvent cone is made up by the pairs (Apg, 0)
with A € R. Moreover, all the pairs (u; +Apg, i) with A eR are solutions of (3).

Since there exists a Radon measure W on R> such that w(R?) = u(ly) = (£, 1),
Y, [aD'wD gdx = (f,0) - [odp  VoeCF(RY),

Irl=2 o . Q

[v|=2 ' ’

S, [ byD'w, Dl gdx + [ buw0de = [@dp  VoeCF(RY),
}.ﬂ"||=m Q Q a :
JjlEm

for m =2 and under the conditions (44) the regularity properties expressed by (45) are
true also for the components of the solutions of (3). Then, since

if U is an open rectangle containing 098 Ny,
for veC®(U) with v=0 on UNT, inf — > —eo, (50)
uney py
we have the following statement.

Theorem 6. For m > 1 under the hypotheses (44), (49), if (u,u,) is solu-

tion of (3), all the pairs
() +Apg, ) with A < inf2=4
Qy  Po

are solutions of (2). .

The statement (50) is very important in order to find solutions of (2) when m = 2.
Its efficiency is due to the local Lipschitzianity of .the components of the solution of
(3). If m =1 the previous reasoning is not able to state this property for the second
component; however the following two theorems let us still use (50).

Remarking that for each X €intIy foreach »>0 and for | <t<+eeo

S, = {xeR*: |x-%|<r}, ZF = {xeS.: x>0},
I = {xeS,:x <0}, T = {x€$8.:x=0}, = —,

let us start by proving the theorem.
Theorem 7. For m =1 under the hypothesis (49),

a5 € Cue(QQNL7(Q), by = by € Goe(@QNL(Q), fe [Hllo-”(ﬂ)) n(Hz(g))'
with 2 <p <4, if (), uy) is solution of (3) we have:

) e Hgl (),

Y,) for each X eintly there exist S,, with S,cQ-{x',x?}, and Ye
e H2I(ZHNH>*(Z)NCO(S,) suchthat P(x)=0 VxeTy,,, u,eH"(S,),
u(x)—1y(x) 2 ¥(x) VxeS,, being g= Q.Tp’p? (>2).

Proof. The equality

jaﬂD’u.Dscme [ by, wxdx+Jbuocpdx = (f,9) YoeC5(Q),

Irl=2 @ ij=1 Q
|s|=2

if G is an open set with G < Q, implies that
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>, [auD'uD gdx| < c|@lng YoeC(Q)

(¢ = const > 0 independent on @) from which we get statement Y1) [10].
Let us show 7v,). Let Xeintly, S, and S, with 5 < and 5, cQ-
—{x, x2). If xeCy(R?), with 0<x <1, x=1 on S, and supp-x;’:S,h, and if

2

2
F=— 3 by(u)y Xy, — 2, (bg'“’zx.r;)xj’
NG iJj=l

Ky = {veHé(S,.z): v = yu on 1"0,,2},
we can easily see that %, is the solution of the variational inequality
7y .
wr e Ko Y, [ by, (0= xua)y dx + [ by (v —yup)dx 2
inj=1 5, s, ;

> [Fv—ym)dx VveKy. | (51)
S
Introducing the functions

vie () By
Vo€ Hy(Z,): Bys = F—byu,—B(xw) inthesenseof D'(Z}), (53)°

s v, on Zpi
Yy on X,

F—byu, — B(iy) in the sense of D'(E;_ ), (52)

since [11] ..
v+ € HAEE), o + xu € HA(ZL), (54)
and -

v e Hy(S,)NC’(S,), w=0 on Ty, (59)

let us verify that ju, -is the solution of the variational inequalily

2
Kin € Ko 2 ‘[ by (xiin )y, (v — X2 dx + I by (v —yin ) dx =
- ij=1 5, S,

> [Fv-yuw)dx Vveky (56)
S
where
Ky = {veH{',(S,é): v 2 W+ xu a.e. on S,.z}.
For this purpose it is only necessary to show that
' Xy 2 Y+ xuy a.e on S,. 57

Relation (55) and the belonging of xu, to Kp; imply that * (guy — (e + W)™ +

+ YUy € Kgy; then, using (51) with v =% (qus — (i +¥))™ + Xy, we get the
equality
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IbAX%Lium (ﬂq+wn) -
hj=ls, |
= [(F- bxu»_».)(xm —(xui+w)) dx; (58)
s

2

on the other hand because of ti:u:: (52), (53) we also obtain

Z [ By + ¥y (O = G +9))7),
ihj=1 5',5

jbu(x::1+‘l’;) ((XHQ (xu1+\y,)) ] dx +
ij=l );4- . j

+ z Jbu(xul""h);,((xtb (x-':ﬂ +1|J'))) ) =
i.j—l I'. ;

= [ (P byu) s = s + )" & (59)
N

e}

From (58), (59) we get

> [ (60e2 - (xulw))) (G = G +9))"), e = 0

Li=1 s,
from which tha (57) follows.
Scttmg g= 5 P’p (>2), let us show that
Xur € Hy'(S,,). (60)
Let {g,} be a infinitesimal sequence of positivé r]umbers. Let us consider the function
|1 if +<0;
B0 = i #ocrde,
0 | ift>e

n:
and, taking into account the continuity of the embedding from H'(S,) to L*(I}, ),
the operator L : Hl')(S )= H _'(Sr,) such that

Lu, v = — I |:[—2 bﬂ(_ﬁ‘f‘\ﬁ ] [z b,-,(xu,i—qf-,) J}G,,(u-—xu,)vdd
;¥ Toy, i,

i=l

Yu, v e HYS,)
where ©,.7 is the pairing between H~ I(.S‘ ) and Hé(Sh) Xy, [resp. xu ] is the

restriction of xu, to E [resp. Z ,] and o isthe measureon Tj_.

Observing that L is bounded monotone 'md hemlcontmuous the variational
equation

. 2
w, € Hé(S,,_,'): Z _[b;_,-(w{,)x‘vxf I (F- bxu—,)vdl +
Lj=I'S, &
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i=l

2 o +
% J. [( Ebﬂ X“f"“i’l) )4—[2 bfZ(x_uT+w2)x‘_) }&:(%*X“j)”dﬁ (61)

_ Vve H’é(Sr2 )
has unique solution [12] and we have:
| w, ||H$(S,_1) < ¢ (c=const >0 independent on n). (62)
Remarking the continuity of the embeddings
H*¥'(S,) < H'(Ty, ), (63)
HY(8,) ¢ L' (Ty,), (64)
HY'(S,) € I(S,), (65)
CHM(S,) © BY(S,), (66)
let us observe that relation (63), by virtue of ;) and (54), gives the relations
> by (0 + v ),, €L (To,), > bia (700 + ‘Pz)“_’_ € L/(Ty, ) (67)

i=l : i=l
and by virtue of vy,) and (66) we have
B(uw) & L9(S,). ' (68)
Taking into account (64), (65), (67), from (61) we get

2
Z J b.-:i(wn ).r; V“,}_CLX = € H 4 "HI]""‘(S‘_,} Vve CE!D (S;i)
hi=l s, )
(¢ =const > 0 independenton v and n)
then [10]
w, € Hé‘r"(S,é),

| w, ”H{I}.qcsﬁ) = cz(q + ||‘w,, "qusr.,)) (cy =const > 0 independenton n). (69)

From (69), taking into account (62) and the continuity of the embeddings
. 0, I-
HI(S@) < EI(S&)! H' q(Srz) cC I EM(S;Q)!
we get the upper limitations
[Iw,, "H:'fq(srz) <S¢
(70)
“ W, qul.l—Eh,r ( §r..) <c
(c=const > 0 independenton n).

The relations (70) assure the existence of we Hy¥(S,,) and of a subsequence of
{w, }, which we denole with the same symbol, such that

w, = w  weakly in  Hg?(S,), (71)
w, = w in C°(3,). (72)
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Let us control that w is the solution of (56), and this shows relation (60). First of
all.from (52) = (55) and (61) we obtain

2 [ by ((wa- (w+xu,))) (O = Cy+ )Y, e =

ij=1 Sy,

= 2 _[bg(wu)l, (wn (Y +xu))” ) =

u-"

j by (T + 1), (v = G +91))7). e —

“J

by xu] Y 1IIZ) ((wn = (E + WZ))_);»; dx =

93"_’

= I(F—bxug)(w;;“(w+xﬂl))_dl +

- 2 i :
"‘ J[[“Z bfz(x_“lJf\I’i)_\'-iJ 0, (wy = x1) +2 bin (X +¥1),, ]( —Xuy)"do +

I‘U!’-, i=l i=l

i=| i=l

f HZ 5:2 Xy +‘11':) J 6, (w, —xu;) — zbfl(xul "“lfz) }(‘*%‘X“l)_d@“_

~ [ B+ 1)~ (Xt + 1)) — [ B(xa; +3)(w, — (X +y12)) e < 0
E" p 2y
from which we get w, (x) = w(x) + X, (x)uy (x) ‘G’xeS,2 that is
wx) 2 y(x) + x () (x) Vxes, (73)

by virtue of (72). Setting ve Koy, from (61), (73) we obtain

E J-b,j(vv,I)xr(v“w)x}a[x > I(F—bxuzj(v—w)dx +
hi=ls, 5

+ J {[‘242(%“1‘*% } (2*’%2(%“1"‘“’1) J}E*n(wn.—xul)"(v—w)dc
r”r & 3

i=l f=1
Wy
and it is easy to verify that the second integral at the second side converges to zero
when -n — +ee. Then, taking into account also (71), we have

> | bywy, (v=w)y dx 2 | (F=byu) (v —wydx
L=l s, 'S, :
and this, in according to (73), shows our purpose:.
Setting r €]0, 5[, by virtue of (60) we have u, € H"9(S,) and, taking into ac- ,
count relations (52), (53), (68) we can conclude that [10] ye Jif-fz"*"(lf.f2 n HZ"*’(E;;)

and then from (57) we find wu,(x)—u;(x) 2 y(x) VxeJ.
Remark 2. The hypothesis of symmetry of the coefficients by, nonessential for
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Y1), has been necessary because, in order to get relations (54), we used a regularity
theorem for the Dirichlet’s problems in bounded and convex sets of R".

The results expressed by Theorem 7 are improved with the following theorem. '
Theorem 8. When m=1 under the hypotheses (49),
ty € (@ NLQ), by eCou@NL™@), fe(Hh(@) N(H2 @),
if (uy, tty) is solution of (3) we have
&)  uy e Hip();
8,) for each Xeintly there exist S,, with S,cQ-{x',x2}, and vy e
e HXEDNH>(Z)NCO(S,) such that
(HZJXI?- € LE(S:')‘ (w_’.).n.\'g € Lz(Sr)! (“2)_‘,3 € Lg(zf) n LZ(E;)
ve HX(EHNH*(Z)NCS,), wx) =0 Vxely,
(X)) —u(x) = yx) Vxel,
. with 2 < g < +eo;
83) there exists at least one point Xeintly such that for edch S,.cQ
w & H*(S,);
84)  Potr € Hige().

Proof. The statement &;) is a consequence [13] of the relation

Z j a!'.\'DrHI Ds(pdx + 2 _[ bp'j ("-“2.).\‘,-‘P.\:de + _[ b“?,q) dx = <f: (-P) V(-P < C?(Rz)-
!r]=2 Q hi=lQ Q
§|=2

Inregard to 8,), let X, S, S s W1 W2, Y the same terms used in the
proof of Theorem 7. Since the validity of (51), (57), we have:

(Xt2)xx, € L(Sy),  h =12, (74)
(xua) 2 € P(EHNL(Z;). )

In fact with the same notations used in Theorem 1, since for te R—{0} with suf-
ficiently small modulus we have

S, [ awD'[DiCeu)] D [Di(xu)]dx < cfuy ||§,,3(Sq) +
o2
+ 3, [ ayD"u D[-x Dy Di(xu)]dx,

|ri=2 5,
lsj=2

112
2
E(s,z)] *

2 Y 2
z I b:‘j(D{(X“E))x’_ (D!F(xuz))xf dx = ¢ ]IuZ |IH[(Q) [Z ” Di‘((xu?-)-\'f)
i=l

ij=s,

2
+ Y J b;;;(“-z)x,-(—X.DTID{(X“:;))_‘} dx,
ij=l s

L

where ¢ is a positive constant independent on ¢, and for 0 <€ < t2/2
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(s - exDT' DI Geam), up +ex D7 Di(xus)) € Ko,

using (3) with v; = u; +ex Dy D{(xul) and v, = u, +€x D7 D{(xu,), we gct easily
the inequality

1/2
[z ”D xuz)x, h.r}(s )] = C(||f||(y'(3,2))'+||“1 “H3(s,2)+"”l Hy'(n))

i=l

(¢ = const > 0 independent on t)

from which we have relation (74).
The relation (75) comes from (74) taking into account that because of (51) we have

B(xuy) = F—byu,  inthesenseof D'(Z}),
B(xus) = F—byu,  inthesenseof D'(Z;).
The statement 8,) implies that B(xu) e L'(S,) with 2 < g < +co, from (74), (75)
we get (Xup),, € vE )[']LQ(E') with 2 < g <+ and consequently [10]
ve HX(ZHNH> (2] )nco(sﬂ) with 0<r<n,

and so &,) is proved.

Now let we deal with 83). Since there exists a Radon measure . on R> such
that

B(R?) = u(my) = (£1), | (76)
Jbu(uo)x;cpqdﬂjbwdx Jedi  Veec(R), (M)
ij=lQ Ty

if 5'3) would be false, being

Ibu(u-;)_n(pxjdx + _[bu—,tpdx =0 VoeCy(R*) with supp(pc:R‘ {x1, x2},
J'.J =l Q
the relation (77) would be written as

2 [ by (42), 9, cx + Ibuocpa’x p({x') o (x!) + n({x2) (x2);
ij_j ﬁ ﬂ
and this is false taking in account also (76).

Finally let us observe that (i, uy = py¢) VoeCy(Q) is an element of Kj,
then

Ibu(uo) (o @)y, dx + J'buopcfpdx
ihj=1 O
thatis B(pots) =~ bpotty = by (), = (b2112) s, = (bratr)s, — brp(w), in the
sense of D’() from which we obtain [7] the statement 84).
Remark 3. To prove the statement &) and the regularity properties of w, itis

only sufficient that the coefficients b; are elements of C]%:CI(Q) NL7(Q). Let us

observe that if Q is C*! set, cutting off in the hypotheses the symbol “{oc” we
obtain e H3(Q) :
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2 _
(”2)::,2 e L (G), (uz)m,2 eLz(G) for any open set G with G = Q—{x!, x2};

(-’—!:)_)x% eI}6) for any open set G with G cQ-T,.

About 8,) it needs only the hypotheses (49) and by € CIAQ) NL™(Q). I Q isa
|
CH setand b; € C*(Q), then pyu, € HA(Q).
Let (uj,u;) be a solution of (3). The v,) [resp. 8,)] lets obviously the
existence of an open rectangle U containing 9T, with UcQ, and of a

function wECU‘E(U) such that
y(x) =0 VxeUNT,,
Uy (x) — 1y (x) 2 y(x) VxelU.

Then, taking into account statement (50), we can conclude with next theorem |
Theorem 9. For m =1 under the hypotheses of Theorem 7 [resp. Theorem 8],
if (uy,uy) issolution of (3), all the pairs
; 5 Uy — ul
(u + Apg, up) with A < inf 2—1
Qy Po

are solutions of (2).
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