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0 TEOPII IEPEHECEHHS
OJHOPITHUX PEATYIOYUX PO3YHHIB

‘We consider the one-dimensional convection (advection)-dispersian equation of the transport theory of
rcactmg solutes in porous media. A method is given for the best approximation of the numerical solution
both in absence of interaction with the solid phase and in presence of discontinuous initial conditions.
The class of solutions is determined by the multi resolution analysis of the partial differential operator,
using Haar wavelets and splines, and it is compared with the Fourier solution.

PoarsianaeTsca oHOBAMIpHE KOHBEKIIHHO-NHCNEpCciiHe PIBHAHHSA Teopil IepeHeCeHHA pearyiodHx
PO3YHHIE Y IOPHCTOMY CEpe/IOBHIl. 3anponoHoBaHui METOH ae HAKKpANY aNpPOKCHMAIIIO YHCEIE-
HOrO po3B’A3KY AK IpH Bincy'rﬂoc'):i B3aeMopil 3 TeepauMH asaMH, TaK 1 y BHITQ[IKY POIPHBHUX
NOYaTKPBHX 3Hayeds. Kuac Ppos3B HBKIB, BH3HAYEHHH Gara'rosnmpnnu pOSI'{OﬂlJIOM SMIHHHX Ta NIpH
BHKopHcTaHH] (yHKuil Xaapa Ta cruralinis, MOPIBHIOETECA 3 PO3B’ A3KAMH, OTPHMAHKMH 33 METOIOM
Oyp’e.

1. Introduction. The transport theory of reacting solutes in a porous medium, is a
-complex phenomenon with different (nonlinear) perturbations (see e.g. [1, 2]). Small
changes in the physical parameters have (often) unpredictable consequences on the
-evolution of the partitioning of the solute between the soil and liquid phase.

The physical-chemical hypotheses of our model are that [1]:

a) the solute transport is taken unidirectional, isothermal and devoid of instabilities;

b) the solute transport takes place in a homogeneous porous medium;

c) the constant, the density and the viscosity of the water in the medium are
constant under process;

d) the physical parameters defining the medium are unaffected by the transport (i.e.
the size of the pores do not change as well as their distribution in the solid, and so
forth);

e) the chemical species defining the solid are immobile (while the chemical species
defining the solute are mobile) in the medium.

Let Q be a one-dimensional domain of 9%, x the coordinate of an arbitrary point

x€Q and 7 a finite interval of the time variable ¢ (I & {T:0<t<T, T<w]}).

We consider a sufficiently fast and reversible reaction of homogeneous type [1], in
particular the solute transport is such that the medium’s original solution contains
reacting solutes M;, M, and M;M,, while the displacing solution contains reacting
solutes My, M, and M{M,. The system’s transport multiple Teaction is represented
by the chemical reactions

MM, = M +M,,
MM, = My + M,

M, M,, M, being the three tenads of the system. The basic equations for the
concentrations ¢y, €5, €4, 13, 14 are [1, p.1235]
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Let {V,},., be the subset of L,(:) defined as the set of piecewise constant
functions f(x) of compact supporton Df (n fixed)

4 def {f(x) €L,(R): f(x)=cf =const VxeDf, f(x)=0 Vx¢g DE}
Subsets V,, fulfill the axioms of multi resolution (or multiscale) analysis [3, 4], so that
L, () is the direct sum of orthogonal subspaces W, of wavelets

L@ = OW = v, e Ow, qez

®
Vn+1 = Vn ® W;x:

being @ the direct sum of orthogonal spaces. The set of functions {‘PE}, ‘ne Z,
represents an orthogonal basis for L, () [3].
3.1. Resolution and numerical approximation. Fixing the resolution value N <

N
<o, in (8), the L,(9) space it is approximated by L, () = n@é W,, thatis,

N n
f) = @ E of + 3 YBRHE) ®
being ©": Lo(9) — V,,,1. The coefficients o, B} defined as
ap € [feoeieoar, B Y [ Y@, (10)
Df D}

are easily computed, in the discrete case, by the fast wavelet transform (see e.g. [5]).
Choosing the (dyadic) nodes x; def k2", k = 0,...,2" - 1, the dyadic
discretization is the operator V": Ly(R) — L,(Z(2™)) being Ly(Z(27™)) c Ly@R)

the set of L,(:)-functions discretized at x;. The action of V" on f(x) is such that
n . n def

V' f(x) = " with "= {an Ty 2,,_1} and {fk S f(x)|x=xk, 0<kg2" _1}.

The fast Haar-wavelet transform # of £" is the linear operator [4, 5]

: 2 5 % n1n=0,..., 2‘”—1 ‘
H: Ly(Z@™) = V, | o o8 = o, g 7, (11)

so that, the projection operator ©": L,(R) — V,,,; is factorized as n"=H V".
A p-order Cardinal spline, isa CP~2([0,1)) differentiable operator
SP: Ly(z2™)) — CP72([0,1)): £t s() €& 71"
A spline Haar derivative is an algorithm [4, 5] such that the differential operator L :
Ly(z@ ™)) = Ly(z(2™")) commutes with 7 :
LA = HLS" (12)

There follows that, given the set £V and computed the spline of sufficiently large

order, the spline-derivative of % £" it belongs to the same space of £ [4, 5].
The approximate solution of equation (3), up to the resolution AN, is the vector

u (e Vi+1), i-e. assuming the Buler formula for the time-derivative
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ndu _ aVH gV
dat At
we have from (3), u¥*™! = u" + AL (#u") and according to (12)
oV = (14 AL LS )uV. (13)

With the boundary condition (4), time step A¢=0.01, and assumingin (3); Q =D =
=1 andin (4) a=1/4, b=1/2 we obtain after 5 time steps the evolving function of
Fig. 2, where, as expected, the concentration tends to a constant value.
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Fig. 2. Haar-wavelet representation of the wave solution

Thus a better modelling of the transport theory of homogeneous reacting solutes is
obtained using Haar wavelets combined with splines. We have avoid the Gibbs effect
of the Fourier analysis with its lacking of localization of transient functions.
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