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INTERVAL OSCILLATION CRITERIA FOR SECOND
ORDER NONLINEAR DIFFERENTIAL EQUATIONS*

THTEPBAJIGHI KPUTEPII OCIAJIANI I HEJIHIAHIX
JAOEPEHIIAJIBHUX PIBHAHD IPYI'OI'O IOPAIKY

‘We present new interval oscillation criteria for certain classes of second order nonlinear differential
equations, that are different from most known ones in the sense that they are based only on information
on a sequence of subintervals of [¢,, ) rather than on the whole half-line. We also present several

examples that demonstrate wide possibilities of the results obtained.

Hapepeno HOBi iHTepBanbHl KpuTepil ocnmisanil fyis meskux Kiacis gudepeHmiaJbHAX PIBHAHB
ApPYroro NOpANKY, BifMinHi B HAHGLTEII BIOMHX Y TOMY CEHCI, 10 BOHM GasyloTECs Ha iH(popmanii
CTOCOBHO JIHINE AeAKOL Hoc/igoBroCT] MiinTepsamin 3 [#y, e ), a me uijoi misoci, a Takox KigsKa
OPHKJIaAiB, M0 AeMOHCTPYIOTh IIHPOKI MOMKJIHBOCTI OfIepXKAaHHX Pe3yJIbTATIB.

1. Introduction. In this paper we consider the oscillation behavior of solutions of the
second order nonlinear differential equation

@y @) + a@®f(@s(y'®) = 0, ' (1.1

where t21?,, the functions r, g, f and g are to be specified in the following text.
We recall that a function y: [fy,# ) —> (—oe, ), t; > tgy, is called a solution of
Bq. (1.1) if y(¢) satisfies Bq. (1.1) for all t€ [, 74 ). In the sequel it will be always
assumed that solutions of Bq. (1.1) exist for any £;=0. A solution y(t) of Eq.(1.1) is

called oscillatory if it has arbitrary large zeros, otherwise it is called nonoscillatory.
When r(t)=1, Eq.(1.1) reduces to

y(6) + 9@ f(y®)q(y'(®) = 0. (12)
Eq. (1.1) has been studied by Grace and Lalli [1]. They mentioned that though
stability, boundedness, and convergence of solutions of Eq. (1.2) to zero have been
investigated in the papers of Burton and Grimmer [2], Graef and Spikes [3, 4], Lalli
[5], and Wong and Burton [6]. Noting much has been known regarding the oscillatory
behavior of Eq. (1.2) except for the result by Wong and Burton [6] (Theorem 4)
regarding oscillatory behavior of Eq. (1.2) in connection with that of the corresponding - -
linear equation

Y@ + g0y = 0. (1.3)

Recently, Li and Agarwal [7] and Rogovchenko [8] presented new sufficient
conditions which ensure oscillatory character of Eq. (1.2). They are different from
those of [1] and are applicable to other classes of equations which are not covered by
the results of [1]. However, except for the results of [7], all the mentioned above
oscillation results involve the interval of g and hence require the information of g on
the entire half- line [y, o).

From the Sturm separation theorem, we see that oscillation is only an interval
property, i. e., if there exists a sequence of subintervals [a;, b;] of [#y, ), as a; —
— oo, such that for each i there exists a solution of Eq. (1.3) that-has at least two zeros
in [a;,b;], then every solution of Eq. (1.3) is oscillatory.

Ei-Sayed [9] established an interval criterion for oscillation of a forced second-
order equation, but the result is not very sharp because a comparison with equations of
constant coefficient is used in the proof. Afterwards, Wong [10] proved a general
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result for a linear forced equation and Li and Agarwal [11] established more general
results for nonlinear forced equations.

In 1997, Huang [12] presented the following interval criteria for oscillation and
nonoscillation of the second order linear differential Eq. (1.3), where g(f) =

te [tg, ).
Theorem A. (i) If there exists ty> 0 such that for every ne N,
2n+1rn 5
_[ g(S)dS =< ﬁ, (14)
C oy 0

then every solution of Eq. (1.3) is nonoscillatory, where 0.j=3— 24/2.
(ii) If there exist ty>0 and o> o such that for every n e N,
on +1 f
o
J' q(S)dS 2 Em‘-'—', (15)

2" fp tD

then every solution of Eq. (1.3) is oscillatory, where o.qg=3— Xl 2.
As an application, Huang [12] obtame.d the following corollary.
Corollary A. (i) If

" o
,l_nfl,t _[ g(s)ds = o < 5 (1.6)

then every solution of Eq. (1.3) is nonoscillatory.
@) If

2t
Jim ¢ j g(s)ds = o > ay, (1.7)

then every solution of Eq. (1.3) is oscillatory, where g =3 — 2+/2.
We note that the above result seems surprisingly interesting because the interval

(cx 1280 w6 1274 ) is not covered by the conditions (1.4) and (1.5). In particular,
if q(f)=1y/t?, where y> 0 is a constant, then

hmtjyds—%é—-—)7<3 2ﬁ<—

A=ree 4

and

hmtj 'Yds=%=0t>a0—>'\(<6—4ﬁc%.

t—p oo

This implies that Huang’s result remains openfor y e (3 -2./2,6— 4ﬁ) . Thatis to
~say, Huang’s oscillation criterion is not sharp. In fact, the Euler equation

YO + 5y(@) = 0

is oscillatory if y> 1/4, and nonoscillatory if y< 1/4 [13, 14].

‘We remark that Li and Agarwal [7] and Kong [15] employed the technique in the
work of Philos [16] and obtained several interval oscillation results for the second order
nonlinear equation (1.2) and linear Eq. (1.3). However, they can not be applied to the
nonlinear differential Eq. (1.1).

Motivated by the ideas of Li and Agarwal [7, 17] in this paper we obtain, by using a
generalized Riccati technique, several new interval criteria for oscillation, that is,
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criteria given by the behavior of Eq. (1.1) (orof 7, g, f and g) only on a sequence of
subintervals of [#j, ). Our results involve Kamenev’s type condition and improve
and extend the results of Huang [12], Kamenev [18] and Philos [16]. Finally, several
examples that dwell upon the sharp conditions of our results are also included. Other
related oscillation results can refer to [4, 14, 18 —22].

Hereinafter, we assume that

(H1) the function 7: [£, o) — (0, e°) is continuous;

(H2) the function g: [y, ) — R is continuous and g(f) # 0 on anyray [T, )
for some T = #y;

(H3) the function f: R —R is continuous and y f(y) >0 for y#0;

(H4) the function g: R —R is continuous and g(y)=K>0 for y#0.

‘We say that a function H = H(t,s) belongs to a function class X, denoted by
HeX, if He C(D,R,), where D= {(t,5): —eo <5<t <eo}, which satisfies

. H(t,t) =0, H(t,s) >0, for t > s, (1.8)
and has partial derivatives dH / 9t and dH / ds on D such that
%ﬁ = hy(t,s)H(t,s)/* and 3a£ = —hy(t, H(t, )2, (1.9)
s s

where hq, hy € Lo(D, R).
2. Oscillation results for f(x) with monotonity. In this section we always
assume the following condition holds.

(HS) there exists f'(y) for ye R and f(y)=zpn>0 for y0. (2.1)

First, we establish two lemmas, which will be useful for establishing oscillation
criteria for Bq. (1.1).
Lemma2.1. Let assumptions (H1) — (H5) hold and suppose that y is a solution

of Eq. (1.1) such that |y(¥)| >0 on [¢,b). Forany ve Cl([ro, ), (0, ), let

(')
“ =050 @2)

on [¢,b). Then forany H e X,

b
| H®, s)Ku(s)q(s)ds < H(b, c)u(c) +

c

18 v'(s) ¢
+ m { r(s)v(s)[hz(b, s5) — -1—)—6)--\} H(b, 3):| ds. (2.3)
Proof. From (1.1) and (2.2) we have for s € [¢, b)
P oy _ FOO) 20 V)
® = —v(®a®eb'(®) - (o) u™(f) + o0 u(?). 24)

Inviewof f’(y)=pn>0 and g(y") =K>0, we obtain
O - 550 s 0 #)

Multiplying (2.5) by H(t,s), integrating it with respect to s from ¢ to ¢ for
te [¢,b), and using (1.8) and (1.9) we get that

u'(f) + Ku(H)g(t) + ——
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[ 4 3 ,
[ Het, s)Ku(s)q(s)ds < - j H(t, $)u'(s)ds —
c

(())u(s)ds =

_ ;[H(r, s)jz:;v@) ds + j H(t,s)

= H(t, c)u(c) -

t
_! {hz(t $)NHTE, 5) u(s) — Hi(t, S);((—)l u(s) + H(, s) :E:)U((?)}

= H(t, cyu(c) -

t 2
_ WH(ES) oo 1T (S)U(S) v'(s)
j{ ) 3 s )= S 5]} e
" iir(s)v(s)lihz(t, §= %J HG, s)} ds <

t " 2
< H(t, cule) + i:[ r(s)v(s)[ hy(t, ) — I;——((gﬂﬂ H(, s)] ds

Letting £ — b~ in the above, we obtain (2.3). The proof is complete.
Lemma 2.2, Let assumptions (H1) — (H5) hold and suppose that y is a solution

of Eq. (1.1) such that |y({)] > 0 on (a,c). For any veCY[ty, ), (0,=)), let
u(t) bedefined by (2.2) on (a,c]. Then for any H € X,

TH(S, a)Kv(s)g(s)ds < —H(c, a)u(c) +

% 41_“£ r(s)v(s)[hl(s, )= (S)JH(S 7 ] 2.6)

Proof. Similar to the proof of Lemma 2.1, we multiply (2.5) by H(s, ), integrate
it with respect to s from c to ¢for £ € (a,¢], and use (1.8) and (1.9), then we get that

c t
[ H(s, Kv(s)q(s)ds < — [ H(s, tyu/(s)ds -

t c

J‘H( )“ (S) ds+jH(s,) (())u(s)ds =

= —H(c, Hu(c) +

{hl(s O, Huls) - His, ) ‘E“)(()) (s, 0% (())u@}ds -

+

 — 0y

= —H(c, yu(c) — j o G DU [ -
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— (s, ) H (s, )r(s)u(s) + H(s, ' (s)r(s))u(s) +
+ 4—11-2(.9)])2(3)[ (s, t) + %«a‘ H(s, t) ]2 }ds +

= Ir(s)v(s)[hl(s, ) + WJ I »

= —H(c, t)u(c) -

1 1 v (S)
= { v(s)r(s){# WH (s, )u(s) — zﬁr(s)v(s)lihﬂl(s, 1) + -\f‘H( :r} ds +

+ %:I r(s)v(s)[hl(s, ) + v_(‘_s‘lq! H(s, 1) J

< —H(c, Hu(c) + 4u{r(s)v(s)[h(s, £) + U(S)JH(S, r)] ds

Letting t— a~ in the above, we obtain (2.6). The proof is complete.
The following theorem is an immediate result from Lemmas 2.1 and 2.2.
Theorem 2.1. Assume that (H1) — (HS) hold and that for some ¢ € (a, b) and

for some He X, ve CY[tg,),(0,)),

j H(s, a)Kv(s)q(s)ds +

_[ H(b, s)Kv(s)q(s)ds >

H(Cs a) 4 H(b ¢) e

> 4].LH( Jr(s)v(s)[hi(s a) + J—ZWJ ds +

+ KHI(T,(S }[ r(s)u(s)[hz(b, §) — %JH(IJ, s)} ds. 2.7)

Then every solution of Eq. (1.1) has at least one zero in (a, b).

Proof. Suppose the contrary. Then there exists a solution y () of Eq. (1.1) such
that |y(¢)| > 0. for te (a, b). From Lemmas 2.1 and 2.2 we see that both (2.3) and
(2.6) hold. By dividing (2.3) and (2.6) by H(b,c) and H(c,a), respectively, and
then adding them, we have that

| H(s, a)Ko(s)q(s)ds +

1
H(ca) ) J H(b, $)Ki(s)q(s)ds <

I—I(b Q)1

: f [h YO Fmea [
r(sws)| hy(s,a) 2 (s, a)] s +

=
4uH (c, a) 4

1 b v’{s! e
+ IED, ) ,c[r(-"“)’-’(s)li’b(& a) — o) ~ H(b, S)} ds,

which contradicts the assumption (2.7) and completes the proof.
Theorem 2.2. Assume that (H1) — (H5) hold. If, for each T = t;, there exist

HeX, ve CY([ty,),(0,)) and a,b,c € R suchthat T<a<c<b and (2.7)
holds, then every solution of Eq. (1.1) is oscillatory.
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Proof. Pick up a sequence {T;} <[#g,c0) suchthat T;—> e as i—>ee. By
assumption, for each i€ N, there exist a;, b;, ¢;€R such that T; <a; <c;<b; and
(2.7) holds, where a, b, ¢ are replaced by a;, b;, ¢; respectively. By Theorem 2.1,
every solution y(#) has at least one zero #; &(a;, b;). Nothing that #;>a; 27T}, i€
€ N, we see that every solution has arbitrary large zeros. Thus, every solution of

Eq. (1.1) is oscillatory. The proof is complete.
Theorem 2.3. Assume that (H1) — (H5) hold. If

limsup | [H(s, DKv(s)g(s) — —r(s)v(s)[hi(s, D+ "( )JH( ] ds > 0 (2.8)

Ui o B |

and

4
hmsupj [H(r s)Kv(s)g(s) — —r(s)u(.s‘)(hz(r §) — ((-5')) [ H(s, l)] ds > 0, (2.9)
t—dee us i
for some He X, ve CY[ty,),(0,)) and for each 12t,, then every solution
of Eq. (1.1) is oscillatory. '
Proof. Forany T=>ty, let a=T. In (2.8) we choose [=a. Then there exists ¢
> a such that

| [H(s a)Ku(s)g(s) — —-—r(s)v(s)[h;(s a) — 1@ij( a) ) ds > 0. (2.10)

a

In (2.9) we choose [=c. Then there exists &> ¢ such that

b P 271
| [H(b, ) Ko(s)g(s) — &lﬁ r(s) u(s}[hg(b, s) - PI-J-((S—))J HG, s)] ds > 0. (2.11)
5

(4

Combining (2.10) and (2.11) we obtain (2.7). The conclusion thus comes from
Theorem 2.2. The proof is complete.
For the case where H := H(t—s) e X, we have that A (t—s) = h,y(t—5) and
denote them by h(t—s). The subclass of X containing such H(t—s) is denoted by
/Xo. Applying Theorem 2.2 to X, we obtain next theorem.
Theorem 2.4. Assume that (H1) — (HS) hold. If for each T = t, there exist

He Xy ve C[ty, ) (0,)) and a,ce R suchthat T<a<cand

J H(s—a)K[v(s)g(s) +v(2c—s5)g(2c—s)]ds >

a

> e _[ [r(Hv(s) + r2e—s)p(2ec—5) ]hz(s —a)ds +
4p

a

+ ij‘ [?‘(2(:~S)v'(20-3)_ r(S)U’(S)]h(S—a)mdS ¥

’ 2 7 2 | .
1 (V') r(s) i (v'@c—9) r(2c—s) }H(S —~@ds, (2.12)
rm ) v(s) v(2¢c —5)

then every solution of Eq. (1.1) is oscillatory.
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Proof. Let b =2c—a. Then H(b —c¢)=H(c—a)= H((b—a)/2), and for any
we Lla, b], we have

b c
[ w(s)ds = [ w(ae—s)ds.

c

Hence

b c
JH@E-s)w(s)ds = [ H(s—a)w2c—s)ds.

[ a

Thus that (2.12) holds implies that (2.7) holds for H € X, v € C*([tg, ), (0, «))
and therefore every solution of Eq. (1.1) is oscillatory by Theorem 2.2. The proof is
complete.

From above oscillation criteria, we can obtain different sufficient conditions for

oscillation of all solutions of Eq. (1.1) by different choices of H (%, s).
Let

H(ts) = t=s)", t2s5> ¢,

where A >1 is a constant.
Corollary 2.1. Assume that (H1) — (H5) hold. Then every solution of Eq. (1.1)
is oscillatory provided that for each 1>ty and for some A > 1, there exists a

function ve C([tg,0),(0,)) such that the following two inequalities hold:

J:' [Kv(s)q(s) - —r( (. )(— - ﬁ]qu >0 (213)

limsup
r—}w t

and

t %
limsup - | (t—s) [Kv(s)q(s) = —r(s)u(s)[ e (S)] }ds > 0. (2.14)
i

t->os ")

Define
R(f) = j —-—d.s', LB TE (2.15)

and let

H(t,s) = [RO-RE)T, ¢ 2 ¢, (2.16)

where A >0 is a constant.

"By Theorem 2.3, we have the following oscillation criterion, which extends
Theorem 2.3 (i) of Kong [15] and Theorem 2.5 of Li and Agarwal [7].
_ Theorem 2.5. Assume that (H1) — (HS) hold and that lim, , R(t). = Then
every solution of Eq. (1.1) is oscillatory provided that for each 1=ty and some A >
> 1, the following two inequalities hold:

2

hmsup X
4(?\, -1)

T J[R(s) ~ROTKq(s)ds > @17)

and
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2
41y

The proof is similar to that of Theorem 2.5 of Li and Agarwal [7], we omit it here.

3. Oscillation results for f(x) without monotonity. In this section we consider
the oscillation of Eq. (1.1) when the function f(y) is not monotonous. In this case we
always assume the following condition holds:

limsup T 1()][3(:} R(s)*Kq(s)ds > (2.18)

t—pee

(H5") f(y)/y 2 pog > 0 for y # 0, where |, is a constant. (3.1)
Lemma 3.1. Let assumptions (H1) — (H4) and (H5") hold and y be a solution
of Eq. (1.1) such that y(t)>0 on [¢,b). Forany ve C([ty,),(0,)), let

!m)vmﬁﬁp (32)

on [¢,b). Thenfor any He X,

b
[ H, s)Kugp(s)g(s)ds <

c

b ’ 2
< H(b, o)yw(c) + -3‘_- Ir(s)v(s)[}b(b, 5) - %g)l.\fﬂ(b, s)} ds. (3.3)

Proof. From (1.1) and (3.2) we have for s € [, b)

- f>r®) v'(2)
wi(t) = —v()g(t)—7== ) gy’(®) - (r)v(t) w2 (o) + o0 —w(). G4
In view of f(y)/y=Ly>0 and g(y’)EK:».O we obtain
W) + Kpga0a() + 5w () - S < 0 (5)

The rest of the proof is similar to that of Lemma 2.1. The proof is complete.

Lemma 3.2. Let assumptions (H1) — (H4) and (H5") hold and suppose that y
is a solution of Eq. (1.1) such that y(t) > 0 on (a,c]. For any

e CY[ty,),(0,0)), let w(t) be defined by (3.2) on (a,c]. Then for any
He X, ,

_[ H(s, a)Klgv(s)g(s)ds <

' c # 2
< —H(e, a)w(c) + -i—.l r(s)v(s)|:hl(s, a) + %SE))- m] ds. -

The following theorem is an immediate result from Lemmas 3.1 and 3.2.
Theorem 3.1. Assume that (H1) — (H4) and (H5") hold and that for some c &

€ (a, b) and for some H e X, ve C([tg, ), (0, =)),

£H(s, a)Kuov(s)q(s)ds + T (b 58]

H(c IH(b Hiov(s)g(s)ds > -

ISSN 0041-6053. Ykp. mam. sxypH., 2001, m. 53, N* 9
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L (o V() >
5 r(s)v(s)[hl(s, ay + ;@—)W} dst

- _YO [mEw |
gy | 7O o) - YOG | as

Then évery solution of Eq. (1.1) has at least one zero in (a, b).
Theorem 3.2. Assume that (H1) — (H4) and (H5’) hold. If, for each T = t,,
there exist He X, ve CY([ty,),(0,)) and a,b,c € R suchthat T<Sa<c<
. < b and (3.6) holds, then every solution of Egq. (1.1) is oscillatory.
Theorem 3.3. Assume that (H1) — (H4) and (HS’) hold. If

¥ 2
hgsgpj | 5 DRo(9a(0) = 3 160 (5. ) + G 1)] }fs > 0

and

Ilmsupj [H(t $)Kgu(s)g(s) — —r(s)v(s) (hz(t 5) — ——(—lq,u' H{(t, s) ) }ds > 0/

t=poa 7
for some He X, ve CY([ty,),(0,)) and for each 1> t,, then every solution
of Eq. (1.1) is oscillatory.
Theorem 3.4. Assume that (H1) — (H4) and (H5") hold. If for each T 2 t,,

there exist H e Xy, v e C([tg,),(0,)) and a,ce R such that T<a <c
and

‘f H(s—a)Kpg[v(s)g(s) +v(2c—s)g(2c—s) ]ds >

a

-I'-\!i—l

]:' [r(s)v(s) + r(2c — s)v(2c —5) 1h%(s — a)ds +

+ %j [r(2c— s/ 2c—s) - r(s)/(s) [h(s —a) H s — a)ds +

32 Sl (v (s) r(s) (v'(2c = s))zr@c &)
Z -‘[ [ v(s) v(2¢ —5) His —a)ds,
then every solution of Eq. (1.1) is oscillatory.

Corollary 3.1. Assume that (H1) — (H4) and (H5") hold. Then every solution of
Eg. (1.1) is oscillatory provided that for each 1=ty and for some »\ > 1, there

exists a function v € CY([ty,0),(0,0)) such that the following two inequalities
hold:

’ 2
hmsup — j (s_z)*[fcpﬂu(s)g(s) - -r(,s‘)v( )[ ”—(“")j }ds >0

t—yoe =1 v(s)

and

{ 2
timsup 2L [ (¢-9) [Kunv(s)qcs) - —r(s)ucs)[— 4 —Q] }gs &0
[

t->o0 v(s)
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Theorem 3.5. Assume that (H1) — (H4) and (H5') hold and that lim, ,..R(f) =
= oo, Then every solution of Eq. (1.1) is oscillatory provided that for each 121,
and for some A > 1, the following two inequalities hold:

2
40 -1)

lim sup

R 11( )I [R(s)—R() ]RKI-Loq(S)ds >
t—p oo

and
2

4A-1)

limsup =7 3 o J [R(t)- R(s) I Kitog(s)ds >

t—3eo

4. Examples. In this section we will show the applications of our oscillation
criteria by two examples. Based on the results in Sections 2 and 3 we will see that the
equations in the examples are oscillatory, whereas the oscillation cannot be
demonstrated by the results of Huang [12], Kong [15] and Li and Agarwal [7].

1. Consider the nonlinear differential equation

(Elgy'(t)] (2 1)2 YOL+Y O 1+ 'OF] =0, t21 @D
Let r(f)=1/2t, f(y)=y(1+y*) and g(y)=1+y*. Then
K=1, R@®=t-1,
FO)Y=1+3*21=p, g0)=1+y*21

Note that for A > 1,

[ [RGs)—R@)Fate)ds =

R?L 1()
1
= Jm s 1()I[R<> R®) (zzfsl)ﬂs =
_ [RO-RDT* 2yt Y. “2)

e A-DRIOR@) @ -1 A1

Next, we will prove that

JRO-ROT L yds 2 j[R(s)— ROT e “3)
I -5 -1

F@t) = [{[RO-RET ~[Rs)-ROT" }( 22781)2&
I

Then F(I)=0 andfor >,

2yt
#-17

2vs
(s> -1)?

ds — [R()—R(s)T*

F @ = [MRO-R&FIRE
I
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t

=g 2 2yt
> [MRO-FOI R O Vs = (RO-ROT 7205 2
@ 1)2J MR®-ROT R ()ds ~ [RO)- R(l)]l(zzji)z _

Hence F(¢)2F(I)=0 for t=1, ie., (4.3) holds. By (4.2) and (4.3), forany v > 1/4

there exists A > 1 such that y/(A —1) > 12 4(A —1). This implies that (2.17) and
(2.18) hold for the same A. Applying Theorem 2.5, we find that (4.1) is oscillatory for
v>1/4.

2. Consider the nonlinear differential equation

2(1+ cos® £)(1 + 3sin” £) 9 )[
B+ cos? £)(1+sin” t)

]( LO/OP) = o,
44

o g et 1
(@+sin®0y'(r)) + T o

where ¢>1. Observe that

1 2} and f’(y) = (y )

1
fo) = y[— 8Ty

+
2 1+y

Clearly, theorem 2.5 cannot apply to Eq. (4.4). In spite of this, with v(¢) = 2 and A =
=2, we can prove the oscillatory character of Eq. (4.4) by Corollary 3.1. Because for
all ye R\{0},
f»_1, 1 o
y 2 1+y

and g(y)=1+y*>1=K. Thus,

t ; 2z
Iim | (s_;)ZBU@Q@ E ir(s)v(a)[;f—}—”v—(‘g] ]ds =

2 2 ) 12
I(s s 2[1 2(1+cos”s)(1+3sin”s) (1+Sln25)sz(s_z)2 ]ds >

;_mt 2 (3+cos?s)(1+sin?s)
1§71
S im = l:—(s—l)zsz Py ]ds = o
t—yool ! 8

and

2| Lu(s)qs) — Lr U—(‘E)-z =
erfc )2[ ©)46) (s)v(s)[ v()] }fs

I(‘ 5?2 2[12(1+cos s)(1+351n 5) ) ? }ds S

2 (3+cos®s)(1+sin?s) ~ (L+sin®s) st(t—s)®

t—-}wr
t

> lim 3][%(;-3)252 = 2:2}15 51 i,

o
1= 1

Thereby, Eq. (4.4) is oscillatory by Corollary 3.1. Observe that y(f) = cos¢ is an
oscillatory solution of Eq. (4.4).
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3. Consider the nonlinear differential equation

COYE) + a@yO+y’O)1+6'#)?*] = o, @4.5)
where g (t) is defined as following )
2(t —3n), 3n<t<3n+1,

q(®) = 12(-t+3n+2), 3n+1<t<3n+2,
—-n, 3n+2<t<3n+3,

ne Ny={0,1,2,...}, and r(t)=1+sin2t‘ Forany T'=0 there exists n € Ny such
that 3n>T. Let a=3n, ¢'=3n+1, and v(¢)=1. Pickup H(t—s) = (t—s)°, then
h(t—s)=2. Since f(y)=1+3y>21=p, g(y)=1+y*21=K, then

| Hs- @)K g(s) + a(2c-s)1ds =

3n+1 In+1

(s=3m)?[2(s—3n) + 26n+2—s—3m)]ds = 4 [ (s—3n)Pds = 2
3n i 3
and '
%j‘ [r(s)u(s) + r(2c—s)(2c—s) Jh* (s —a)ds +
"'zl”f [’r (2c - s)v'(2c—s) —r(s)v'(s)}h(s @) H(s— a)ds +
1 F [ e)Pr(s) | ' (2c—9))2r(2c—s) e o
! ‘T_j[ v(s) i v(2c—s5) ]H(S Jaa =
3n+1
[ [r®+r@e-5)2(s-3n)ds =
3n
'.’-.--:-|-11 5 5 13u+1 4
= 3:[‘ 2[2 + sin“s + sin (6n+2—s)]c?s < 2 3_[1 4ds =1 < 3

This implies that (2.12) holds and hence every solution of Eq. (4.5) is oscillatory by
Theorem 2.4. Note that in this equation we have _[w (s) = —eo. However, the results

of Kong [15] and Li and Agarwal [7] fail to apply to Eq. (4.5) since r(t) =1+ sin’¢
does not satisfy the condition »(z)=1. 2
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