F. Catino, M. M. Miccoli (Univ. Lecce, Italy)

THE UPPER SUBRINGS OF A RING*

ВЕРХНІ ІПДКІЛЬЦЯ В КІЛЬЦІ

We describe maximal ideals of rings that are contained in the adjoint groups of their upper subrings. Описано максимальні ідеали кілець, що містяться в приеднаних групах їхніх верхніх кілець.

1. Introduction. Let R be an associative ring. For all $a, b \in R$ we set $a \circ b = ab - ba$ and a * b = a + b + ab. It is well-known that $(R, +, \circ)$ is a Lie ring and that (R, *) is a monoid. We denote by Q(R) the group of quasiregular elements of R, i.e. the group of invertible elements of (R, *). If a is an element of Q(R) its inverse with respect to * is denoted by a^- .

It is easily seen that for arbitrary subrings A of an associative ring R the equality $Q(A) = Q(R) \cap A$ does not hold but is also true for (one-sided) ideals A of R.

We remark that if $Z_n(R)$ $(n \in \mathbb{N}_0)$ is the *n*th center of Lie ring $(R, +, \circ)$, then $Z_n(R)$ is a subring of R and $Q(Z_n) = Q(R) \cap Z_n$ [1].

In this note about some subrings A of an associative ring R for which the equality $Q(A) = Q(R) \cap A$ holds, it is investigated. We will show that there exists a relation between these subrings and same particular ideals of R.

2. The results. Let B be an additive submonoid of an associative ring R. Then

$$A := \{ z | z \in R, \ z \circ R \subseteq B \} \tag{1}$$

is an associative subring of R (cf. [2], Lemma 1). It is called a upper subring of R. Relevant examples are the nth upper center $Z_n(R)$, $n \in \mathbb{N}_0$, of the associated Lie ring of R and, also, the subrings of R

$$\overline{\gamma_n(R)} = \{z \mid z \in R, \ z \circ R \subseteq \gamma_{n+1}(R)\}, \quad n \in \mathbb{N},$$

called the closure of the lower central factor $\gamma_n(R) / \gamma_{n+1}(R)$ [3].

We remark that if B is a Lie ideal of R, then A is a Lie ideal of R and A/B is the center of Lie ring R/B.

Moreover we remark that, for upper subrings A of an associative ring A, we have the equality $Q(A) = Q(R) \cap A$ holds (cf. [2], Lemma 1). It is easily seen that equality does not hold for arbitrary subrings A but is also true for (one-sided) ideals A of R.

Now, we see that an upper subring A of R is related to an ideal F_A of R. In this case the subring A is the center of an associative ring R, the ideal F_A is the strong center of R [4].

Theorem 1. If B is an additive submonoid of R and A as in (1), put

$$F_A = \{ z | z \in A, zR \subseteq A \}.$$

Then F_A is the largest ideal of R which is contained in A.

Proof. Obviously F_A is a right ideal of R. Now, let $z \in F_A$ and $y \in R$. For all $r \in R$ we have

$$yz\circ r \ = \ y\circ zr \ + \ z\circ ry\in B.$$

This paper has been partially supported by Italian MURST.

[©] F. CATINO, M. M. MICCOLI, 2001 ISSN 0041-6053. Укр. мат. журн., 2001, т. 53, № 10

Hence $yz \in A$. Moreover, for all $x, r \in R$ we have

$$yzx \circ r = y \circ zxr + zx \circ ry \in B$$
.

Hence $yzx \in A$. Therefore, F_A is an ideal of R. The remainder is an immediate consequence of the definition of F_A . The theorem is proved.

We remark that F_A contains also any one-sided ideal of R contained in A.

Moreover, we remark that if B is a left ideal of R and A is as in (1), then $F_A \cap B$ is the largest ideal of R contained in B. In particular, if B is a modular left ideal of R, then $F_A \cap B = (B:R)$ [5].

Clearly, $F_A \cap Q(A) = Q(F_A)$. In general we shall see that $Q(F_A)$ need not be an ideal of R. We introduce an ideal of R contained in $Q(F_A)$ that is very similarly with the Jacobian radical of a ring.

Theorem 2. If B is an additive submonoid of R and A as in (1), we define

$$J_A = \{ z | z \in A, zR \subseteq Q(A) \}.$$

Then J_A is the largest ideal of R which is contained in Q(A).

Proof. Let us first prove that J_A is an ideal of R. Let $a, b \in J_A$. Obviously, $a - b \in A$. Moreover, if $r \in R$ then $ar \in Q(A)$ and $-br(1+(ar)^-) \in Q(A)$. It follows that

$$(a-b)r*(-br(1+(ar)^{-})*ar)^{-} = 0.$$

This proves, by lemma 6.5 of [5], that $a, b \in J_A$.

Evidently J_A is a right ideal of R. Now, if $z \in J_A$, then for all $x, y, r \in R$ we have

$$xz \circ r = x \circ zr + z \circ rx \in B,$$

$$(xz)y \circ r = x \circ zyr + zy \circ rx \in B.$$

Hence $xz \in A$ and $xyz \in A$. We have also that $zyx \in Q(A)$ and

$$xyz * (-xyz - x(zyx)^-zy) = -x((zyx)^- + zyx + zyx(zyx)^-)zy = 0.$$

Hence, by Lemma 6.5 of [5], $xzy \in Q(R) \cap A = Q(A)$. Therefore, J_A is an ideal of R. Moreover, if $z \in J_A$, then $-z^2 \in Q(A)$. Then

$$z * ((-z) * (-z^2)) = 0.$$

Thus, by Lemma 6.5 [5], $J_A \subseteq Q(A)$. The remainder is an immediate consequence of the definition of J_A . The theorem is proved.

We remark that J_A contains also any one-side ideal of R contained in A.

Moreover we remark that J_A is different, in general, by Jacobson radical J_A of A. But, clearly, if A = R then $J_A = J(A)$.

- Laue H. On the associated Lie ring and the adjoint group of a radical ring // Canad. Math. Bull. 1984. –27. – P. 215–222.
- Catino F. On a theorem of Gupta and Levin // Note Mat. 1995. 15. P. 131-137.
- Laue H. On central chains in ring. Lecce, 1990. (Preprint / Univer. Lecce, Nº 6).
- Catino F., Miccoli M. M. Note on strongly Lie nilpotent rings. Lecce, 2000. (Preprint / Univ. Lecce).
- 5. McCoy N. H. The theory of rings. New York: Macmillan Comp., 1964.

Received 27.10.2000