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ISOMETRIC EMBEDDING OF SOME METRIC SPACES
IN 1,-SPACES

IBSOMETPHUYHE BKJIAOJEHHA JEAKHAX METPHIHIX
IMPOCTOPIB ¥ [,-ITIPOCTOPHU

We present a generalization of the Fichet result who proved in 1988 that every ulltrametric space
consisting of n points is embedded isometrically in i’.;:_] . p2l

Hagegieno ysarasnsuenns pesysasrary Oivera, akuil y 1988 p. jopis, o KOXIKE YIbTPaAMETPUYIIHEH

. . -1
MIPOCTIp, IO CKJIAKAETECA 3 N "TOYOK, i3oMeTpHYNO BrIuajenuity ™, p= 1.

Embeddability is a central theme in modern mathematics, common to various different
fields such as set theory, topology, algebra and functional analysis. For instance,
solving the inverse problem for the e-entropy (see [1, p. 690] for formulations) Timan
and Kreinovid [2 — 4] showed that this problem can be partially reduced to an
isometric embedding of some ultrametric compact sets into Banach spaces with a
previously chosen norm. These papers also contain results on such embedding into the
spaces [, and L, for p=1, as well asinto C. The author [5 — 7] showed that every.
separable ultrametric space is isometrically embeddable in [}, /5 and ‘cy.

" Recall that a metric space (R, p) is said to be ultrametric if the triangle inequality
is satisfied in the stronger form

p(x, ¥) < max{p(x, z), p(», 2)}.

An important class of ultrametric spaces is obtained from non-Archimedean valuations
over fields. For instance, the p-adic valuation |[-[, over the p-adic field Q)

satisfies |x+y|p < max{|x|p,|y|!,} and the corresponding distance p(x,y) =
= |x—y|, is ultrametric.

The same problem on isometric embedding of ultrametric spaces, as well as of
some other metric spaces which are their generalizations, also arises in taxonomy,
psychology, theoretical physics, theoretical chemistry etc. So for example, for needs of
data analysis Fichet [8] proved that every finite ultrametric space R embeds
isometrically in !l,l,R I=1 whenever p = 1. (Here and later on we denote by |A| the
cardinality of the set A.) ’ '

Here we continue this investigation and give the following theorem.

Theorem 1. Every countable metric space R=R(ay, a;, ay,...) with a metric
p, which satisfies the following conditions YV O0<jsm<sk<i:

1’ pf)(a K] aO) = F pp(am) a(}) = pp(aj’ ai) = pp(a'm} a;‘);
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2. pp(am’ ak) + pp(aj? a:') < pp(aj’ ak) + pp(a’m! af)
is isometrically embeddable in 1,, p 2 1. If moreover R consists of n+ 1 points,
then R is isometrically embeddable in IF.

As we show bellow by some results from [7], this theorem exfends Fichet’s one.

We begin the proof of the theorem with the following statement. -

Lemma 1. Let @(t) be a nonnegative continuous even function such that:

(a) ¢0)=0;

(b) VOShStySt3<18; @ty —1)— 0t — 1) < ¢t — 1) — @4, —1);

(c) Vi,t,>0 o) +o(L) < o, +1t,).
Let D=(dy), i=0,1,2,..., j=0,1,2,...; be a real symmetric matrix such that
VO0<igk<sm<n:

1. d, >0 for i#k, d;=0;

2. dig =t S d—~da;

3. dg—dy < dy for i>1, d,—d, <d

1 mi dni *
Then the system

(P(x:l) = dy,
o(x)+o(x) = d,

o(x —x)+0(x3) = 4,
...................................................... ®

i k
Yot -x)+ X oGl = dy,, i<k
sm| sl

x 20 forall i

has one and only one real solution {xf}, i=1,2,..., s=1,...,i, and this solution
satisfies the following condition:
foreach i, x! > xl,, 2 x,>2.20. ()

Proof. Note that the function @(¢) strictly increases on [0, ). Hence for every
A >0, the function

vt A) = o) — 9(A—1)

strictly increases on ¢ on the segment [0, A]. Besides, by conditions (b) and (c), it is
monotonic nondecreasing on the whole real axis, and for all ¢, £, such that ¢ <0<
<A<,

v A) < y(0;4) = =9(A) < 0 < @A) = WA A) X y(t; A). (D
It follows from (c) that ¢(f) is not bounded. Hence, the equation @(x)=d,, has
a unique nonnegative solution x;. It follows from (I) and conditions 2 and 3 that

llf(xé;x[') = (P(xll') = (p(x][ "le) = dy — dyy, P
‘1’(0; xil) = —diy S dyy = dyy, o)
\p(x[';x,]) =dyy > dyy — dy,.
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Since w(r; xI‘) strictly increases on [0, x,'] and in virtue of (1), the equation

(t xl) dm -
has one and only one 18al solution 0 besides 0< xz' < x. It follows from (2) that if
¢(x3) 2 dy, then (x{ —x;} = d,, and
dy + dpp < ‘P(xz) + ‘P(xrl —x;) < (P(-’Cll) = dy.,

But this contradicts condition 2. Hence, (p'(x;) <d,, and, consequently, there exists
one and only one x2 >0 such that

(=) = dy — o(x). _
Proceed by induction and suppose that the lemma assertion is valid for the system
(P(xll) = dy, I
o(xd) + ¢(:2) = dy,
o(x = x3) + 0(x3) = oy,

...................................................... a
z(p( n-1 n L0
- Fe=]
R eaiis : ;_,l ...............................
zq](x; '—I;:_[) + Z (P(x;:—l) = djl-—-l.!’ i<n-— 1’
r=1 s=i+l
”_2 ............................................. ,
Z(‘P(x:—ﬁ ) + (P( ::—I) = dn-l.ur-z?
s=1
20 forall 1<i<n-1.
'We shall prove that the system
i@(x:) du 02
&=|
F ..................... ;, ............................
2005 —x) + 2 0(x) = i<,
£=1 sy=i+1
...................................................... n
-]
Z:I(p( ::--. u) (I:) = du.n-l’
: xr 2 0,

n

has one and only ;ane real solur:ibn {xj}, s =1,...,n, and this solution satisfies the '

following conditions:.
0< x,‘:1 for s<n=1, 0<x™' <x', x'>0.
Indeed, it follows from (III) that '
(p(x,l,l = (p(xll ‘_.xrll) = dnﬂ - dﬂl’
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By properties of the function \p(r; x][), the equation ¢
o Yo I
1|J'(f, xI) = 0@ - (p(xl _t) = dpo — dnl
has one and only one real root x,ll, and it is nonnegative. In addition, by condition 3,

we have

W(x‘i;x:) =dy—d, sd_y—d_

and by (ID),
w(x:r—lgxli) = dn—].i] - dn—l.l'

Hence, x! <x!

n—1*
Now suppose that for a given i<n — 1, we have already x),...,x'"!, satisfying
system (III), have the uniqueness of such solution and that 0< x} < x! | for any k <

< i—1. Then it follows from (III) that

i=1
E{(p(x:) - (P(xf - x:r)] + \Il(xlfl‘ x:) = dJ'J'I:I - dm"

~1

By virtue of conditions 2 and 3 and properties of ¢(t), we have

i-1

X [0(x) — o(xf = =) + w(0:x) =

i=

= 3 [o(x) - oz = =)+ o(x)] - do <

< > o(xn) - o(xis - xi) +o(x1)] - do =

= dyo = dyjy + di_go — dip < dyy — dy

and

> [o(x) = o(x = x)] + wixs ) =

x=|

- iz’[sp(x:)— o(x — x}) -—CP(If_g i x,’)] +dy, >

> 2[‘9(35:) = (P(xr"r—l _xﬁ;)] +diy = da:l-l = dyyy F o 2 dyg —dy.

By properties of w(t; x,f), the equation

> [o(x) - o —x)] + Wt #) = dy —d,
s=1 :
has one and only one real root * x/, and it is nonnegative. By (II), (III), condition 3 and
properties of ¢(z), we obtain
0= dﬂ-—l.f'

i

= (p(x;) - (P(xn—s) + (P(x:_x;—l) - (P(x: —x,';) +

-d

1,0

— dpy g1ty =
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# 3ot =52) = olst =) -0l - x)+olod 5] 2

= y(xhsxd) — w(xsx).

Hence, x| < x!_
It follows from the equality

n—|

n-1
Zq)(xu) Zi (x.;‘:—l __x:) = dy — d:;.u—l

that if z:;:cp(x;:) >d,, then 2" : cp(x,, | x;:) >d,,, and
n—1 n=1

dyo + dﬂ.n~1 < E[fp(x}‘;)"'(p(x:;—l _x.":)] < Zicp(x.::—l) = fiﬂ—l.ﬁ'
§=

=]
But this contradicts condition 2. Hence

n=1

z(p(x;) < dyp.

=]

Consequently, there exists one and only one nonnegative root x! of the equation

n

n=1

0(0) = do = 2.0(x;)

and x, > 0. It completes the proof.

Remark 1. Consider the function ¢(f)=t*. Then by Lemma 1, any symmetric
matrix D= (dﬁ), which satisfies conditions 1 — 3, is a matrix of squared distances for
a linear independent system of points in a real Hilbert space. Consequently, the matrix
B= (bg), where b; = di, + d;, — dj, is positive semi-definite [9], and, by (%), itis
positive definite. Thus, we have another proof of Lemma 1 from [7].

Remark 2. Obviously, if we omit in the above lemma condition (c), require @(#)
be not identically zero and strengthen”condition 2 as follows:
g — dyy < dyy — oy _ 2"

mi
then the lemma assertion remains valid. Furthermore, if we replace all strict
inequalities by nonstrict inequalitics then system (I) has a real solution, but possibly
more than one.

Proof of Theorem 1. Consider the function @(f) = |¢#|”, which satisfies
conditions (a) and (b). Then the proof follows immediately from Remark 2.

Now we shall show that Theorem 1 implies Fichet’s result mentioned above.
Indeed, it is shown in [7] that one can enumerate any finite ultrametric space R so
that R= (xg, X, ..., %,) and

VO<i<k<js<n p(x,x;) = max{p(x, x.), p(x x,)}-
‘We then enumerate this anew:
ay = Xy @& = X, i=1,..,n
Then-we have

Vigj<k<isn pla,a) = max{p(a,a), p(a, a)}, ®)
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