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RESOLVENT KERNELS WHICH CONSTITUTE
AN APPROXIMATION OF THE IDENTITY
AND LINEAR HEAT TRANSFER PROBLEMS

PE3OJILBEHTHI S/IPA, IIIO €
AIIPOK CUMAIIIEIO OIVHUIL,
TA JITHIAHI 3AJAYI TEHJIOOBMIHY

Sufficient conditions are obtained for a Volterra integral equation with kernel depending on an
increasing parameter ¢ to admit an approximation of the identity in o as resolvent kernel. In this case,

the solution to the integral equation tends to zero when o tends to infinity and estimates in L™ of this
convergence are established. These results are applied in obtaining estimates of the convergence of
linear heat transfer boundary conditions to Dirichlet ones, when the heat transfer coefficient tends to
infinity.

Otrpumani JrocTariii YMOBH, IpH SKKUX iirrerpaiisie pisisims Bolisreppa 3 syipoM, 10 3aJIeXHTh BijL
3pPOCTAIOYOI'D MapameTpa O, JIONYCKAE NAaGJHMKEIIIs O)MINI BIIIOCIIO O Y BHIVISI pesosibBelrTiio-
1’0 sjipa. Y 1hOMY BHMA/IKY PO3B’ 30K iIrTel paJibiioro PiBIAIII NPIMYE JI0 HYJIS, KOJIH O MpSAMYE J{0

neckinyenmocti, i orpumant orinku niei séixcocti s L™, 3a JiormoMoromo X pesy IsTaTin ojlepxari
owinku 36ixiocti ainifnux rpanmuuimx ymon Hipixie, Kosm Koedpinierr: renyoobMiny npsamye jio ie-
cKilvenHocTi.

1. Introduction and preliminaries. In this work we are interested in the behavior of
the solution to the parametric linear Volterra integral equation

t
ug(t) = F@) = [ ky(t=5)ug(s)ds, t>0, >0, (1)
0

when the parameter o tends to infinity. For every o > 0, equation (1) is of
convolution type and can be compactly written in the form wuy(t) = F(£) — (kg *
*uy)(t), t>0, with f* g denoting the convolution of the two functions &, and u,.
As is well known, the solution to this equation can be expressed by means of the
resolvent kernel I'y(#); namely, if for every o> 0, I',(#) solves the equation

t
To(t) = k@) — [ ky(t=5)Ty(s)ds, £>0, )
0
then the solution (1) admits the following representation
3
uo(t) = Ft) = [ T,(t—s)F(s)ds, >0, a>0. 3)
0

In the case in which for every >0, uy(t)— 0 when a T +e, it is deduced from
(3) that

t
(TaxF)(t) = [ Tu(t—5)F(s)ds — F(2)
0

and we expect {T'y} to be something like an approximation of the identity. It is
opportune to define the exact sense of what is meant by “approximation of the
identity”.

Definition 1. A family {fy: o > 0} of real continuous functions defined on
(0, +eo) verifying
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A fo(t) 20, t>0;

[ fu@ds =1, a>0;
0

e’

As) forevery §>0, Jim _[fa(s)d.s' =0;

is said to be an approximation of the identity or, in short, an approximate identity.

The following convergence properties of convolutions with an approximate identity
{fg: >0} are classically known [1-3]:

(@) if Fe CO(R*)YNL™(R") then fy* F— F in CO(R™) when o T+oo;
(i) if F is picewise-continuous and locally bounded on ]Ra", then fy * F— F

uniformly on compact subsets of the intervals of continuity of ¥ when o T +ce.

In what follows, we relax the restriction A, on the family {fy: o > 0}
preserving convergence properties (i) and (ii) for the convolution f, * F

Lemma 1. Assume that conditions A, and A, are satisfied by the family
{fq: & > 0}. Furthermore, suppose that (o) = J:” Jo (8) ds satisfies zﬁe
property

A) 0<p(e) = 1 when o T eo,

Then, the convergence properties of the convolution fy * F stated by (i) and (ii)
are preserved.

Let us call a generalized approximate identity to a family of function { fu: o >
>0} satisfying properties A;, A3, and A;.

Proof. 1t is sufficient to note that the family { fy/p(e): a > 0} is an
approximate identity and that

| F(t) = (fax F)(D)] <

1
F I S Y
® s (Jo * F)(®)

+ |1 = (o —(fu *F)N)|, t>0. : 4)

(o)
In fact, take for instance a piecewise-continuous function F locally bounded on RRf .
Then, the first term on the right hand side of (4) converges to zero uniformly on
compact subsets of the intervals of continuity of F by (ii). For the second term we
have

< 1= p@)|[Fllo, = 0

.= M(&)l‘—(fa F) ()

uniformly on compact subsets of R* by AJ%. The convergence f, * F — F in case

(i) is proved analogously.
In Section 2 a set of conditions on the kernels { k, } of equation (1) is established

in order that family of resolvent kernels {I',} is a generalized approximate identity.
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An estimate of the rate of convergence to zero of the solution u, is also given. In

Section 3, these tools are employed for the study of the behavior of the solution to
problems

U — Uy =0, x>0, t>0,
u(x,0) = 6p(x), x>0, (5)
u,(0,8) = o(u(0,t) — g(t)), t>0;
and
u,—unﬁo, O<x<1, t>0,

u(x,0) =04(x), O<x<l,
(6)
u(0,1) = o(u(0,t) — g(t)), >0,

u(l,t) = b(r), >0,

when the parameter o T 4. Standard procedures to analyse this bahavior involve
asymptotic expansions and scaling techniques, hence the developed in Section 2 can be
considered as an alternative way to accomplish this analysis*in the one-dimensional
case. :

For future use, we recall the expression of the fundamental solution to the one-
dimensional heat equation,

—x2 /41
At
and also those for the Green and Neumann functions, respectively
G(x, & 1) = K(x=£,1) - K(x+E, 1),
N(x,& 1) = K(x-E,t) + K(x+E&,1).

2. Families of kernels whose associated resolvents are generalized
approximate identities. In this section, appropriate tools are developed which enable
us to decide when a family of Volterra integral equations of the form (1) possesses a
family of resolvent kernels {I'y: ct>0} which is a generalized approximate identity.
First of all, we consider the following non-parametric linear Volterra integral equation

K(x,1) =

. _
u(t) = F@O - [ k@t—s)u(s)ds, ¢>0, Q)
0

where the kernel ke C° (RHNL : (0,1) and F ia a piecewise-continuous function

defined on R*. It is known that (7) admits a unique piecewise-continuous solution

u(t), t>0 (see[1] and references in [4]). Hence, the resolvent kernel corresponding
to equation (7) ; that is, the solution I" to the equation

t
I'(s) = k@ — J kt—s)T()ds, >0, (3

0
is a continuous function of ¢t € R*. Moreover I'e L' (0,1) [1,5]. Aside from this,
in the applications of Section 3 it will be sufficient to consider kernels of the form

k(t) = ko()/t", >0, with kye CO[O, +eo] and 0<vy<1, for which the classical
theory of Volterra integral equations can be successfully applied (see, for example [6,
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168 L. R. BERRONE

71). Under additional assumptions on k, two lemmas which establish useful -
properties of the resolvent kernel I' are proved. The first one ensures the non-
negativity of I" when £ is positive and logarithmically convex.

Lemma 2. [fthe kernel ke gl (RHN & (0, 1) satisfies the conditions

@ k() >0, >0, and lmk() > 0;
t

k(t)

———~— s non-decreasing for t>0;
k(t+T) 8

(ii) foreach T>0 the function t

then the resolvent kernel T'(t) satisfies
'ty 20, ¢>0.
It is shown in Remark 1 below that condition (ii) is equivalent to the convexity of
t+> Ink(t). Then ¢ itself is a convex function and existence of lif% k(t) in (i) is not
t

so restrictive as it might seem. Note that (i) does not exclude the case lifé k(t) =
!
= 4 oo,
Proof. First, the case in which 0 < k(#) < +e= is to be considered. In this case,
k is continuous up to 0 and, taking into account that I" € C‘O(}R"') (Yl ) (0,1), we
see that

, |
| k=T (s)ds| < [kl TNy, =0 as 20,

0

whence
t
lim©() = lim [k(t) - i k(t—s)T(s) ds] = Sifrfljk(r) > 0.

Thus, there exista 8y >0 such that I'(¢) > 0, te (0, 8y). Now, if we assume that
I'(¢;) < 0 for a certain #; > 0; then, the continuity of I" guarantees that the first
point #,> 0 exists-such that I'(¢) = 0 on (0,¢), I'(fg) = 0, and I'(¢) < O on the
interval (#p, ty + &) for an appropriate &> 0. By choosing t € (fy, ) + &) and
applying the hypothesis (i) and (ii), we have '

{

0>T()= k() - [ kt—-9)T(s)ds =
0

fy
= k(@) - j k(t—s)T(s)ds — j k(t—s)T(s)ds =

Iy

fy
k(t) k(t—s) k()
2 k() — | k@—-5)T()ds = —= |k — < 2 T(s)ds
® ! (t—=5)T(s) k(rg)[ (%) — i 0 (s) ]

k(t fy k(t
> k((r )) [k(ro) - _[ k(o —s)I“(s)ds] = k(f‘)) [(p) = 0.

Thus we arrive at a contradiction and I'(¢) = 0, ¢> 0, as the lemma asserts.
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Now, assume that H‘J,Hol k(t) = +eoo and consider the sequence I', of resolvent
t

kernels corresponding to the translated kernels k,(f) = k (r + lj ; 1.e., for every
n

ne N, wetake I',, to be the solution to
I‘(r)~k(r+ ) jk(r+l—s)r(s)ds £>0.

Since k,, ne N, satisfies conditions (i), (ii) and 0 < I{En k(@) = k(l) < +oo,
n
the first part of the proof applies to give I', = 0 for every n € N. On the other hand,

k,— k when n T +e, the convergence being understood in the sense of L}, [0, +),
the space of functions which are locally integrable on [0, + ). Hence, 0 < I',— T

when n T+ in L{cc [0, +e) (cf. Theorem 3.1 in [1, p. 42]) and then T" = 0. This

concludes the proof.
In the next lemma, an important inequality is established for the function

t > [ T(s)ds.
0

Lemma 3. Let the conditions

(i) k() >0, t>0;

(i) ¢t~ k() isnon-increasing on (0,+ee);
Gii) ()= 0, t>0;

hold. Then the resolvent kernel I"(t) becomes an integrable function on (0, +eo)
and

j‘ k(s) ds ' '
= ¥ j'r(s)ds <1, t>0. )
1+j0 k(s)ds 0 :

Furthermore, if in addition the kernel k(t) satisfies the condition

oo

@) [ k(s)ds = +o;
0

then J; I'(s)ds =1

Proof. From the hypothesis (i) — (iii) and equation (8), we obtain

jr(s)ds = jr(r—s)ds <
0

_a k&, T'®
< jr(r s)k() s = 1— s <1, t>0,

which is the right inequality in (9). To prove the remaining inequality, we define p =
= J';“ I"(s) ds and consider the solution x to the following Volterra integral equation
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Fea
Bo= [ Tu@ds, a>0.
0

Since Lemma 3 clearly holds for every k,, o. >0, wehave 0 < o, < 1, >0,
and we derive from inequalities (9)

oo

)
05 [ Tu@ds = py - [ Ta(9)ds <
. a 0

8
_ .[u 'Z“(S)ds < 5I )
1+ju ke (s) ds I+Ioku(s)ds

Hence, property As; follows from hypothesis (iv). Now, taking into account that

< g (13)

X , x>0, is an increasing function and using hypothesis (i), for 8> 0 we

+Lox
obtain

§ +ea
[ keyds < [ ky(s)ds.
0 0

Then, by using inequality (9), we deduce

& t
s ] ke@ds %

< I,(s)ds 1, o>0.
I+J§ka(s)ds 1T 4ee 1+j(; ke (5) ds l *

Passing to the limit as o T +eo and applying hypothesis (iv), we conclude that
property A3 also holds for the family {I'y: o> 0}, proving that this family is a
generalized approximate identity. Finally, if property (v) is satisfied, then Lemma 3
ensures that J:“ To(s)ds = 1 forevery o >0, sothat {I'y: o« >0} is an
approximate identity.

Now, we combine the previous theorem and Lemma 1 to obtain the result on the
limit behavior of the family {u,: o> 0} of solutions to equations (1) as o T +ee.

Theorem 2. Let the family {ky: o> 0} of kernels of equations (1) satisfy the
conditions of Theorem 1 and let the forcing function F of these equations be
piecewise-continuous and locally bounded on R{ . Then for the family of solutions
{ug: o> 0} one has uy(t)— 0 uniformly on compact subsets of intervals of

continuity of F. In particular, if F is continuous and bounded on R™ then

Uy (t)— 0 uniformly on compact subsets of R*.
Proof. By recalling the representation (3) for the solution u,(#) of equation (1),
the proof easily follows from Theorem 1 and Lemma 1.

The conclusions of Theorems 1 and 2 obviously hold provided there exists oy > 0
such that conditions (i) — (iv) of Theorem 1 are verified only for o > oty. In this way,
Theorem 2 provides a useful criterion to decide the convergence to zero of the
solutions u(t) to equation (7). Next, we deal with the problem of estimating the rate
of convergence of u,. For this purpose, a useful notation is introduced. For a
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172 L.R. BERRONE

function f defined on R* and such that f is bounded on every interval (0,¢), ¢> 0,

| fll ; denotesthe sup norm of f on the interval (0, ). If f is Holder-continuous
with exponent 0 < B <1 in [0, ¢] for every ¢ > 0, |f||3_: indicates the Holder
seminorm of f on [0, ¢].

Theorem 3. Suppose that the kernels ky satisfy hypothesis (i)— (iv) from
Theorem 1. If, for every t > 0, the forcing function F of the equation (1) is

bounded and Hélder-continuous with exponent 0 < £ 1 in the interval [0, t],
then the solution u, to equation (1) satisfies

3117,
lug(®)| < inf ||Flg, (W) + : ; (14)
¢ yeW¥ B.r g J;!(Gt) ke, (s) ds
where the infimum is taken over the class of functions
¥ = {\4!: R* —1[0,1: veC’(R");

v()

W(0™) = £; (o) = 0; lim [ k(o) ds = +m}. (15)
ate= 19

Proof. First we show that the class (15) is not empty by explicitly constructing
one of its members. For this purpose, by fixing > 0 we define the sequence Yy, =
t/(n+1), ne Ny. Inview of condition (iv) from Theorem 1, there exists a sequence

{o,: ne Ny} = R§ suchthat 0y=0, o, < 0, n€ Ny, and
W

J ky(s)ds 2 n, a,<a<oa,., neN;.
0

Thus, the piecewise-linear function y: R§ — (0, ¢] such that y(ot,) = ¥, n e
N, belongs to the class ¥. In fact, we obviously have y e CO(R+) and 1|.r(0+) =

Yo ==1, Y(Ho)= ,PTH:, Y, = 0. Furthermore, for &, < o < o, is
(o) Wil
[ ky@ds =2 | ky(s)ds 2 n;
0 0
and hence,
V(o)
lim kg (8)ds = + oo,
Im | &®

Now, to deduce the estimate (14) we consider a member W of the class ¥ ; then,
taking into account that 0 < Ly = J‘J” I'y(s)ds < 1 and that T’y =2 0, from
representation (3) of the solution uy(f) we get

t
lua(®)] = |F() - [ Tut—5) F(s)ds| <
-0
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4 R ]
< [To@IF@) - Fe—9)|ds + |F(o)l [ Ta)ds + 0~ po) |F@)] <
0 0
W(o) ' !
< j Ty (s)|F(6) — F@t—s)|ds + j T, ()| F@®) — Ft—s)|ds +
0 (o)
V(o)
+ |F@) (1 - ra(s)ds} =@ + () + ). (16)
0

Since F(t) is Holder-continuous with exponent 3, we have the following estimate

yr(c) yr(ce)
< |Fl, | To)sPds < |Flg, (w@)? | Ty@ds <
0 0

+oo
< IFlg, (w()® [ Tudds < [Flg, (w(o)P. an
0

Moreover, since F is bounded on every interval [0, ], >0, we obtain

¢ oo
@ < 2||Fll., [ Tu@ds < 2\|Fll., [ Tu@s)ds,
(o) (o)

) _1
but J-;(ot) T(s)ds < (l + _[‘p( ‘ ke, (5) ds) by inequalities (13) in the proof of

Theorem 1 ; therefore

a 2||Fl|y 18)
1+ [V ko (9)ds
As concerns (III), we get an estimate similar to (18) :
w 7]l
< ||Fi]ml{1— | I“a(s)dsJ < il _ (19)
| 0 1+ [T ky(s)ds
In this way, from (16) — (19) we deduce
3| Flloe,s
lug(®)] < | Flp, (w(e)? +
¥ Pit 1 j“’(‘” ko (5)ds

Hence, by the arbitrariness of y € ¥, the estimate (14) follows.

In practice, explicit estimates for |uy(#)| can be derived from the estimate (14) by
considering appropriate subfamilies of ¥. Some examples are provided in the next
section. On the other hand, it is obvious that estimate (14) holds only for o > o,
provided that conditions (i) — (iv) of Theorem 1 are imposed for o > oy.

We close this section by making some observation on the hypothesis made to derive
the results thus far exposed. In the next section, the usefulness of many of these
observations will be shown.

Remark 1. As it is pointed out by A Friedman in [4], the condition (ii) of Lemma
2 is equivalent to the log-convexity of k(t); that is, to the convexity of ¢ > Ink(z).
In fact, it is easily seen that both conditions on k(#) are equivalent to the assumption
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174 ; L. R. BERRONE
k(t)) k(ty) = k(t; + h)k(ty—h), t; <t,, 0Sh<ty—t,. In particular, if ke C'(R"),
the function k(t) is log-convex if and only if ¢+ k’(#)/k(t) is non-decreasing.

Moreover, if ke Cz(RT") we have k(t) log-convex if and only if k(£)k’'(¢) -
- (.!c’(.t‘))2 = 0, t> 0. On the other hand, the conditions (i) — (iii) from Theorem 1 all
hold for completely monotone kernels [5]; i.e., kernels k € C*(R*) that satisfy

(—1)"!((”)(:) 20, 1>0, ne Nj. Since the kernels ¢t > ™Y, 0 <y< 1, are
completely monotone, advantages of this fact are used in the applications of the next
section. We observe that condition
Gi7) thereexist = lim 59
1T k(t—1)
in Theorem 1 can be supposed instead of condition (ii). Indeed, if in addition to (i) and
(iii), condition (ii) is satisfied by k(¢), then the non-decreasing function ¢ =
> k(t)/k(r—1) satisfies k(t)/k(t—1) <1, t>1, hence the limit [ existsand [ <
< 1. Conversely, if (ii") is verified instead of (ii), for each o > 0 we can define
L(a) = rhTm (k@) /k(t—a)). In fact; it is easy to see that there exists L(a + b)

and [<1;

provided that there exist L(a) and L (b); furthermore, L(a + b) = L(a)L(b). It .
follows from (ii’) that L(r) exists for each r € @ and, in view of the continuity of

(a,t) > k(t)/k(t —a), a standard argument shows that L can be continuously
extended to R*. Thus, a > L(a) is a continuous function on R* which satisfies the

functional equation L(a+b) = L(a)L(b), a,b>0, and then L(a) = (L(1))% a>
0, (cf. [8]). Now, by choosing 0 <t <, we obtain

k() o k(1) s s ki +nt-n) - (6 —1))
k(ty) — k(ty + (1) k(ty + n(t; — 1) ’
whence
kt) o g kK2 ¥ 0t —0) — (b —1)) _ 1 _ 1 > 1
k(ty)  nTe k(ty + nt, — 1) Li—1) (L2

that is, £ +> k(t) is a non-increasing function,

3. Examples. In this section we apply the results of the previous one to analyse the
behaviour of solutions to problems (5) and (6) when the parameter o T +e0. These
problems are normalized models of heat conduction in a semi-infinite (5) or a finite (6)
slab with a linear heat transfer condition imposed at one of its ends. We note that the
solutions to problems (5) and (6) respectively converge to the solutions of problems

u—u, =0, x>0, t>0,
u(0,t) = g(t), t>0;
and
Ly

— Uy, =0, D;x«.l, t>0,

u(x,0) = Bg(x), 0O<x<l,
(21)
u(0,t) = g(r), " t>0,

u(l,t) = b(t), t>0.
This is a well known fact [9— 14] which has a clear physical meaning. The theorems
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established in the preceeding section enable us to give precise L™ estimates for this
convergence.

Example 1. The semi-infinite slab. Here we assume that functions 0,(x) and
g(r) arising in (5) (and (20)) are continuous and bounded for x = 0 and piecewise-
continuous and bounded for > 0, respectively. These assumptions are sufficient for
problem (5) to admit a unique bounded solution (cf. [15]) which can be represented in
the form

Foo t

va(, )= [ NxENOE)dE -2 [ K(xt-1o®dt, x>0, t>0;(22)
] ]

where @(t) = (Vy),(0, ) satisfies the Volterra integral equation

oo
o) = o [ N(©0,&1)0,(E)dE — agt) -
1]

- 20 [ K@ t-)@(v)dT, t>0. (23)
0

The kernels K(x,t) and N(x, €, t) in (22) and (23) were defined in the introductory
section. By defining uy(t) = g(t) — v4(0, ¢), from the boundary conditions of the
problem (5) we obtain
.' Q(t) = —ctug(t); 24
thus, from (23) and (24) we finally arrive at the following Volterra integral equation for
o (1) '
. oo .

X t "
ug(t) = gt) — _([ N(0,&,£) 0, (E)dE — 20:j KO, t=tyuy(t)dt, t>0. (25)
0

The equation (25) has the form (1) with
]
o

F(t) = g(®) — J N©O,ED6o®)dE, ko(t) = 20.K(0,1) = i (26)
0

and the conditions (i) — (v) of Theorem 1 are satisfied. Particularly, conditions (i) — (iii)

are straightforward because the kernels k,(¢), ct> 0, are completely monotone for t

>0,
Let v(x, t) be the solution to problem (20) and denote by v, (x, t) the solution to

problem (5) for a given o > 0. We are in position to prove the following result.
Theorem 4. For a continuous and bounded 8 ,(x), x 2 0, and for a piecewise-

continuous and bounded g(t), t2 0, vy(x,t) converges to v (x,t) uniformly for

xe RT and t belonging to compact subsets of intervals of continuity of g(t) as

o T +oo. Furthermore, if the forcing function F(t) given by (26) is Hélder-
continuous with exponent B in [0,t] for each t >0, then the difference
Wo(x, 1) = v(x, t) — vy (x, t) can be estimated as follows:

3| Fl|w, ¢
1+Km@@$

| wglx, )] < e1fc[2iﬁ]wiefp !F[;s,.-(‘lf(a))ﬁ o

x>0, >0, o>0;
where
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176 . L. R. BERRONE
= {w: R* —[0,1]: v eCO'(R");

y(0") =t; Y(Heo) =0; Ii}r-n o v = +oo}. 27
o ee :
Proof. The difference w(x,t) = v(x,t) — vy (x, t) satisfies the problem
u— =0, x>0, >0,
u(x,0) =0, x>0,
u(0,1) = ug(t), t>0;

whose solution can be expressed (see [15]) in the form
weo(x, 1) = —2_[ —(x, —Tuy (t)dt, x>0, t>0.
Then, for x>0, t>0, we have

[wo(x, )] < g |l s 2 £ [%f(x,r—'c)[dx = |lug |l crfc[fﬁj. (28)

Taking into account that erfc (—x—) <1, x>0, t>0, the convergence to zero of

24t
wq(x, t) uniformly in x e R* and t belonging to compact subsets of intervals of

continuity of g(¢) follows from (28) and Theorem 2. On the other hand, by assuming
F(t) a Holder-continuous function with exponent B on each interval [0, ¢], an
application of Theorem 3 provides

. 3 Flle
llutgllwr < inf ||Flg, Cy@))P + i (29)
foalleer = ST, AN U re J-\u(oc) k, (.s‘)ds

where ¥ is given by (27). The required estimate for |wy(x, ¢)| follows from (28)
and (29).

Remark 2. When 6, is a uniformly Holder-continuous function on {0 +=-—-)
with exponent A, we have

Hoa -
[ N©O,ED8E)dE -850 < 2 [ K(ED]OG(E) — 8, (0)]dE <
9 0
A 14+A thes
e &4 . ghts A -
< E[ ﬁ?e [6o]5 dE = T leoh[ _([ nte dn}

so that the function
o0 3
t [ N©,En8y(®)dE
0

becomes uniformly Holder-continuous on [0, +<=) with exponent A /2. In this
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manner, by assuming g (t) to be Holder-continuous with exponent B on every
interval [0, 7], the forcing function F(t) given by (26) satisfies

- A2
|F@t) - F)| < |elp, |t - BB+ Cly - 6M% 4,520,
with a constant C independent of t.
Remark 3. Since the function vy (o) = -t o< p <2, belongs to the

(1+o)P’
family (27), from estimate (29) in the proof of Theorem 4 we derive

ol = Iuf )\ Flp. Bp ;—
For the particular case of constant data; i.e., when 04(x) = CG and g(t)= C; are
constant, we have F(t) = C| — Cj and then

|u (I)I 3!Cl Cﬂl = BJCI"COI . (30)
¢ 0<P<2 1+ 2477 1+ 24t/na

1+ oc) a+o)P’
Now, we compare estimate (30) with that obtained via an exact calculation of the
solution to (25). Indeed, the resolvent kernel corresponding to equation (25) can be
computed by using the Abel method (see for example, [15—17]) or the Laplace
transform,

l"a(t)z-—o-"—-—oazeazferfc(ocﬂ), t>0, o>0;

NECH

whence the solution to (25) for the case F(t) = C; — C, is given by

ug(t),= (G — C‘O)[ i(% - ot e® “‘crfc(ocﬁ)]ds} =

= (€~ Cy)e® L erfe (0[7) . 31)
On the other hand, we have [18, p. 298]

2 x? 2
< ¢* erfe(x) £ , x>0; (32)
NE(x + /2 +2) JT(x + /5% + 4/7)
and therefore, it follows from (31) and (32) that
' 2|G - Gl
e (t)| < ’ (33)
a0 JT (oA + ot + 4/7)

Note that the asymptotical behavior as o T +oo in the estimates (30) and (33) differ
only by the constant facto;, 37 /2.

Example 2. The finite slab. If 0, is continuous on [0, 1], the solution to
problem (6) can be represented [15] in the form

I3
vo(x, 1) = v(x 1) — 2 [ K(xt—1) ¢ (1) dT +
. 0
r .
+ 3] L=, 1y, (t)ds, (34)
ox

0
where
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+eoo

v, )= [ K(x-§nOE)dE,

and 6 is a bounded continuous extension of 0, to R. In (34), ¢, and ¢, are
piecewise-continuous solutions to the following system of Volterra integral equations

I
b{t) = v(l.t)—z_[ ELt=1¢ (Mdt+ ¢y, >0,
’ (35)

L 42
v, (0,2) + @ (2) +'2f %6—12((4,:*1)(92(1)4{1 = o [v(o,r) -
0

t I3
- 2_[ KO t—1)¢ (t)dt + 2 aa—K(—.I,r—'E){pz('t)d“l: - g(t)J, t>0.
0 0o o*
In order to simplify the exposition, we express these equations in a compact form by

using convolutions. Thus, by defining uy (1) = g(¢) — v4(0,¢), >0, from (34) and
(35) the following system of Volterra integral equations is derived

2
au{l (f) + P (f) + (2%;'2@'(_1: ') * (PZJ (t) &= _Ux(on t})

o ® = K000 + (2Z 1,920,)0 = g - 00,0, 66

—(2K(1,)* 91) (1) + @2(1) = (1) = v(1, 1),

whence a single Volterra integral equation for u, (#) can be deduced. Indeed, after a
tedious but not difficult calculation, system (36) provides an cquationQ of the form (1)
for gy (1), in which

K K
ko(f) = 20.K(0,1) + 4 [K(_l,-)*[-ax—z—(—l,-) - gé;(-h-))] ) =

= ﬁ(a(l—e“”‘) + e, 37
and
F(t) = g(t) = v(0,1) + (g, * (& = v(0,-))) (1) -
= (g2%vx(0,))(1) = (g3 * (b - v(1,))) (D), (38)
where '

K, _ 1
axg( 1> )](t) = —\/Et

ga(t) = 2 (K(o,ﬂ - 2K(L-)*%—§(-lu))(t) = ﬁr"‘”a -y, (39)

-3/2 e_lh,

q1(t) = 4 [K(l,-)*

2
qs(f) = 2 ([%(—1,-) + 2 K(0, r))*%’%ﬁ(q,.)} = :_fl__gfwze—um:}.
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The calculations involved in (37) and (39) have been accomplished by means of the
Laplace transform. We note that F is continuous and bounded on R provided that

g has the same properties. Now, we show that the kernels ky(#) satisfy the
restrictions of Theorem 1. To this end, we first note that k,(z) > 0, r> 0; thatis,
condition (i) of Theorem 1 is satisfied. Condition (iv) is quickly verified and it is easy
to see that lim gl

1Teo ko (£ —1)
condition (iii) is also satisfied. This matter seems to be less trivial and deserves a more
detailed consideration.

= 1, o > 0. By Remark 1, it is enough to prove that

Lemama 4. If o> 1, then ky (t) k(@) — (kK (£)* > 0, t>0.
Progf. From (37) and (39) we see that

kg(t) = agy(t) + qy(1), t>0, o>0; (40)
and therefore
ko (0) K (8) — (K 0)* = A(t)a? + B(t)o + C(1), (41)

where, for each >0,

A = OB O - (¢ 0)
B() = qi(t) g5 (t) + a2 (8) g{(®) — 24{ () g5 ®),
C@t) = ¢ @) - (g 1)

The right hand side of (41) is a quadratic polynomial in o whose discriminant & () =

= Bz(t) —4A()C(t) > 0, t>0; hence, to prove that this polynomial is positive for
o > 1, itis sufficient to show that A(¢) > 0, t> 0, and that

2
oty = BOHNEO—4AQCH) 50, “2)

2A(2)

The simplest way to show that A(¢) > 0, £> 0, consist, perhaps, in noting that g, ()
is a completely monotone function on (0, +e=); in fact, we have

iy st 1= cos(2
g (2) = 1 I ff__cos(_‘\/_:)ds
T
Thus, by the Hausdorff — Bernstein— Widder theorem (see [7]), g5 (#) is completely
monotone on (0, +<=). To show (42), after tedious calculations we find

p(1) = :

1t (g2 '
- == 3" =4t + 1) +t(3t—4) +
t(t2 e — 26 (e — 1D + 1 - 4))( =% LAl

+ J (61 — 2083 + 2272 — 8t + 1) — 42 B2 — Tt + 4) + 615 — 8 )
whence we deduce

,lif%p(r) =0, p@4/3)=0; p()>0, 0<t<4/3; p()<0, t>4/3;

Jé

li 1) = — .
'r‘ll‘nip() 2

ISSN 0041-6053. Yxp. smam. sxypie, 2000, m. 52, N¢ 2



180 L.R. BERRONE

The proof is completed by observing that 0 < odhax . p@ < 1.

Note that, unlike to the kernels (26) , which satisfy condition (v) from Theorem 1,
the kernels (37) corresponding to the finite slab are intgrable on R™.

Now we prove a theorem similar to Theorem 4 for the finite slab. As before, we
denote by v (x, t) the solution to problem (6) and by v(x, ) that corresponding to
problem (21).

Theorem 5. For a continuous 0y(x), 0<x <1, and for continuous g(t) and
b(t), t =2 0, the solution to problem (6) converges to that of problem (21) when
o T +00. The convergence is uniform on subsets of the form (x,t) € [0, 1]x
% [0,T], T > 0. Furthermore, if the forcing function F(t) given by (38), (39) is
Hilder-continuous with exponent B in [0,t] for each t > 0; then, the following
estimate holds for the difference wy(x,t) = v(x,t) — vy (x,):

3l FlL..,,
1+Hw@mm

[waGe O] < inf, | [Flg, (@) + N C5)

O<x<1, >0, o>1;
where WV is the class of function defined by (27).

Proof. As in the proof of Theorem 4, we see that wy(x,t) = v(x, t) — vy (x, 1)
satisfies the problem

u—u, =0, O<x<l, >0,
u(x,0)=0, O<x<l,
. , (44)
u(0,1t) = ug(t), t>0,
‘ u(l,z) =0, t>0;
then by using the maximum principle and the Vyborny lemma [15] we conclude that
the solution to (44) satisfies

Woyllw: = su Wo (6, T £ | uglle. s
Iwalles = st e 9] S gl
Thus, the uniform convergence wy —> 0 on every subset [0,1]x [0,T], T >0,

immediately follows from Theorem 2. Now, to prove the estimate (43) by application
of Theorem 3, we only need to prove that

()
1¥1j ky(s)ds = +o00 & 1@(mﬁﬂa)=+m. (45)
aﬂ'o o | oo

To this end, we can easily compute, for a given y e ‘P,

v ' ¥ .1 =1/t -1 =1/t
| ka(s)ds = jjﬁmmﬁ Y+ e ds =
0 0
2 Uy 1
= ﬁﬂ e Yo w(a) + (1 +2ot)erfc[mj. (46)

Since y(o) — 0 when o T +eo, from (46) we deduce

ISSN 0041-6053. Yip. atam. sypi., 2000, m. 52, N°® 2



RESOLVENT KERNELS WHICH CONSTITUTE AN APPROXIMATION OF ... 181

v
: ™ 2 ; 1
éz}rnw i[ ky($)ds = ;11;1:0 (_—-ﬁf o q;(oc)] + 01{1%1; [205 crfc( e D 47)

but from inequalities (32) we obtain

20{"“;(&)8"1”’(0{} co:.erfc[ 1 ](_
N+ JT+2y(0)) v )~

200/ () e V@
T w41+ dy(@)/w)’ ’

Q T
A
o —

whence

; 1 s (gl e V@) . -
lim | ccerfc = lim : 48
m«-[ (Wm D T[ T T
The equivalence (45) easily follows from (46), (47) and (48).
A particular case of Theorem 5 is presented in the following remark.

Remark 4. By assuming 0y(x) = Cp, g(¢) = C; and b(t) = C,, w1th Co, ..Cl,
C, = 0, the forcing function F given by (38), (395 can be written in the fo]]owmg
way:

%

F(t) = G ~ Gy + (G - coyj Jl_ iz “”’dt

r
1 -3/2 —1/(40
G -G | —=t e dt =
| =

= ¢ - Co)[l + erfc[%]) -2(C, — Cy) erfc(%ﬁ], t>0.

Since tPe~ 114" < (pgle), t>0, p,g > 0, itis easy to see that F is a Lipschitz
and bounded function on [0, +eo) with

3/2 ;
1 3 1 6
|Fly,, = —_ﬁ(ﬂ) |C1—Co|+J—E[—) |Gy — t>0,

and

[ Flleo,, = 2(]C) — Col + [C5 = Cp]),  £>0.

As in Remark 3 we introduce the functions Y (o) = 0<p <2, which

ot
(1+o)P’
belong to the family (27); then, from Theorem 5 we derive, for 0 <x<1, >0,

IwCC(x:) f)l E

3/2 \3/2 :
in 1 3 1 (6 t
< 2130 e s w18 — G| | —t—
0<p<2 [-{ ( J G D|+.Jn(ej & cﬂi](1+oc)f’ *
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6 (1G -Gl +1C, - Gl)
1t p/z
Eik -%(1 — WMy g 112(1 4 oy P12 4 (14 20 erfe (——(l 3. J

+

IUZ
o>1;

where we have employed the value of J-Oww ko () ds given by (46).

To conclude with we point out that the analysis performed in the previous sections
on the convergence of the solutions to equations (1) can be reproduced without

essential changes for convergence in L” instead of L™. A version of Theorem 3
providing an estimate of the convergence in L” is also feasible, which allow to obtain

estimates of convergence in L” to Dirichlet type boundary conditions of linear heat
transfer boundary conditions when the coefficient of heat transfer becomes infinity.
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