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WEIGHTED LEBESGUE AND CENTRAL MORREY ESTIMATES
FOR P-ADIC MULTILINEAR HAUSDORFF OPERATORS
AND ITS COMMUTATORS

3BAKEHI OI[THKHU JIJISI P-AJUYHUX BATATOJTHIMHAX
TAYCJIOP®OBUX OINEPATOPIB TA IXHIX KOMYTATOPIB
HA ITPOCTOPAX JIEBET'A 1 HEHTPAJIBHUX ITPOCTOPAX MOPPI

We establish the sharp boundedness of p-adic multilinear Hausdorff operators on the product of Lebesgue and central Morrey
spaces associated with both power weights and Muckenhoupt weights. Moreover, the boundedness for the commutators of
p-adic multilinear Hausdorff operators on the such spaces with symbols in central BMO space is also obtained.

BcranoBneHO TOYHY OOMEXKEHICTh p-aAMYHUX OaraToNiHiHUX raycnopgoBUX omeparopiB Ha 1oOyTKy mpocTopiB Jlebera
i HeHTpaJbHUX NpocTopiB Moppi, acomiioBaHUX SIK 3 BaraMH CTEIEHIB, Tak i 3 BaramMu MakenxaynTa. Takox JTOBEIEHO
0OMEXKEHICTh KOMYTaTOpIiB p-aJIMYHUX OaraToNiHifHUX raycaop(oBHX ONEpaTopiB Ha TaKMX IPOCTOPAxX i3 CHMBOJAMHU B
neHTpaitbHoMy BMO-mpocTopi.

1. Introduction. The p-adic analysis in the past decades has received a lot of attention due to its
important applications in mathematical physics as well as its necessity in sciences and technologies
(see, e.g., [2—4, 10, 20-22, 28-31] and the references therein). It is known that the theory of
functions from Q,, into C play an important role in p-adic quantum mechanics, the theory of p-
adic probability in which real-valued random variables have to be considered to solve covariance
problems. In recent years, there is an increasing interest in the study of harmonic analysis and
wavelet analysis over the p-adic fields (see, e.g., [1, 4, 8, 18, 19, 22]).

It is crucial that the Hausdorff operator is one of the important operators in harmonic analysis. It
is closely related to the summability of the classical Fourier series (see, for instance, [11, 13, 15] and
the references therein). Let ® be a locally integrable function on R™. The matrix Hausdorff operator
Hg 4 associated to the kernel function @ is then defined by

W) ¢ a)a)dy, = e R,

H<I>,A(f)(x):/ |y‘
]RTL

where A(y) is an n x n invertible matrix for almost everywhere y in the support of ®. It is worth
pointing out that if the kernel function @ is chosen appropriately, then the Hausdorff operator reduces
to many classcial operators in analysis such as the Hardy operator, the Cesaro operator, the Riemann —
Liouville fractional integral operator and the Hardy — Littlewood average operator.

In 2010, Volosivets [32] introduced the matrix Hausdorff operator on the p-adic numbers field as
follows:

Hoa(f)(2) = / PO F(AD)z)dt, e QP
Q3
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where (t) is a locally integrable function on Qj and A(t) is an n x n invertible matrix for almost
everywhere ¢ in the support of . It is easy to see that if ¢(t) = (t1)xzz~(¢) and A(t) = t1.1,
(I, is an identity matrix) for ¢t = (¢1,12,...,t,), Where ¢»: Q, — C is a measurable function, then
H,, 4 reduces to the p-adic weighted Hardy — Littlewood average operator due to Rim and Lee [26].

In recent years, the theory of the Hardy operators, the Hausdorff operators over the p-adic
numbers field has been significantly developed into different contexts, and they are actually useful
for p-adic analysis (see, e.g., [5, 6, 14, 33]). It is known that the authors in [7] also introduced and
studied a general class of multilinear Hausdorff operators on the real field defined by

/Ly‘anz (y)o)dy, @ eR",

for f=(fi,...,fm) and A = (Ay,..., Ap).
Motivated by above results, in this paper we shall introduce and study a class of p-adic multilinear

(matrix) Hausdorff operators defined as follows.
Definition 1.1. Let ® be a measurable complex-valued function on Q. The p-adic multilinear
Hausdorff operator is defined by

(e /Wﬂﬁ W)y, ©eqn,

P =1

where f = (f1,--+, fm) and f1, fa, ..., fm are measurable complex-valued functions on Qj.

Note that in this paper we will confine our attention to the case, where @ is the nonnegative
function.

Let b be a measurable function. The operator M, is defined by M, f(z) = b(z)f(x) for any
measurable function f. If H is a linear operator on some measurable function space, the com-
mutator of Coifman—Rochberg—Weiss type formed by M, and H is defined by [My, H]f(z) =
= (MyH — HMy) f(x). Similarly, the commutators of p-adic multilinear Hausdorff operator is
defined as follows.

Definition 1.2. Let O, A be as above. The Coifman— Rochberg — Weiss type commutator of p-
adic multilinear Hausdorff operator is defined by

o / (x) - Hfz i()2)dy,
Iy\p pal 1

where x € Qy, b= (b1,...,by) and b; are locally integrable functions on Qp foralli=1,...,m.

The main purpose of this paper is to study the p-adic multilinear Hausdorff operators and its
commutators on the p-adic numbers field. More precisely, we obtain the necessary and sufficient
conditions for the boundedness of H” oA and 7-[; Az o0 the product of Lebesgue and central Morrey
spaces with weights on p-adic field. In each case, we estimate the corresponding operator norms.
Moreover, the boundedness of ’Hf{’) i3 on the such spaces with symbols in central BMO space is also
established. It should be pointed out that all our results are new even in the case of p-adic linear

Hausdorff operators.
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This paper is organized as follows. In Section 2, we present some notations and preliminaries
about p-adic analysis as well as give some definitions of the Lebesgue and central Morrey spaces
associated with power weights and Muckenhoupt weights. Main theorems are given and proved in
Sections 3 and 4.

2. Some notations and definitions. For a prime number p, let Q, be the field of p-adic
numbers. This field is the completion of the field of rational numbers Q with respect to the non-
Archimedean p-adic norm |- |,. This norm is defined as follows: if 2 = 0, then 0], = 0; if  # 0 is

(07

an arbitrary rational number with the unique representation x = p® —, where m, n are not divisible

by p, @ = a(z) € Z, then |z|, = p~“. This norm satisfies the q"ollowing properties: |z|, > 0
Vo € Qp and |z], = 0 & o = 0; [zylp, = [z|plyl, Yo,y € Qp; and [z + yl, < max(|z]p, |y[p)
Va,y € Qp, and when |z, # [y[,, we have [z + y[, = max(|z[p, [y]p).
It is also known that any non-zero p-adic number € Q, can be uniquely represented in the
canonical series
r =p° ($0+$1p+9€2p2+-~)7

where a« = a(z) € Z, z € {0,1,...,p — 1}, g # 0, £k = 0,1,.... This series converges
in the p-adic norm since |xkpk‘p < p~*. The space Qp = Qp x ... x Qp consists of all points
r = (z1,...,7,), where 7; € Qp, i = 1,...,n, n > 1. The p-adic norm of Q} is defined by
|z[, = maxi<j<p |7;]p. Let A be an nxn matrix with entries a;; € Qp. For z = (z1,...,7,) € Qp,
we denote

n n
Az = E A1jLgy ey E AnjT 5
Jj=1 J=1

By Lemma 2 in paper [33], the norm of A is ||A|, := maxi<;<, maxi<j<p |a;j|p. For simplicity
of notation, we write k4 = log,||All,. It is clear to see that k4 € Z. It is easy to show that
|Az[, < ||Allp.|x|p for any x € Q. In addition, if A is invertible, by the same arguments as the real
setting (see also Lemma 3.1 [25] for the setting of the Heisenberg group), we get

1A],™ < |det (A7H)], < [|ATH]- @.1)

Let Bo(a) = {z € Qp:lr—alp < p®} be a ball of radius p® with center at a € Qp. Similarly,
denote by So(a) = { € Q!: |z —al, =p“} the sphere with center at a € QF and radius p®.
If By, = Ba(0), Su = Sa(0), then, for any zy € Qp, we have g + B, = B, (xg) and xo +
+ Sa = Sa(xo). Since Qy is a locally compact commutative group under addition, it follows from
the standard theory that there exists a Haar measure dz on Qj, which is unique up to positive
constant multiple and is translation invariant. This measure is unique by normalizing dx such that

/ dr = |Bo| = 1, where |B| denotes the Haar measure of a measurable subset B of Q. By
By

simple calculation, it is easy to obtain that |B,(a)| = p"?, |[Sa(a)| = p"* (1 —p~™) ~ p™* for any
a € Qp. For f € L, (QF), we have

loc

/f(x)d:v:agriloo/f(:v)dw:agrfw Z /f(x)d:v.
Qp Ba

—oo<y<« S,
In particular, if f € L' (@g) , We can write
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@{f(x)d Z /f )dz and /f (ta)dx = |t|n/f

Oéf—OO

where ¢t € @, \ {0}. For a more complete introduction to the p-adic analysis, we refer the readers to
[20, 31] and the references therein.

Let w be a weighted function, that is a nonnegative locally integrable measurable function on Qj).
The weighted Lebesgue space LY, (Qg) , 0 < g < o0, is defined to be the space of all measurable
functions f on Q} such that

1/q

lszap = | [ V@@ | <oc.
Q’ﬂ

The space Lw loc (QZ) is defined as the set of all measurable functions f on Q) satisfying
[1s@ltae < oc
K

for any compact subset K of Q. The space Lw loc (Q;} \ {0}) is also defined in a similar way as the
space L! wloc (Qg) . Throught the whole paper, we denote by C' a positive constant that is independent
of the main parameters, but can change from line to line. We also write a < b to mean that there is
a positive constant C', independent of the main parameters, such that a < Cb. The symbol f ~ g
means that f is equivalent to g (i.e., C~'f < g < Cf). For any real number ¢ > 1, denote by ¢’

et
that if w(x) = |z|; for @ > —n, then we have

( ) /|l‘|adl‘ _ Z / kadl’ _ Zpk(a—i-n _ —n) ~ p”/(oz—i-n). (2.2)

k<~vy S k<~

A
1 1
conjugate real number of /, i.e., — + — = 1. Denote w(B)* = (/ w(:v)dx) for A € R. Remark
B

Next, let us give the definition of weighted A-central Morrey spaces on p-adic numbers field as
follows.

Deﬁnltlon 21. Let A € Rand 1 < q < oo. The weighted \-central Morrey p-adic spaces
(Q") consists of all functions f € Lw loc (Q”) satisfying HfH a )\( ) < 00, where

1/q

1 q
11520y =52 | 575 B/ (@)l ()

vE

g\ 1
Remark that B, (Qp) is a Banach space and reduces to {0} when A < ——.
q

Let us recall the definition of the weighted central BMO p-adic space of John—Nirenberg type.
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Definition 2.2. Let 1 < ¢ < oo and w be a weight function. The weighted central bounded
mean oscillation space C MO, (QZ) is defined as the set of all functions f € Lg} loc (QZ) such that

q

1
||f||CMog(Qg) = ilellz C‘WJB/ |f(x) — wa|qw($)d:L‘ < 00,

where

1
fB.Y = MB/ f(.l‘)dx

The theory of A, weight was first introduced by Benjamin Muckenhoupt on the Euclidean spaces
in order to characterise the boundedness of Hardy — Littlewood maximal functions on the weighted
L' spaces (see [24]). For A, weights on the p-adic fields, more generally, on the local fields or
homogeneous type spaces, one can refer to [9, 16] for more details. Let us now recall the definition
of A, weights.

Definition 2.3. Let 1 < ¢ < oo. It is said that a nonnegative locally integrable function w €
e Ay (Qg) if there exists a constant C' such that, for all balls B, we have

/-1

|;|/w(x)dx |13|/w(:c)_1/(£_1)da: <C.
B B

It is said that a weight w € A (QZ) if there is a constant C' such that, for all balls B, we get

|;’ /w(x)dm < Cegséigfw(:v).
B

We denote by A (Qg) = Ulge oo At (Qg) . Let us give the following standard result related
to the Muckenhoupt weights.

Proposition 2.1. (i) A (Q})

1) If w € Ay (Qg) for 1 < ¢
weE Ap_. (@g) .

We note that the class A (Qz’) is closely connected with the reverse Holder condition. More
precisely, if there exist » > 1 and a fixed constant C' such that

1/r
1 . C
|B|/w(x) dz < |B|/w(x)dx
B

B

A (Qg)f0r1§€<q<oo.

C
- q
< 00, then there is an € > 0 such that { — e > 1 and

for all balls B C Qj), then we say that w satisfies the reverse Holder condition of order 7 and write
w € RH, (Qg) . According to Theorem 19 and Corollary 21 in [17], w € Ay (Qg) if and only
if there exists some r > 1 such that w € RH, (Qp). Moreover, if w € RH, (Q), r > 1, then
w € RH,. (Qp) for some & > 0. We thus write 7, = sup {r>1:weRH, (Qg)} to denote the
critical index of w for the reverse Holder condition. It is worth noticing that an important example
of Ay (Qp) weight is the power function |z|%. By the similar arguments as Propositions 1.4.3 and
1.4.4 in [23], we obtain the following properties of power weights.
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Proposition 2.2. Let x € Q. Then we have:

A [y €A (Qg) if and only if —n < a < 0;

(i) \-]fjeAg(QZ)forl<£<ooifandonlyif—n<a<n(€—1).

Let us give the following standard characterization of A, weights which it is proved in the similar
way as the real setting (see [12, 27] for more details).

Proposition 2.3. Let w € Ay (@2) N RH, (QZ) , £ > 1 and r > 1. Then there exist constants

Ch, Cy > 0 such that
\E|>f w(E) B[\
Ch ( < <Co| 57
| B w(B) | Bl
for any measurable subset E of a ball B.
Proposition 2.4. If w € Ay (@g), 1 < ¢ < o, then, for any f € Li_ (Qg) and any ball

B C Qp, we have
1/¢

,;‘ [1s@lar<c w(lB) [1s@)twyis
B B

Let us recall the definition of the Hardy — Littlewood maximal operator

Mf(z) = sup — |f(y)|dy-

It is useful to remark that the Hardy - Littlewood maximal operator M is bounded on L, (@g) if
and only if w € Ay (QZ) for all £ > 1. Finally, we introduce a new maximal operator which is used
in the sequel, that is,

1
MmOdf(l") = Ssup —o |f(y)|dy.
~EZ P
|z]p<p” By (x)

3. Main results about the boundness of ’H’; i Let us now assume that ¢ and ¢; € [1,00),

o, oy are real numbers such that o; € (—n, 00) for i = 1,2,...,m and
1 1 1 1 « « « «
S —==, A=y D
qa 42 dm q q1 qz dm q

In this section, we will investigate the boundedness of multilinear Hausdorff operators on weighted
Lebesgue spaces and weighted central Morrey spaces associated to the case of matrices having the
important property as follows: there exists v ; € N such that

14i@)llp- AT W), < P50 forall i=1,....m (3.1)

and for almost everywhere y € Q. Thus, by the property of invertible matrice, it is easy to show
that

1AWl S 1147 w)],” forall oeR (3.2)
and
|Ai(y)z|p 2 HAi_l(y)H;U lz[; forall ocR, zec@y)\{0}. (3.3)

First main result of this paper is the following.
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Theorem 3.1. Let wi(z) = |z[t, ... ,wn(x) = |z[y™ and w(z) = |x|;. Then ”Hg i s bounded
from LY} (Q”) X LEm (QZ) to LY (QZ) if and only if

m

Q) . a;+n
b (RS

P =1

Q
‘ ~ Cl .
AN LL () x...x L (@) L8 (p)
Proof. Firstly, we w111 prove the sufficiency of the condition C; < co. By applying the Minkowski
inequality and the Holder inequality, we have

752 (7)

By using the change of variables, we get

Furthermore, H’H

11(ep) / ry\nH”f” ez (o)

17 Ai) Y gy < max (AT @IS 1AsCw) 1 b |des A7 w) 3 il ()

Thus,

|72 (7)

/ |(‘%? max{HAz. 1(y)‘p A @), Z}
o P i1
P

<
L4 (Qp)

u dy HHszqu (@) G4

Note that, by (2.1) and (3.2), we obtain

= _ B (aj+n)
ma {[| 47 )0 14 w)l b [det A7 )| S 147 @)l (3.5)
This shows that .
P _(F < Ao i
HH¢>,A (f) ‘ o (ap) ~ G H 17ill 2 (o)
=1
Next, to prove that the condition C; < oo is necessary, let us now take ﬁ = (fir,-- -, fmr), Where
0, if |z, < pva—t
fi,r(:l:) = _ﬂ_ﬁ_pfr
|zl & " , otherwise,
fori=1,...,m and » € Z". By a simple calculation, we have
1
93
Wi = | [ v | =

ISSN 1027-3190. Vkp. mam. scypn., 2021, m. 73, Ne 7
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_ Z pk( n=qip~") I ~ Z pk( n—q;p T)pkn _
k>—l/A‘Sk kZ_VA’
1
i vep "
. A
— | S per __ P - (3.6)
k>—vy (1 - p_qipir) %

Next, we define two sets as follows:
m
Se=[{y€Q:|Ai(y)zlp, > p "4}
i=1

and
U, = {y €Qy: |Ai(y)|lp > p~" forall i = 1,...,m} .
From this we derive

U-C S, forall xe€Qy\ By 1. (3.7)

In fact, by letting y € U,, we get ||A;(y)|p|z[, > 1 for all z € Q) \ B,_1. Thus, by applying the
condition (3.1), one has

5 4l
[Ai()zly > |47 W) 2ty = 14, W) |TA<p>||p2p B

which confirms the relation (3.7). Now, by taking x € Qg \ B,_1 and using the relation (3.7), we
obtain

—» ,f,ﬁ,pfr d(y n _n % g
", D 1awe, > [T Tagal, 5
Ur
From this, by (3.3), one has
— (nta) -7
p +p7" R —mp
ch,A’ ‘y|n HH dy | |zlp * X

P =1

XXap\B,_, (€) = p"" Arg(2),

where
A= / 'TIa7 Il
w2
and
(nta) . —r
g(x) = lzlp * X@g\BT,l(CC)-
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—rmp~"

p
(1 — p—qmp”)%

By estimating as (3.6) above, we also have ||g|| ;4 (op) = . As a consequence above,
w\¢p

by (3.6), we find that

[#4e.7 (7)

1, sl (ap)

> ./4 (2 7 P =
L (Q”) ~oT 1 m pyﬁpir
(1 — p—qmp_r) q H .
1=

(1 — p*qz'p”) i

m
H ||fw||L‘11 Qn
=1

where

Sl

[, (-—»)

T y—

T, =

1

1
Note that from — + ... + — , it is clear to obtain that lim, ., 7, = a > 0. Therefore,

a1 m
because Hg ; is bounded from L} (Q") Sox LE(Qp) to L (Q)) , there exists M > 0 such
that A4, < M for sufficiently big . On the other hand, by letting r sufficiently large, y € U, and by
(3.1), we get

| =

—r

T LA W)L < (H 14: ) }IA;1<y>\\p> <pramr S
=1 i=1

Hence, by the dominated convergence theorem of Lebesgue, we obtain

DT A7 )55 dy < oo,

p

Iylﬁ Pl

Theorem 3.1 is proved.

Theorem 3.2. Let 1 < ¢*,( < 00 and w € A; with the finite critical index r,, for the reverse
Holder inequality and w(B,) < 1 for all v € Z. Assume that ¢ > q*Cry,/(ro, — 1), 6 € (1,1y,) and
the following condition holds:

C2:/(I)( H|th ()

n’|p11
P

< <
2 [l A () llp* >

—n¢ —n(5—1)
" (X{||Ai<y>||ps1}(y)!Ai(y)llp’” +X(awls1 A “° ) < e

Then we have that ng ; is bounded from L& (Q)) x ... x LE" (Qp) 10 Ly Q).
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Proof. For any R € Z, by the Minkowski inequality, we get

HH;,A (f) “(Br) Q/‘y’P /H|fz i “w(x)dx dy.

P
From the inequality g > ¢*(ry/(rw — 1), there exists r € (1,r,,) such that ¢ = (¢*r’. Then, by the
Holder inequality and the reverse Holder inequality, we obtain

1
7

[T A2 wlw)ds / Hrfu dz | w(Bp)™
Br =1

QN

Next, by using the Holder inequality and the change of variables formula, and applying Proposi-
tion 2.4, we have

<
q
T ide | < TTIdet A= )5 | Brans [* w(Bros, ) 5 15
H\fz( i(y)x)|cdx NH‘ et A; )pl Rka, | W(BR+ky,) IHszLSj(BRMAi)’
Br i=1 i=1
|B p(Btka;)n .
where k4, (y) = log, || Ai(y)lp- Thus, by Bl o~ P = [|Ai(y)l;, we infer that
P (F <
H%@A (f> ’ LY (Br) ™
L [ 2y) £ ‘* -1
S [T : T [det A7 )] 1A w(Bror, ) it e G)
i=1

n
P

1
7

On the other hand, by ¢ > ¢* > 1 and w(Br) < 1 for all R € Z, we imply that w(Br)e™ <
< w(BR) Hence, by (3.8), we get
o (1) <
H ®,A ! LY (Br) ™
=+ m
D(y) < sn w(BR) 9
S / det A7 ()2 A" | —m— | dy 1 fill Lo (gm-
[yl ,Hl’ 5 14l W(BRiks,) H ()
Q
Next, for ¢ = 1,...,m, by using Proposition 2.3, we have
<
|BR| a; (R—=R—k 4 )n¢ —le '
—_ < 9 = ||A; % f || A; <1
~P Yy ) 1 Yy > 1
Br) \“ (IBRMAiI 1A ()l [Ai(w)ll
W(BR‘*‘kAi) ~ | Bx <(f1;s1> (R=R—k 4, )n(5-1) —n(5—1)
B bl <p ;0 = || As(y)ll, “° , otherwise.
|BR+k., |
(3.9)
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Hence, by letting R — +oo and applying the dominated convergence theorem of Lebesgue, we

obtain
[#.2(7)]

m
Ly (Qp) HH illegs (ap)

Theorem 3.2 is proved.

—1
Theorem 3.3. Let w;,w be as Theorem 3.1 and \; € (,O) forall i =1,...,m. Assume

)

that
(a+n)A= (a1 +n)A1 + ...+ (@m + 1) A (3.10)
Then Hp s bounded from Bql’ (Q”) Bf;:;’/\m (Qg) to Bff\ (Qg) if and only if
D(y e — —(aitn)X;
= [TUTT A @, dy < o

| lylp

P
Furthermore, ‘ ‘ ) ~ Cs.

CI>,A ql A1 (Q")X XB(I'm Am (Qg‘)-)BZ’/\(QZ‘) 3

Proof. We will prove the sufﬁc1ency of the condition C3 < oo. For v € Z, by estimating as (3.4)
and (3.5) above, we have

75 2(7)

This implies that

W(Bl)ﬂ [ 2 (1)

sy T O M.,

(al+n)
L4(By) ~ /\yI" (HHA ’ )X
Q3

P

<Bw) ([~ il dy, (3.11)

’Y+kAl. )

where

On the other hand, by hypothesis (3.10), we immediately get

i (0 +n) < +)\>:(a+n) ((11—1—)\).

=1

Consequently, by the estimation (2.2) and (3.1), we have
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>+ ka)(a + ) <; n Az-)

Bi(y) <2 _
W= pv(a+n)(§+x)
211 y(ag +n) (1 + )\i) ZZI ka, (o +n) (1 + )\i> -
_bp 4qi P 4qi - e —(ai-s-n)(%“\i)
- y(atn) (1+2) ~ H |4; (y)Hp i .
p a -1

Hence, by (3.11), one has
[.4(7)

. - q1,A1 GmyAm
Conversely, suppose that ’H; 1 1s bounded from B, (Q)x... X B (@n) to B (QZ) )

Let us choose the function § = (g1, . .., gm), where

m
. §C3 fill . A :
B (@) l.HlH g )

gi(x) = [a]ftmN
for i = 1,...,m. Then, by (2.2), it is not difficult to show that
1 (avit+n)Aigi+ay
||g7«H qz z( ) == Supﬁ |x’p i idi ldl’ ~
P YEZ wi(Bv)qi e

( (Oéﬁ'n))\iqz'-l-ari‘n)q%

o~ sup =1,

YEZ p'Y(ai“‘n)(q%."')‘i)
and, similarly, we also have

(ortm) ~ 1. 12
170 o gy (3.12)

Next, by choosing ¢;’s and using (3.3) and (3.10), we get

pr HH —1 ‘ (ai+mn)A; ’ ‘ozﬂrn Zdy C3’x‘ a+n )\‘

Iylp Pl

Thus, by (3.12), it follows that

|7 <)

i 2 O >63Hngu g
w P wl

This gives that C3 < oo.
Theorem 3.3 is proved.
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1
Theorem 3.4, Let 1 < ¢*,( < 00, \; € <—,0> Jorall v = 1,....,m and w € A; with
G

7
the finite critical index 1, for the reverse Holder inequality. Assume that q > q*(ry/(ry, — 1),
d € (1,r,) and the following two conditions are true:

A=A+ + A, (3.13)

<
/ DT et A7 ()3 140l %
Qp p i=1

n\;(6—1)

X (X{HAi(y)pgl}(y)”Ai(y)HZO\i X awllp>1 @A)l ° ) dy < oo.
Then ”Hp s bounded from Bql’ ! (Q”) . X qu’)\m (Q”) to Bq*)\ (Q”)
Proof For v € Z, by estimating as (3. 8) above and using the relation (3.13), we obtain

. <
LE (By) ™

H\d t A

|y|$ Pl

: (B’H-k?A
‘“ 14i () l5° <(Bv> dy H\Isz i

In addition, for ¢ = 1,...,m, by using Proposition 2.3 again and \; < 0, we infer

Byk |\ (y+ka, —7)nCA; nedi
i <p'7 A; Y 1:”14( )H ) lfHA’L(y)HpSl

Ai —n ~
w(B’H-kAi) |B’Y‘
— | = A (5-1)
w(By) | By iy, | ° (vHka, =72 (5-1) A (5-1)
—TR T Sp 5 =AWl ° , otherwise.
B
(3.14)
Thus, we have
P 7 . < C
[ ()] g = 4H||fzu " )

Theorem 3.4 is proved.

4. Main results about the boundness of ’H"; iE Before stating next results, we introduce

some notations which will be used throughout this section. Let ¢, q; € [1,00) and «, «;, 7; be real

nr;
numbers such that r; € (1,00), o; € (—n, f) ,1=1,2,...,m. Suppose that
T

%

1 1 1 1 1 1 1
(CEE UL N S P

q1 q2 gm 1 T2 T'm
« o (67 « (6 (67 [0
(1+2+ +m>+(1+2+ +m>:
q1 q2 dm r1 L) Tm q
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Lemma 4.1. Let w(x) = |z|3, wi(x) = |z|3" and by € CMOJ, (Qp) for all i = 1,...,m.
Then, for any v € Z, we have

m

F At o(y)
p < Z’L—l s T4 . . . . .
HHCP,/T,E <f>’ LZ,(B.Y) ~ P Br,w / ‘ym 1:[1wl(y)'uz(y)Hf"HLZ@(Bkai)dy’
4 =
where
‘ L (n+a;)
bily) = 1+ (max { [ AT @I 1Al >} 1det A7 W)l ) ™ 1Ayl ™ +
14 ()l
+ [log, || 4; +2 TP
‘ Ep H (y)HP‘ ]det Ai(y)|p

pily) = (maX{HAZl(y)\

1 m
2” , HAZ(y)H;O”} }det A;%y)‘p) " and Brg= H HbiHCMOZZ (@)
i=1

Proof. In what follows, we will write b; B, instead of (b;) B, for convenience. By the Minkowski
inequality and the Holder inequality, for any v € Z, we get

7 5 (F)

To prove this lemma, we need to show that the following inequality holds:

D(y) 4
- / |y<‘,3Hnb@-o—bi<Ai<y>->||L;g(Bw) 1fi(Ai®)) s 5,y dy- - (@D
@A on P =1

y(ei+n)

10:C) = 0i(AiW) ) sy SP- 7 viWbillonsoy (gpy forall i=1,....m. (4.2)

We put Io; = 1bi() = bis, g ()0 T20 = 106(Ai(y)) = biasgs, Il (5, and Tsi = [lbis, —
—bi A B, i (B,)- It is obvious that

Hb7«<) — bz(Az<y))HL:z(Bﬂ/) S Il,i + 12,1‘ + Igﬂ' fOI‘ all ;= 1, e, (4.3)

By the definition of the space CM O (Qjp) and the estimation (2.2), we have

1 y(ei+n)
Is < wilB) illono ap <2 Woillearor (op) (4.4)
To estimate /5 ;, we deduce that
1 T
Iy; < wi(By)7 |bi a,y)B, —bz’,Bkai‘ﬂL / bi(Ai(y)x) = bip gy, | wilz)dz |, (4.5)

B’Y
where k4, (y) = log, || Ai(y)l|,- Note that, by the formula for change of variables, we get
|A;i(y)By| = / dx = / | det A;(y)|pdz >~ | det A;(y)|pp™". (4.6)
Ai(y)By By
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Thus, by using the Holder inequality and (2.2), it is clear to see that

bivAi (y)B’Y B bi7B’Y+kAi

1 3
1 / T 7T.£ Z
< bi(z) — b, p w;(z)dx / w, " dx <
A5, )= BBy, | i)
Bythy, Bythy,
rtagese (yng)(2ty) A
p " p o i
< bi o= e, . 4.7
~ [det A:(y) " billeaor (o) = Tder aztyy, 1P lenrot @) @7
It is easy to see that
[t - b o, [ | <
B’Y
1
< (max { A7 )2 1 Ai(w)lly > | [det AT ()], wilByska)) ™ %
1
1 i
X | ——— bi(z) — b;, wi(z)dz i 4.8

B"ﬁLkAi
This leads to

bi(Ai(y)z) — bi,B.,JrkAi ‘wir)de | S

/

B,
1 (nta;)

SHA@IE Flaet A7 @) 1AW Tbilloaor: (-

Antay) ~
<p T <max {HAZ 1(y)|g
Therefore, by (4.5) and (4.7), we have

14 (W)l 1 e o 1 (o)
fg,is<w+(mx{”f“f<y>\p Al ldet A7 w)],) ™ 14wl )

v(ntay)
Xp T HbZHCMOZfZ(Qg) (49)

Next, we consider the term I3 ;. We obtain
(4.10)

biva B b@Ai(y)Bv

1
I3; < wi(By)ri
Fix y € Q). We set
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994
SkAi =
{jEZ:ky,+1<j<0}, otherwise.
As mentioned above, we obtain
- bivaJrj} + bivB'y-HcAi o biyAi(y)Bw ) (4.11)

‘biﬁBv - bi:Ai(y)Bw} < Z ‘bivaﬂ'—l
JESky,

Combining the Holder inequality, the definition of the space CM O (Q) and (2.2), one has

1
(Byay)™ o\
Wil Dytj) " e
|b7:7B—y+j—1 - bivB’y+j‘ S W / wi % dm X
Y+J
1
T
T
wi(x)dz <

1 /

X | —== bi z _bi,B .
wi(By4j) ‘ =) s
Bytj

(ay+n)
o

(y+g) = ( n>
i ()| -t + 5
TN il ot (o) = 1Billonsors (on)-
MOl (2p) MOl (Qp)

<P "
~ o plytin
Thus,
‘biva - bi,Ai(y)Bw‘ S kel Hbi”CMOffi (@p) + bi:Bkai - biyAi(y)Bw : (4.12)
In addition, by the Holder inequality again and (4.6), we get
1
bi’BV“'kAi - 171‘7,42.(y)BﬂY < m bz($) — bi’BW'kAl- dx <
Ai(y)Bv
e 1
(Byiiy, )" )
Wi(Bytky, )" —t 1 ri
_ S _ bi(x) — b; (x)d <
A(y)B,| [ et wi(Byrks,) | b —bis, [fawar| s
"/+kAi ! ’Y+kAi
(oj+m) )
¢ () AW
~ Tdet Ay(y)[pp " oMok (ep) = Tdet As(y)], | "CMOL ()
Consequently, by (4.10)—(4.12), it follows that
14i ()l

y(ntay)
B £ (11og, 1A + qci g ) Iilonions op)
) D d

This together with (4.3), (4.4) and (4.9) follow us to have the proof of the inequality (4.2). Finally,

by estimating as (4.8), we immediately have
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1

o |\Ai(y)||;o"} | det A;l(y)lp)a IIfZ-IIngi (Burny) —

1AM s 1, < (max {47 ()]
= wiW)ILfill (Byiny )’

In view of (4.1) and (4.2), the proof of this lemma is ended.
Lemma 4.2. Let 1 < ¢*,r,...,r},q],.-.,q,,¢ < 00, w € A¢ with the finite critical index

-1 r
ry for the reverse Holder condition, 6 € (1,r,), \; € | — 0>, ¢ <rfand b; € CMOJ (Qg)

* 0

forall i =1,...,m. Assume that the following condition holds:
1 1 1 1 1 T
*>(*+...+*+*+...+*)g ~ . (4.13)
q LS 'm 41 dm Tw—1

Then we have

. <
LE (By) ™

|7 5 (F)

1 DY) X nr + 1
swB)Be | [ TR TG i, | foral ez

On ‘y’p i=1 w(B'YJFkAi) vtka,
Here,
e g WG
Yi(y) =1+ m + }det @) AW+ 0gy, 14 ()],
v D

n¢

¢ ne K
% — _l f . i K — ; * .
pi ) = et AT WA and B =TT o

Proof. By virtue of the inequality (4.13), there exist r1,...,7m,q1, - - -, ¢m such that

1 1 1 1 1 1 1
% fw , — % fw foralli=1,...,m,and —+... 4+ —+ —+...+ — = —
4q; q; Tw — 1 Ty Tw — q1 dm ™ T'm q

As mentioned above, for any v € Z, by the same argument (4.1), we also get

[74; 4(7)] ;

() 9
18 (B S/ i | |1||bz(')—bi(Az(y)')lng(Bv) 1fi(Ai(W) ) L5 5y dy. (4.14)
Qp =

In particular, we need to show the following result:

1
) — . . . . < E * - *
16i(+) — bi(Ai(y) )HLJ(BW) S w(By) "y (y)HszCMOf}' (ap) (4.15)
forall i =1,...,m. Indeed, we see that
19:(-) = bi(Ai () 7,y < [[0i() = bip, | i, T 16:(Ai(y)) = bi ;)8 | LBy T
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+ 61,8, — bi 4,8, (g, = it 2+ s (4.16)

By virtue of the inequality ry < 77, it is easy to show that

1
Jii S w(By)Ti HbiHCMOTf (@) 4.17)
w (¢p

Next, by estimating as (4.5) above, we get

1 )
Jo; < w(Bﬁ{)Ti |bi,Ai(y)B’y — bi’B“thAi | + / |bi(Ai(y)x) — bi’BchAi ["w(x)dx . (4.18)
By

By having the inequality ¢ < r and applying Proposition 2.4 and (4.6), we infer that

1
< . — b <
1AW / 10:@) = biby v 1T S

bi’BWHeAi — b a;(4)B
’Y-‘rkAi

(rtha;)n [Ai ()l
< 10ill a0 T e
~ Jdet Ag(y)[, prm " CMON(QR) = Tdet Ai(y)l,

*
% fw , there exists ; € (1,r,) satisfying % = r;/3,. Thus, by combining the Holder

[[bil (4.19)

CMO()

By —
ri T Ty
inequality and the reverse Holder condition again, we have

5
[ty =t [ wtoran | s
B'Y
<
%o o
5 |Bﬁ{’ L&) w(B,Y)Ti / bZ(Az(y):U) — bivBW-‘-kAi dx
B’Y
According to Proposition 2.4, we get
<
/ bi(Aiy)r) —bip., | de| <
B'Y
<
o i
<l a7 W[ [ o) - b, || <
B"/+kA
1
| B < i
Byt ri
< ]det A;l(y) ; b U / bi(z) — bi.B 4y, w(z)dz

1
w(B’7+k7A )Tl B7+kAi
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. ‘B’YJrkAi ’ n . .
In view of (2.2), one has B, =~ || Ai(y)|l;- From this we give
v
1
i
b = v, [ w@ds | <
B'Y
L
< < ne 1 r¥ ' <
|| A; v — bi(z) — b; ' d
SwB) e AT W AW | G [ e - [Cwa |
’Y+kAZ.
- 1 L1y =3
Sw(B,)" O 14 184y ) (420)
As a consequence, by (4.18) and (4.19), we infer that
Tos SB[ IO e aos F palld ) ol e @2
e T |det 4;(y)], P oMo (Qn)

Now, we will estimate J3 ;. By a same argument as (4.10), (4.11) and (4.19), we have

1
J3i S w(By)"i Z ‘bivaﬂel - bi,Bwﬂ" + bi:BvMAi = bi,a,9)B, S
JE€Sky,
1 14i (W)l
< T Vi <
Nw(B'Y) Z H ’LHCMO ( )+ |detA( )‘pH ’L”CMO ) —
JE€Sky,
14i ()l

<t8)% (1108, 1A+ 7o a2 ) W cnro o

This together with (4.17) and (4.21) yields that the inequality (4.15) is finished.
In other words, by estimating as (4.20) above, we get
ng

||fz(Az(y))HLg'b(Bw) S W(ny)q'” (y) ;l z(y)”p W(B'y—‘rkAi) 9 HfZ”LEJ;(Bv-‘—kAi) =

w

. 2
= w(By) % p1; (y)w(B’Y‘*'kAi) " HfiHLq:(BwMA')‘

Hence, by (4.14) and (4.15), we conclude that the proof of this lemma is finished.
Theorem 4.1. Let the assumptions of Lemma 4.1 hold and

Hw y)pi(y)dy < oo.

!y\p Pl

Then, for any v € 7, we have that H” o.AL is bounded from L% (Q”) .x L& (@Z) to LL(B,).
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Proof. For any v € Z, by using Lemma 4.1, we infer that

Zm y(n + «;) o m
P (M 5770 B [ Ly,
Thus, we have H?—[(}Ab (f)’

L5(B) 7 n P =1
Theorem 4.1 is proved.
Theorem 4.2. Let the assumptions of Lemma 4.2 hold. Suppose that w(By) < 1 for all v € Z

and
o2
lyly

S Cs5Br Hi:1 HfZ”Lquz (@)
;T*LC —n(fé 1)
q; .
x (X{HAi(?J)”pSl}(y)’Ai(y)”pl XA W14 ) v

L& (By)

sz

=1

Then we have that %g,g,g is bounded from LZI; (QZ) X ... X LZ,:" (Qg) to ng (@Z) .
Proof. In view of Lemma 4.2, for any R € 7Z, it is clear to see that

HHéAb (f)‘ LY (Br) S
E (y) M
s B | [ TRTTH @R —— Wil g, i
P =1 Ai

w BR-‘rkAi) i

1 1 1 1
Next, by — > — + ...+ — and the assumption w(Bg) < 1 for any R € Z, we have w(Bgr)« o
q q

i m
m =
< Hz»:l w(Bg)% . Thus,

. <
LY (Br) ™

[ 5 (7))

w(Br) \“
<BF‘*W T\ 1 q N
< Mm wn <>( oA ) 0,5

m
S CoBrw [ LIFill oz
T ,wg (2 LZ} <Q;})

Consequence, by letting R — 400 and applying dominated convergence theorem of Lebesgue,
we have

m
S CoBe o [TIill o
=1

1 (Qp) L (@)

Theorem 4.2 is proved.
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Theorem 4.3. Let 1 < ( < oo, 1 < ¢*,¢;,77 < 00, —n < o < n(¢ — 1), w(z) = |z|3

p?
wi(z) = |x|yi for all i = 1,...,m such that
m 1 1
I I (4.22)
q1 dm q q1 dm q
1 11 1
=t St — =1 (4.23)
Q1 Qm Tl Tm
Ifb; € CMO™ (Qg) foralli=1,...,m and
m (SRS
/ H DA, © dy < oo,
g -
where
Py = (14 1oz, [4i(w) ] + B 41 Jaet A7 )] )
P P det Ai(y)|p P
1 n
x |det A7 () |2 [ Ai(y)llp* (4.24)

then we have

P 0,.) (o 50 (Dt T

Proof. For the sake of simplicity, we denote By = Hj; 10ill o p0 (@) Now, let x € Qp

and fix a ball B, such that x € B,. In view of (4.23), by using the Hélder inequality, we have

<
B, |/‘”@Ab ()] de <
|B’y‘ ‘p I_Ilel Z HLqZ(B,Y HHb ( ))HLT:(BW)dy
For i =1,...,m, by estimating as (4.2) above, we get
(N _ B . . « <
1) = (AWt ) S
< 18,17 (14 1ogy 14wl + oy )17 et AT ) ) Dl o
~ 15, p 1AWl Tas 2,001, o |det A, oo (a)

By z € B,, we imply that || A4;(y)
maximal operator, one has

I, e € By 4,- Thus, by definition of the Hardy - Littlewood

1
I1/i(Ai (W) )| Loi @n) = |det A (y) i
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1

44

/ fnd | <

’Y+k,4i

1
< [det A7 ()| 2

B

1B, 3 [det A7 ) 3 1A (ML) (14 ()l )

As mentioned above, we give

B,] / #,15(7) @)= 58 / H MAFL™) (1Al ) = dy.
Qp =
Hence, we infer that
wmet (w7 (7)) @ S 8o [ DO TI) (M) (4l ) % dy
n P =1

P

Thus, by using the assumption (4.22), the Minkowski inequality and the Holder inequality, we obtain
mod D 7

R CFHG)

, <
L (Qp)

1
Ca;

< B M(|fi]7) (| A 1) wid dy. 425
/mpm / U5 (145 ) wider | dy. (4.25)

For i = 1,...,m, by Proposition 2.2, we have w; € A. From this, by virtue of the boundedness of
the Hardy — Littlewood maximal operator on the Lebesgue spaces with the Muckenhoupt weights, we

have
1

Ca;
/ M (A (A ) wide | =
1
Ca;
/ MR @A) AWz | =

1
Cq;

_(% itn) —(?fn)

— Al M\f\fh @ | 1AW T 1Al )

This together with (4.25) ylelds that the proof of this theorem is completed.
In what follows, we set

- 3%
lyl

L 47 @)l Hog, 14wl lds
=1
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-1
Theorem 4.4. Suppose the hypothesis in Lemma 4.1 holds. Let \; € <A,0) for all i =

(2

=1,...,m and conditions (3.1) and (3.10) be true. Assume that
supp(®) C N {y € @« [Ai()ll, < 1} (4.26)
(i) If Cs < oo, then H” .45 is bounded from Bql’ Q) x fjj; " (Q”) to BZJ’)\ Q).
(i) If HP - is bounded from B (@) x ...ox B (Q") BEN(Qv) for all b =

=(b1,...,bm ) e CMOJ (QF) x ...x CMOI (Qp), then Cg < 0.
Proof. Firstly, we prove the part (1) of the theorem. For any R € Z, by Lemma 4.1, we get

s M5 (F) Ly =
m  R(nta;) m L
<5 D o) pzm i Vo T K I T
>~ 'F‘(D' 7 Y I EX TR
\ylﬁ i w(Bg)a ™ BT (@)

Now, by (2.2) and (3.10), we calculate

Zm R(n+ay)

" Hz‘:l Wi (BR+kA¢ ) “w

1
w(BR)aJ”\ i1

Hence, one has

D T w4 ) gy Hum o

427
Iy!p paley (@) (27

= =
T‘UJ

Note that, by the hypothesis (4.26), we see that |log, || A;(y)[|y| > 1 for all y € supp(®). As
mentioned above, by (2.1) and (3.1), we make

)G

gLt
< (1147w,

L i)
x || A7 ()] p

—(aj+n) B
S+ g, A+ 2p”A) x

_ —(ai+n) [ 4+ a;+n)
L) 7 G < g, 14 ol Astw) ;@

As an application, by (4.27), we obtain

HH¢ Ab (f> ‘ B (an)
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To give the proof for the part (ii) of the theorem, for i = 1,...,m, let us choose b;(z) = log,, |z,
for all z € Q¢ \ {0}, and fi(z) = |z|p (ntei)di for all o € Qp. Now, we need to prove that

16ill ¢ arori (Qp) <oo forall i=1,...,m. (4.28)
wq P

1

pr—1

1 1\
L o)~ b Pss = e Y [ -
Wi(BR)B/‘ () = bi,g|" " widz = p Y T
R

WSRS,Y

In fact, for any R € Z, we see that b; p = p~ " Z w"1-p™")=R-— . Thus, we
’ 7<R

get

p%dz <

5 pr(ai+n) Z
<0

z‘p(R+Z)(ai+n) < Z <w|m + _ 1 n) pé(ai+n) < 00
= (=1

1
¢
T

uniformly for R € Z. As an application, it immediately follows that the inequality (4.28) holds.
By choosing b; and f;, we get

HP ﬂ / |A;(y O‘+” <log 7’ zly )dy
i ( ol U P TAi(y)aly

By the hypothesis (4.26), we have ||A;(y)||, < 1 for all y € supp (®). Thus, |4;(y)z|, < |z|p.

|z

1
This gives that 0 < |log,, || 4i(y)|p| = log <log, ————.
P . 7 14i(y)lp P Ai(y)xlp

(4.1), we lead to

Consequently, by (3.1) and

HE
(P’A’b |y‘p

) T Al 4 o, Ay | ol = ol
=1

From this, by (3.12) above, we infer that

HHI;,A,E (f ) ‘

Therefore, since 7—[2 ip is bounded from Bql’ (Qp)x... qu’/\m (Qp) to B (Qg) , it implies
that Cg < oco.

Theorem 4.4 is proved.

Now, we consider A;(y) = s;(y)I, for i = 1,...,m. By the similar arguments, we then obtain
the following useful result.

Corollary 4.1. Suppose that the hypothesis in Lemma 4.1 and (3.10) hold. Let

/ o DT 551 g, [5i(w) bl
P

=1

>C (at+n)A >C 2 qll
22 agy B g g 2 sHIIfH )

Then the following statements are equivalent:
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() M2 . is bounded from BI™ (QR) x ... x BL(Q) o BL(QR) for any b =
= (b1, .. .,bm) e CMOL, (Qp) x ... x CMOI" (Qp).
(if) Co < o0.

-1
Theorem 4.5. Suppose that the hypothesis in Lemma 4.2 holds. Let )\; € <*,0> for all
q.
i1 =1,...,m and condition (3.13) in Theorem 3.4 hold. Then, if '

/ SO TT v s )
p i= 1
n\; (6—-1)

X (X{|Ai(y)||p§1}(y)”Ai(y)HgCAi + X114 ) > 13 A (@)l ° ) dy < oo,

) Am - gt A
we have that H" o.A5 is bounded from Bq1 M (Q”) . X Bq (QZ) to Bi (QZ) )
Proof. For any R € Z, by Lemma 4.2 and (3. 13) we infer
1 .
e s (D

m

)\.

w(Brin) |
'Lﬁl 1 _ dy fill . £ % .
ry\p H ABr) Tz g

SBF"W

From this, by (3.14), we have

HH@ Ab <f>

Theorem 4.5 is proved.

m
S CloBre, o [TIill oo
i=1 B

’ *ap) (o)
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