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CONVERGENCE RATES IN REGULARIZATION
FOR THE CASE OF MONOTONE PERTURBATIONS
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Convergence rates are justified for regularized solutions of the Hammerstein operator equation of the
form x+ K F(x)=f inthe Banach space with monotone perturbations F&h and FIJ' 2
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1. Introduction. Let X be a real reflexive Banach space having the property: X and
X" are strictly convex and weak convergence and convergence of norms of any
sequence in X follow its strong convergence, where X " denotes the dual space of X.
For the sake of simplicity the norms of X and X * will be denoted by one symbol I-1-
We write <x*,x) or (x, x') instead of x*(x) for x* € X  and xe X. Let
Fi: X— X" and Fy: X" — X be monotone, bounded (i. e. image of any bounded

subset is bounded) and continuous operators.
Consider the operator equation of Hammerstein type

x+ BE(x) = f, feX 1)

Nonlinear operator equation in this form has been investigated in [1 —3]. For solving
(1) in [4] the approximate solution is constructed by the solution x, of the
approximate operator equation

x + }Eaﬁa(x) =f 2)
with Fy=F +alU,, U, is the standard dual mapping of X [5, p. 311], i. e.

P = 2P = (Ui, x) VxeX,

Fy = U,, U, is the standard dual mapping of X * and o> 0 is a small parameter.
For every o > 0, equation (2) has a unique solution x,, and if S;, the set of
-solutions of (1), is not empty, then the sequence {x,} converges to a solution xq of
(1), as o — 0. Moreover, this solution x4, for every fixed o > 0, depends
continuously on f, and the finite-dimensional problems

x + By Fon(*) = fo, x€ X, 3)

where B, = PFyP,, Fy,= P'EyF,, f,=P,f, P, is alinear projection from X
onto its finite-dimensional subspace X, suchthat X, c X, .|, P,x— x, as n— o
forevery xe X, and P, is the dual of B, with |B,|| < & = constant, for all n,

have a unique solution x,, and the sequence {xw, } converges to x,, as n—» oo,
without additional conditions on F;, i=1, 2. The convergence rates for the sequences

{xq} and {xm,} are given in our recent paper [6] provided the linearity of F,
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together with the existence of bounded inversion (I + FF(xp)) ~1 where I denotes
the identity operator in X. It is not difficult to verify that this condition can be

replaced by the bounded inversion of (I—f—Fz'(xS)Ff (xo)) _l, when F also is
nonlinear, where xp = F(xy). The last requirement is equivalent to that —1 is not an
eigenvalue of the operator Fg(x;)ﬁ’(xa) and is used in studying a method of
collocation-type for nonlinear integral equations of Hammerstein type [7]. In general
case, i. e. when both the operator F; are nonlinear, it means that &, the range of the
operator I+ F, (x;)Ff(xO), is the whole space X. It is natural to ask if we can

estimate the convergence rates for the sequences { x, }, {xcm }, when X is not the
whole space X. For this purpose, only requiring that & contains a necessary element

of X, the convergence rates of {x, } and {xm } are estimated in [8] on the base of

the results and the technics in [9, 10].
If instead of F, and F; we know only their monotone continuous apprommaﬂons

F and Fll respectively, such that
|7 - Bt <
|5 ) - B < hgl(”x[l) VxeX,

where g;(f), i=1, 2, are some real nonegative bounded function with g;(0) = 0, the
approximate solutions of (1) can be found by solving the following operator equation

(11]

Yxte X"
=)

% + Fofig(x) = f, @
where K, = F' +aV, K. = F'+aU. Equation (4) has, for each fixed o> 0, h >
>0, a unique solution, henthforth denoted by xpq. If /0, and oo — 0, then the
sequence {x,, } converges to the solution x, of (1). As F, and F are both
monotone and hemicontinuous, then equation .

x + BREM(xX) = f,, )

where E" = P,FA P, and F™ = P E! P, has a unique solution (denoted by
x1.), and the sequence {xgn } converges to xpq, for each fixed oo >0, h >0, as
n—> +oo, The similar aspects with the similar conditions as in [6] for the sequences
{xpo } and {xgn} are considered in [12]. In this paper, for the case of monotone
perturbations th, Fi"’ the convergence rates of {x, } and {x;;‘m} are investigated

under another condition consisting of that the range of F, (xo) F(xo)" conta.lns some

element of X,

Below, by “a~ b” we mean “a=0(b) and b =0(a)”, and the symbols —
and — denote weak convergence and convergence in norm, respectively.

2. Main results. Assume that the dual mappings U;, i =1, 2, of the spaces X

and X~ satisfy the following conditions

(U)-Ui(ph) ¥ =95) 2 mil -], m >0 520 (©
‘lUf(J’f)—Ue(}?i)" < cf(R;)‘l-yf—y; ”v", 0<v; =1, (7
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where yf . y§ € X or X" ondependence of i=1 or 2, respectively, and ¢ (Ry),
R;> 0, are the positive increasing functions on R;= max{ “ yf ", " yi- ” }

The following theorem answers the question on convergence rates for { x4 }.

Theorem 1. Let the following conditions hold:

(1) F, is Frechet differentiable at some neighbourhood U, of x4 s — 1-
times if s, = [s,), the integer part of s, [s}times if s, # [s;], and F, is
Frechet differentiable at some neighbourhood Vj of x}_‘, $ o — l-times, if 5, =
[5,], [so)-timesif so# [5,];

(ii) there exists a constant L >0 such that
|EPx0) = BP0 < Lix-yI  Vye Uy,

[506) - BPOM] < L=y Vo'e %,

for Fii k=s; =1 if s;=[s5;), k=1[s;] if s;#[s;} and if [s;]2 3, then
FP(x0) = ... = FP(xp), and EP(x5) =...= F¥(xg) =o0.
(iii) there exists an element xt e X such that
[+ B2 Blo) ! = B(x5) Uit - Us(x5),
if  s; = [sq] then _f,Hxl ]i<m151!, and if S, = [s5] then
f’” F(xo)*x' — Ul(xn)“ < mysy!
Then, if o. is chosen such that o~ h®, 0<p <1, then
lxhe = %ol < O(r*1), 6 = min{p, 1-p}.
Proof. We set
¥
A = mil| =%t + my | ¥ = 5[ e = Foloa)-
It is easy to see that xg is a solution of (1) iff z = [xo, xﬁ] is a solution of the
following system of two operator equations
F(x)—x* =0,
E(x*)+x—f =0.
Similarily, X, is a regularized solution of the operator equation (4) iff z4 =
= [xha, x;u] is a solution of the following system of equations
Flx) + alUy(x) — x* =0,
E(x*) + aUy(x*) + x — f = 0.

Basing on the properties (6) of U, U, and the above two systems of equations we
have got

A < (Uy(xp), o —xm)+(Uz(x5), xg “x;cx> +

+ é[ (X = F )y Fnos = %0 )+ f = oo = B3 (e s Ko = Xo ) @
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We set x%= Ui(xp) — Flf(xo)*xl. From condition (iii) of the Theorem it follows that
x! and x% (e X =.t) satisfy the system of following equalities
F(xo)*x' +x% = Uy(x),
B x? — xb = Uy(x}).
Therefore, it follows from (1), (8), and the monotonicity of F,-h that
A < (Ui(xp), X0 = Xpe ) + (Uz(x(*))» X0 = Xgg ) i
1 -
+a[<x;ct — X5, o, — X0 >+<x0 — Xhats X, — X0 ) +
_h *
+ [( Fix0) — B Gopos X = %0 ) + ( B(x5) — B (%) ¥ — %5 )] <
Ch
< Llpa =0l + |30 - 35]) +
2 e 1 & _
+ (x » X0 — Xpoy >+<I f l(xg)(xo th)> +

+ (= =i ) + (32, B(35)(3 — 7)), &

where C is a some positive constant such that g (|| x4 [) gz(“x;m ”) < C. First,
consider the case s;=[s;], i=1,2. As

F(x0)(x0 = %he) = F(x0) — F(Xpa) + Thars
B(x3)(x6—%5) = B(x5) — B(xa) + e

52
]

Il < ﬁnxm—xo I el < guxza—xal
fom the inequality (9) it follows
4 2 Llixg x| + | —x]) +
+ (5%, % = 2pq, ) + (v—xl,x(*)—lx;u) + (&, F(x0) = () ) +

I|x
.5'1!

1
”llxm —xo [ +

+ (o, B(x5)~ B (xh)) +

2
o sta =5 = a0l + |5k =55 ]) +

+ (xl, Xhet _Pi(xhu)) ® (xz,f-xm - Fl(x}:a)) *

&a i

L) ] x?
N 2 VN . L Y

<

x5 = 0 | + | e — 53]) +
o
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_ il
+ o5, Ug(ne) ) + 0%( 22, Up(why) ) + Lllj “"xhot —xo[* +

L|=]

,5'21

+af| = lzha -+ [+

L]

+

a3 [* < Zlsia-mol + |50 55]) +

£,
3 P TN

* * [|¥2
g “ xha —xD “ F

Hence,

{12 ”Jnxm Rl < o +#+9).

mysy!
Consequently,
_ | [l pe =20 || < O(hml)-
If s;#[s;] for one or both the two numbers s;, for example s, # [s;], then

Il < gy i =20 1147+

and the left-hand side of (10) will be replaced by

P )
m‘[l‘#]uxmﬂnl“ﬂ“ [P

Since || x4 —xg[|— 0, and [s;]+1 -5, >0, we have

L]=|

ml ([ I+1

il =% (11178 2 1/2

253

(10

for sufficiently small c.. The case where s, # [s,] and both numbers s, s, are not
integer is considered analogously. This remark completes the proof of the theorem.

Now, we establish convergence rates for the sequence {xf;n }

Theorem 2. Assume that the conditions of Theorem 1 hold, and o is chosen

such that o ~ (h+v,)°, 1<p <1, where

Yo = max{[U~Bxo |, 1A-B)£1L | =B |, (-

and I" denotes the identity operator in X ¥ Then

[70n =0 = (A" +%).

-5'1 ~"‘1
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y Vi Vp
L = min4 m, D[
I B ) |

Proof. We set

52

B = ml“xgn — Xon "Jl + mﬂnxh* = Xgn

with xg, = Bxg, xbh = P]u(xgn) and x§, = P'x§. Itis easy to see that x", isa

solution of (5) iff x{.‘m and x{,m are the solution of the.following system of equations
i (x) + oaUl(x) — x* = 0, (11)
B + aUs(x*) +x — f, = 0 (12)

with Ul =P/U,B,, U2 =PU,P!, F.=P'F'P, and FE, =P,FE'B’. From the
monotone property of F, m i=1, 2, properties (6) of the dual mappings U;, i =1, 2,
and (11), (12) it implies that

B < (U?(xﬂn)'xﬂu"xgn) + (Ug(xan)’ xan '-xgt:x)"'
+ S (ol = B () 3l = o0n ) + (o= i = B () 28 =55, )] <

< (Ul(xﬂn)’ X0n _xgn > + (Uz(xan)» x{]n xg.: ) +

=] C{| k= x0n | + [ 5= x5 ) + (5~ Fi(on) i =30 ) +
# (fo = Xon = Fon (%), Xon = %3 ) <
< (Ur(xon)s Xon =% ) + (U (%80 ), 56s = xtin ) +
+ 2 Cr{] i s0n ] + | = 53 ) + ( FiCi0) ~ Firon) xu =200 ) +
+ (B(x3) - B(x5,) xln - x5, )], (13)

where C is a some positive constant such that gl(“xf;n ”), gz( e “) < C. First,
consider the case s;=[s;], i =1, 2. By virtue of the properties of F; we can write

F(x0,) — F(x) = ﬁ}(xc)(xu;;—xo) + n,
B(x5,) = B(x5) = B(x5)(x5n — %5) + 7
Inl < Zla-Roxl, 151 < =@ -,
5! . 8y!

On the other hand, from (7) it implies that

(U1 Gion)s Fon = X6 ) < 1ROV %on = %o | + (Ur(x0)s X0 = % ),

where the second term of the right-hand side i3 estimated as follows

(Ul(xOrx)’ Xon “xgn) = (Uj(x0), %on = %o ) + (Ul(xﬂ) Xy *x§n> <

< 001 + (5 Fxo) - F(xhn) ) + (5% xp—xbn ) + —L“xo ~ x|
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In the similar way, we also have

(UZ(xOn) xﬂn xg::) = CZ(RZ)'Y::

with the estimation
Up(x0): %t =t ) < OCv,) + (22, B(x8) - By (k) + (&), - x2* ) +
{ ’

f,l PR ” g
+ " e
.5'2!

(Ua(5), X8~ 8 )

Since
llxo ~x[* < Oy, + leon—xé’zn I
- [,
<x1,mxo)—a(xm))=<x 7o 2l ) + (3t~ B (+h,)) -
~{U-B)x', F(xk,)) <
< 00 + (%, 35— x5 ) + of 5! |5
(#* Bx5)-Blxa)) = (% —x0=x6) + (# F=5) +
+ {22, o= xan = By(xam)) = (12 - B2 By(+E2)) <
S 00r) — (3% 50 =g ) + o & || 3

(13) can be written in the form

L 1
) R N [ ) o

mys !

( EIJxZIJ
+my|l— | ‘
my sy !

+ O((h+¥,)"™ +y32)| %t = x5, || + O((h+7,)°).

hx !-"2 < O(Y;;

Ll

2 < O(h+v,) P+ )| % = x0n || +

h# *
Xon ~ X0

Because the sequence {x&’,‘; } is bounded (see [4]) from here it follows

|55 = %on [ < O((h+¥,) ™ + 431 )| %8s — %on || +
+ O((+7,) P +(h+7, )P +102).
Applying the relation
ab,c>0, p>qg>0a’ <ba?! +c=a" = O(bpf(p*q)—i-c)
in [13] to the last inequality we obtain
”xgn — Xgp ” = O(k“ +'\(ﬁ).

Therefore,
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| 552 = %0]| = O(E™ ++4).

The case s;# [s;] is considered in the similar way as in the proof of Theorem 1.
Remarks. 1. If S, contains more than one element, then F; and F, are affine
on the sets S, and F(Sp), respectively (see [2]). Therefore, the condition

FOx)=..= F¥x) =0, xe Sy, and EP(x*) =...= EX ("), xe F(S) is
automatically satisfied. Moreover, F(x) and Fj(x*) do not depend on x and x*,
respectively. Hence, condition (iii) of Theorem 1, in fact, is an existence condition of
solution of a linear operator equation.

2. When X is the spaces of type L,(€2) or W,(€), 1<p<+eoe: if p=2 X isa
Hilbert space and U;=1, 5;=2, m;=1, v;=1 and ¢(R) =1, andif 1<p <2 we
have s;=2, mi=p-1, c(R)=p2??'ePF, e= max{27,2R }, 1<L<3,18,
vi = p - 1, and S22 = ¢, ma2 = 22_qfq, e(Ry) =
= 29R{?{¢[ g—1+max{R,, LYY va=1, pl4+gl= 1. The case p>2 is
considered analogously [14, 15].
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