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ON THE ROSENTHAL ]NEQUALITY FOR MIXING FIELDS

IIPO HEPIBHICTDH PO3ZEHTAJIA OJIA I1IOJIIB,
IO 3AJOBOJIbHAXOTH YMOBH NEPEMIIITY BAHHA

A proof of the Rosenthal inequality for c-mixing random fields is given. The statements and proofs are
modifications of the ones presented in the papers of Doukhan and Utev.

HoBenero HepisHicTs PoseHTa s [J14 BHNaZKOBHX MOJIB, L0 3a/[OBOJILHSAIOTE YMOBH O -TlepeMilmy-
BaHHA. TBep[KEeHHs Ta JOBEfeHHA € MogH(IKaUiIMH TeopeM Ta nomnem:, HaBefleHHX B poboTax
Iykxaua Ta YTena.

1. Introduction and results. Rosenthal’s inequalities are important tools to prove
consistency of some estimators for weakly dependent random processes and fields (see
e. g. Fazekas and Kukush [1]). The first version of such inequalities was proved in
Rosenthal [2] for independent random variables. Rosenthal’s inequalities for mixing
sequences were presented in Utev [3] and for mixing fields in Doukhan [4]. However,
Doukhan remarks that the proof of the interpolation lemma in Utev [3] is “not clear”
(see Doukhan [4, p. 27]). Actually, the first inequality in the expression preceding
(4.4) in Utev [3] seems to be not valid. Therefore, one can net use Lemma 4.1 of Utev,
so the extension of Rosenthal’s inequality from positive even integer exponents to
arbitrary positive real exponents is an open problem. On the other hand, Doukhan [4]
presents Rosenthal’s inequalities for c.-mixing and for ¢-mixing fields. However, by
the opinion of the authors of the present paper there is a gap in the proof of Theorem 1
in Doukhan [4, p. 29].

* The aim of this paper is to give a version of Rosenthal’s inequality for o -mixing
fields. The results and proofs here are slight modifications of the ones in Doukhan [4]
and Utev [3]. The authors want to summarize what is clear in the above mentioned
papers concerning the topic. Similar considerations can be made in the ¢@-mixing case
(see also Remark 4 in Doukhan [4, p. 32]).

Let (&, 7, P) be a probability space. Random variables are supposed to be -

defined on (Q, F, P). Let 4 and B betwo o- algebras in . The o-mixing
coefficient is defined as follows,

(A4, B) = sup {|PA)P(B) - PAB)|: Ac 4, Be B}.

The covariance inequality in the o-mixing case is the following (see, e. g. Doukhan
(4,p.9])

lcov (X, V)| < 8 [a(a(X), s I IIXI, N Yl

r,p,g=1, l+l+l=1.
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ON THE ROSENTHAL INEQUALITY ... 267

Let I be the set of integer lattice points in R d>1. R? will be considered with

maximum norm and the distance generated by that norm. Let ¥ ctel } be aset of
random variables. The c-mixing coefficient of Y is

y(r,u,v) = sup{o( F, F,):
distance (I}, I,) 2 r, card(I;) < u, card(),) < v},

where I; and I, arefinite subsetsin 7, %, = o{¥,: tel;}, i=1,2.
Let T be afinite setin /. Introduce the. following notation

Lt e, T) = 2 (]Emfp.»s)u/m-ra) L Z ”y:”ﬁ_{_e’

teT teT
Lk, 0,T), if 0<h<1, €20;
D(h,e, T) = L(h,e T), + if 1<h<2, £20;

max{L(h € T),[L2 ¢ T)]"?}, if 2<h, £>0.

Let 5. and b, denote the number of points of / in a sphere with radius r and
center in I and in a ball with radius r and center in I, respectively: s, = card ({¢:

el = r}NI), b, = card ({: ||£]] < F}NT). Let

9 = 8ul(h—u—1)!(h—1)! Zl [oty (r, 1, h— )]/ ) 5 ph=2
rs

The following theorem is a version of Theorem 1 in Doukhan [4, p. 26].
Assumptions here are stronger than those of Doukhan [4]. Explicit formulae for the

constants are given.
Theorem. Let [>1 and €>0. Let Y,, te I, be centered randonjr variables

with E|Y,|""® < o, te I. Let h be the smallest even integer with h 2> 1.
Assume that cﬁ?ﬁn < oo for u=1,...,h—1. Then there is a constant K )
such that ' -

!
> %

teT

E s KyD(, e, 1), (€9

for any finite subset T of I.
Remark 1. Ky doesnotdependon T but it dcpends on the rmxmg coefficients
and [: K(OE) = H;E )Ci, where

h—1 =2
H® =1+ 3 @, + 2[ N EO R,

n=1 u=2

C = o (h=L+8) (2h+21-1) /e

where we suppose that 0 <e<1[/2. If [ is an even integer then one canput C; = 1.
Remark 2. Inequality (1) is always satisfied for 0 < I < 1 if we replace K (a)

with 1.
Remark 3. The above result is valid in the following slightly more general setting.

If I is aregular patternin RY then s, should be replaced by §, = card ({#: r—1 <
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268 ' 1. FAZBKAS, A. G. KUKUSH, T. TOMACS

<|l#ll € r}NI), i.e. 5, denotes the number of points of I in aring with radius r,
thickness 1 and centerin I. '

Remark 4. For d=1, i. e. for mixing sequences see Doukhan [4, p. 26].

2. Auxiliary results and interpolation lemma.

Lemma 1. Let L be a finite subset in a metric space (M, p). Suppose that the
minimal distance of two non-empty complementary subsets of L is r. Then one
can choose two non-empty complementary subsets A and B in L such that the
distance of A and B is r and there exists a connected graph with edges not
longer than r and with set of vertices A, and the same for B.

Proof. Let s,te Uc L. We shall say that s is r-connected with ¢ in U if
there exists a connected graph with edges not longer than r and with vertices in U,
moreover s and ¢ are vertices of this graph. Let S; and S, be two non-empty
complementary subsets of L such that p(S;,S,) = r. Let t; € S|, #; € S, such that

p(t; 1) = r. Let S < S; be the set of points r-connected with #; in S;, i=1, 2.
Now, p ({Slm USP {6 =S U (s, - Sg))}) > r. But r is the maximal distance
between subsets of L, therefore either the second subset is empty or the distance is r .
In the first case we are ready. In the second case let :S"lmg S —Slm be the set of
points r-connected with S in (S, —S®P)U S . The definition of 5P is similar.
Obviously S US{Y # &. Now, consider (§; —SP)US® and (S, — SHush,
The distance of these two sets is ». Moreover, in these sets the number of points 7-
connected with #; in (S — S"](l)) U gz(l) or the number of points r-connected with t,

in (S, -S)US® is greater than at the starting situation. Repeating the above
procedure we obtain the result.

The following lemma is a version of Lemma 2 in Doukhan [4, p. 29]. There the
lemnma is stated for even integer (a + b) with (a+b) = 2.

Lemma?2. If 820, a=2 and b=2 are real numbers then

D(a,8,T)D(b,8,T) < D(a+b,8,T).
The proof will be based on Holder’s inequality:
1. Let X and Y be real random variables. If p>1 and ¢ = p/(p—1) then
E[XY| < IXI,I1 Y1, 2

2. If a;,b;eR (i=1,...,n), p>1 and ¢ = p/(p—1) then

n n Yp s j 1/q
;Iasbsls(ZIafrf’J [Z[bfqu ; 3)

i=1 i=1

Proof. Set

L, = L(v,8,T),
D\J D(V’Ss T))

X, = Y,I;”Z for teT,
L= 2 1X%I0,s
teT

D} = LB ir vz,
c=a+b.

Then
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ON THE ROSENTHAL INEQUALITY ... 269

L= (IEI!}’,LE”3|"*5]V”V+8) - ;"7

teT
thus we get
D, = YL, vzl = 1;V2D,, when v22, 4)
and
L =1 )
Using (5) we have
D, = L,v (L,)Y? = LL,v1l, when v22. (6)
This equality implies forany a22 and b22
D = LoV VYT (7
(a) First we assume that a> 2. Set

u = ((,_+§]-((I_—2) v = (2+8}(C_a)_

and

c—2 c—=2

Then u+v = a+d, hence, using (2) with p = ek and ¢ = 240 we obtain
13 v
a+d _ U+ u v
X1 = EIXIY < IX01] a1 sy

This inequality implies

Lo X XS 1X 055 (8)

teT

_ ua G O
cla+d) 2(a+8)
As O<r<a/c<l, wecanapply 3)with p = 1/r, ¢ = 1/(1 - r) to get from
®) that L, < (L) A", where A = 3 |IX,|I3%5""". As s/(1-r) 2 1, from
(5) we obtain A <1, therefore L, < (L.)". Hence,if L, 2 1, then L, > 1.
Therefore,as 0 < r < a/c < 1,

DSy s g ¥ L 9)
(a”) Now, we concentrate on the case a>2, b>2. Then (9) is valid for b:
L=< E. f Lzl (10)

These incqualities imply L, L, < L. Vv 1. Therefore, using (7), (9), (10) and (6)
we have

DD, < (Lvl)vi,vL = LLvl = D..
Hence, using (4), we get the statement.
(b) Now, we assume that a =5 =2. Then using (7), (5) and (6), we get
DiD; =1<1vl, = Dj.

Hence, using (4), we obtain the statement.
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270 1. FAZEKAS, A. G. KUKUSH, T. TOMACS

(c) If a>2 and b=2 then (5), (6) and (9) imply
D;D; = D; < Dj.

Hence, using (4), we have the statement.
(d) Finally, if b>2 and a=2 then the proof is the same as in (c).
This completes the proof of Lemma 2.
The following interpolation lemma is a version of Lemma 4.4 of Utev [3] and

Lemma 1 in Doukhan [4, p. 27].

Let B be a separable Banach space withnorm || ||. Let F = { #,..., F,} bea
family of sub o-algebras of the o-algebra F, and 1| = {ny,...,N,} be a family of
centered random variables. The family 7 is said to be (F, B)-adapted if m; is B-
valued and ;-mesurable. We shall use the following notation:

n

v/(v+3 1
Me, ) = X (Bl ) = 5 s,

M(v,8,1), if 1€v<2;
o(v,8,m) = {
M8V M'22,8), if v>2,
where av b = max {a,b}. I{A} denotes the indicator function of the set A.
Lemma 3. Assume that for some fixed real constants v=21, 8 >0 and ¢ =21
any (F,B)-adapted centered family n = {N,, ..., N, satisfies

n v
E{> n <cow,sm). 11)
=1
Set ty = 1V (vV/2)V (v —8). Then for any t with tg < t < v and any (F, B)-
adapted centered family ¢ = {@y, ..., ¢,) satisfies

< cz‘“"lg(r, 5, ¢).

Yo

, We remark that ¢ 2 1 is the consequence of the other assumptions. In order to
prove the lemma we require the following known inequalities. :

1 (Cp~1nequa11ty.) If x,ye B and p=1 then

lx+ 2117 < 2270 (ll )l + 2 IP), (12)

if 0<p<1 then
e+ 17 < Nxll” + Iy IIP. (13)

2. Let X be a B-valued random variable. If p=1 then
(E IXI)” < EClIXIP) (14)
and

E|lX - EX|” < 27E || X", (15)

If 0<p<1 then
(E IXI)P = E | X|P (16)

and
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E[X - EX|I” < 2(E ||x]|)?,
where EX is the Bochner.integral.
3.If X isa ﬁwalued random variable and 0 <g <p then
X1y < 11X,
where |[X|l, = (B || X||*)"2

4. If ;e R (i=1,...,n) and p=1 then

n ’ n P
>, lal? < (Z Iail) .
i=1 =]

271

a7

18)

(19)

! Proof of Lemma3. Let ¢ = {¢,...,¢,} bea céntered (F, B)-adapted family

of random variables and f3 <t<V be a fixed constant. Set

2 =001509),
y=g',
Ti=o;{lle:ll <y}, i=1...n,
Y, = o, {llo:ll >y} i=1...,n,

ni:YE_EYh 5211---:?1:

n= {"11‘---"']”},
Yy = T"—ETf, i=1,..‘,n,

Vo= {W, e Wk

& = z(lm: IV = E [|m;|I'Y), where ze B, |lz||=1, i=1,...,n,

€={&,....&}
Then M; + V; = ¢; and =1 so (12) implies

3
< ot []E

<1 and v21 so (13)and (12) imply

.

t

+E

n

_ZfPf

=

n

z,'f'lf

=

E

=

t/vyVY
] <

£ol)

< |~

E

n
2 n,-‘
i=1

n
Z N;
=1

n

A

v n v
Sf*@ +[;Emmmj}
2 El
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v
Set V=cQ(v,8,E), W= (2;‘;1 Eumu'”) . As E is centered and (F, B)-
adapted, so this inequality and (11) imply

Z N;
=1
As v is centered, (F, B)-adapted and v/t = 1, thus using (14)_ and (11) we have
n ! n

> Vil < {E ‘ > Vi
i=1 i=1
where U = (cQ(v, 8, ¥))"". Then (20), (21) and (22) imply

z @y
i=1

‘We thus have to estimate terms U, V and W.
U) Set u = v(t+8)/t(v+38). Then u>1, furthermore v+ & = 1, hence (15)
and (14) imply

E ” W{_”\Hs < 2V+51E|] TF”\'-G-B < 2v+8 (]E ” Tfllu(\!+8)) Uu.

3

E <2Vl v+w). _ Q1)

N4
E ] < U, 22)

1 .
E < 2 ™Ry 4 oy (23)

Thus

s : AV (V+8)
Mv,8,y)s Y (2"*5(]E:|13ri;|u(v+5))m)“ v+8)

i=1
L v/u(v+8)
= 2V 3 (Blig ), 24
i=1

I{[|@;ll < y}I @ [*V+O-(+8) < utv+8)-(1+8) pecquse u(v +8) — (£+8) = 0.
Hence

E[IT** = E (oI [lo;ll < yHI g, [V+P-¢+) <
< Q(MSXWI_UHEH(p,-”H'S.
Using this inequality and (24) we get
_ M, 8,v) <2V 0V M, 8, 9) < 2V 0Y" (25)
(a) Assume that v <2. Then (25) implies

OV, 8,v) = M(v,8,v) <2¥o""
(b) If t<2<v, then (25) implies
MWZ(2, 8:\”) < (ZZQZ,{:)W’Z — QOw’r’
hence
M, 8, y) < 2¥ oYt

Q(v,3,y) = max
MV}‘Z (2’ 5, .q!) < 2\" QV:"I.
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(c) Assume that 2 <r. Then because of (15) and || T:]| < | @;||

L 2/(2+8)
M2,8,y) = Y (EIT - ET|**9) <

i=1
i 2/(2+8
< 43 (BTN < am2,8,9) < 407
=1
This inequality and (25) imply
M, 8, y) <2V oY,

MY?(2,8,y) < (40Y)Y? = 270",
Cases (a), (b) and (¢) imply that

Q(v,8,y) <2V 0"

Q(v,d,y) = max {

forevery 1 <t<v, hence

U s (¢2'0""'" = ¢'M2'p. (26)
V) Inequality (15) involves

v+d
ENE N = Elind"Y - Ellnd7 [ < 2P ElIn, Y. @)

This inequality, (18), (15) and || ¥;|| <€ || ;]| imply the next inequality

M(v,8.8) < 2" z Il sy < 2" z lIndllt, 5 <

g gvH Z E|Y I3 *D < 2V M1, 8, 9) < 2V Q. (28)

i=1]

(a) Assume that v<2. Then (28) implies

Q(v,8,8) = M(v,8,&) < 2""'Q.
(b) Assume that t<2<v. By (27) and (15), we have

n
M(2,8,E) < 43 (ElIn|I@+3/)2/@*d <

i=1
n
< 4]-{-”'\-' Z (E"}?”r(?»rﬁ)fv)?.!u%)’ (29)
i=1
where we used that 2 v/2. Now I{]| o] > _‘,‘}||(p,-]]”2+6)"v_“+8) <
< y1@+8)V-(1+8) pecause 1(2+8)/v - (1+8) < 0. So(29) implies
M(2,8,E) <
l+r,~‘vQ..((°+5)fv (t+8)/1)/(2+8) Z [(Elltp, |:+8)n’(.'+5)) (I+5)}'I’(2+5)'

i=1

Hence, using (19), we have

M(Z.S,é) < 4I+f!\ Q..(("+5)!v U+5}.-’:).-‘("+5)(M(r 5. (P))Z“+5)“(',+5}

5
< 4 1+t/v Q._!V_
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274 1. FAZBKAS, A. G. KUKUSH, T. TOMACS

Using this inequality and (28) we have
M®v,8,8 <2 0;
MW'Z @ 5 ‘E) < (41+riv QZN)WZ — ZVHQ.

(c) Assume that 2 <t. We remark that (29) is valid in this case, hence

o(v,8,&) = max{

M(2,8,8) < a1+ g2Iv=2l1pr0 5, ) <
< 41+r,-’vQ2{v—2/r an - 4l+r{v Qz.-’v_

(Here we used that I{| ¢;|| > y}I| | R ERNY=(240). ¢ - FRABYV=(2+8) ‘and the
definition of Q.) Using the previous inequality and (28), we get
M, 8,8 <2V Q;
MWZ(Z, 5, E) < (41+r!v sz\f)w’z = gVt 0.
Cases (a), (b) and (c) imply that

O(v,8,8) = max{

Q(v,8,8) <2""g

forevery 1<t¢<v, hence

V<2V ‘ (30)
W) Using (16) and (17) we have

n n
> Elln Y < E EXIDTY < 27V Y (EI%IDT.
i=1

i=] i=1

2

Furthermore, 1{ || ;|| > 3}l o;[I'™Y < »'~, hence

n

n
> Elln 7Y < 2V VY gyl -
i=1

As t+8 = v, we can apply (18)
> Bl <27 0" M, 5, 9) < 2 Q1.
i=1
Thus
w<2'0. €29
Finally, (23), (26), (30) and (31) imply

E Zq:
i=1

This completes the proof of Lemma 3.

Corollary 1. Assume that for some fixed real constants v 21, 8> 0 and c=1
and for any (F, B)-adapted centered family n = {1My,..., N, relation (11) is
satisfied. Then for any t with 1 <t<v any (F, B)-adapted centered family ¢ =
={Q,..., Q,} satisfies

. .
< 2ot v ke g 4 2% 9ty < w2l g,
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r

E ' Y ol < CQ1.8,9),

i=]

where C = ¢2V+OX2VH2=11I8 4o 45 08,
Proof. According to Lemma 3, in each step we can decrease the exponent by 8.
3. Proof of the Theorem.
Lemmad. Let T be a finite subset in 1, let h be a fixed positive integer, € >

>0. Let Y,, te T, be centered random variables with E|Y,|"*® < oo, te T. Let

AT = 3, [E, .5,

teTh
where T = {t|,....f} € T" Then
A(T) £ H® D(he,T). (32)
Proof. We omit superscript (o). We shall prove that for any positive integer /
h=1 h=2 h
A.‘r(T) < (] + “n,h-n] L(h= g, T] + Z (“)Au{n Ah-u (T) (33)
w=1 n=2

Here 3" ()= 0 for h=1 and 3> () =0 for h=1,2 3. Random

variables Y, have zero expectation, therefore A, (7T) = 0. Moreover, we shall prove

Ay(T) € (1 + ¢, )L(2.&,T). (34)
We have
h-1 e
AT < Z?h;@yﬂ + Z| ZI N % |EY Y, . (35)
i€ u=\1lr= 3';
where & = {f;,...,t0 € T N = {ty. ...ty T Ye =V, .Y, ¥ =
=Y, Y, moreover 3. Zn means summation for all & = {r,,...,¢t,}e T"

N ={t..... 1} € T" " so that the distance of sets {7, ...,7,} and {41, ..., 1}
is r which is the maximal distance between complementary pairs of non-empty
subsets of {7,...,1,}. Remark thateach {7,..., 5} e T " should appear on the
right hand side of (35), i.e. we take into account the order of components of . Using
covariance inequality, we get

|EYe ¥yl < |EY:[|EYy| + 8[oy(r,u, h=w)]P || Yelly I Yo ll s (36)

where . v—h+£ u—h+€
P h+e’ u h—u

” YF,‘ ”\J = (EI Y;i }j“ |”'+E”|¢)ﬂf(h+g} <

. Using Holder’s inequality, we obtain

" 1V ufl(h+g) "
< KH ‘EI};,I’”“] ] = JT Y, e 37)

i=1 i=1

Now, by (37), the inequality of arithmetical and geometrical means, and Lemma 1, we
get
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276 I. FAZEKAS, A. G. KUKUSH, T. TOMACS

2 2 ki inl, < 3 3 TT 5, 0™ TT 1y, ) <
n

n i=1 i=u+l

%%;{E” .+ 2 , IIJHJ E

i=1 i=u+l

Z b2 ut (h=u=1h= DY, . (38)
teT
To explain the last inequality we remark that for any fixed s € 7 we can choose the

other u—1 members of & atmost (u—1)!6""" ways, the point closest to 1 at most

u ways, a point in distance r from that point at most s, ways, and the other 4 —u — 1
!

points in M atmost (h—u—1)!b""" ways. Moreover, (h—1)! = ;;L stands
1

because of the different orders of £ elements. On the other hand

> 2 X ERIIER) < (4) A Ay D). (39
r=1
Now, by (35), (36), (39), and (38), we get
h-1 J h-1
) < TIERT+ 3 () A+ B3 cn il <
re =1 u=lsel

h=1 J i
< z ( T)A,,(T)An u(T) + {] + Z Cuh "]L(,’; eT),

u=1 l\ u=1

which gives (33). The above arguments in the simple case of & =2 imply (34).
Using Lemma 2 (33) gives (32).
Proof of Theorem. 1f h is an even positive integer, then

h
E [ > Y,J < AT).
reT

This and Lemma 4 imply (1) for even /. For arbitrary / one can use Corollary 1.
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