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DIFFUSION APPROXIMATION OF THE WRIGHT - FISHER
MODEL OF POPULATION GENETICS: SINGLE-LOCUS
TWO ALLELE

[TADY3AHA ATTIPOKCHAMAIILSI MOIEJII
PAWTA - OIIIEPA DONIYJIANIMHOI TEHETHKHA:
OIHOJIOKYCHUI IBOAJIEJILHUNA BUIIAJOK

We investigate an autoregressive diffusion approximation method applied to the Wright — Fisher model
in population genetics by considering a Markov chain with Bernoulli distributed independent variables.
The use of an autoregressive diffusion method and an averaged allelic frequency process lead to an
Ornstein — Uhlenbeck diffusion process with discrete time. The normalized averaged frequency process
possesses independent allele frequency indicators with constant conditional variance at equilibrium. In a
monoecious diploid population size N with r generations we consider the time to equilibrium of
averaged allele frequency in a single-locus two allele pure sampling model.

HocnippxyeTesa asToperpecHsHa qudysifiHa anpokcumManis mopesi Paiita — Qimepa nomynauiizol
reHeTHKH. [IJ1A IMBbOro BHKOPHCTOBYETHCA MAPKOBCHKHI JIAHINIOr 3 HE3aJIEXKHHMH SMIHHHMH, M-
NopAAKOBaHHMH posnoniry Bepuymri. MeTonu aproperpecusrol nudysii Ta ycepelHEHHA ae/IbHEX
9ACTOT [IO3BOJIAIOTE 3BECTH NpoGJemMy, o BHBYAETHCA, [0 AucysilHoro nporecy OpHeTeina —Y nen-
6exa 3 mHCKpeTHM dYacoM. Hopmopaumil mpouec ycepefHeHHX YacTOT Mae B CTaHI PiBHOBAard Hesa-
el iHIHKATOPH aJleJILHHX YacTOT 3 IOCTIHHOIO YMOBHOIO AHCHepcielo. BcTaHOBIIIOETHCA Hac, IO~
TpiGHHUH ofHOMOMHIH merutoimaid nomysanii poamMipoM N, D0 CKJIAHAETHCA 3 F MOKOJIHE, VLA TOIO
1106 AOCATTH CTaHy PIBHOBATH YCepeHEHHX aNlesbHHX YaCTOT B ONHOMOKYCHIH roanensHil Mopei.

1. Background. Diffusion approximations have been, and still are, a popular method
for obtaining values of fixation probabilities, mean absorption or fixation times as well
as other values of interest for the study of evolutionary dynamics of genes in finite
populations (see [1 —5]). :

The representation of random genetic drift by differential equation was first applied
by R. A. Fisher (see [6]), in his implicit version of the model, who noted that the
equation describing the diffusion of heat through a solid bar applies to random genetic
drift. This pattern of change in allele frequency is a good approximation to that
expected theoretically for an ideal population and iterations of the discrete Wright —
Fisher model using a Markov chain give the expected outcomes of a pure drift process
[7-10].

Kimura [11] used the recurrence relation p’=p + (2U —1)+/3pq /2N, where U
is a random variable uniformly distributed between 0 and 1, to demonstrate the
diffusion approximation. Each generation U is reselected and a sample realization of
the allelic frequency of the next generation is obtained. The variance of the uniform

random variable in the recurrence relation is found to be pg /2N, the same as that for a
binomial sampling distribution. Kimura concluded that even though the distribution of
change in allele frequency is uniform, the process reproduces the desired results for
fewer iterations. The best understood case is that of the neutral genes first argued by
Kimura, those genes which have no advantageous or deleterious effect in the
population, an argument which has had an crucial impact on evolutionary theory [12,
13]. We however consider only the existence of the non-neutral cases. Burger and
Ewens [14] demonstrated that for advantageous alleles, for a large population N, the
diffusion approximation is more accurate than for deleterious alleles. Other relevant
works on diffusion approximations include Ethier and Nagylaki [15] and Shiga [16]. It
is useful to refer also to the diffusion approximations of non-Markovian models of
Watterson (1962) and Norman (1975).

The mathematical theory describing gene frequency under selection in finite
populations is much less developed than in the neutral case, but it has been shown that
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for advantageous (as for neutral) genes the well-known diffusion approximation for the
fixation probability and the fixation absorption time are quite accurate (see [17 — 20]).
In -this paper we use an autoregressive diffusion approximation method and an
averaged allelic frequency process in discrete time.

2. Introduction. The Wright'— Fisher model of population genetics in a
monoecious diploid population can be formalized,- after mutation, as a stochastic
system with states denoted by ' w ' :

) N :
M = =N, r20, - (1)
NE . _ i,

“Where n,(,m is the allelic frequency for one fixed allele after r generations with
subpopulation size N and &;(r) is the indicator of the fixed allele for the i-th
individual after r generations. On a single-locus two allele pure sampling model, the
corresponding Markov chain fixing the frequency of the first allele can be defined as
(1) with Bernoulli distributed independent random variables. These random variables
take two values such that

Pr{&(+D)=1n™=p} = 1- Pr{&(r+1)=0| ngff’):p} =C(p), ©@
where the regression function of the Markov chain in the model is '

o c(p) = E[né InM=p]. €
The Wright — Fisher model is determined by the following form of the regression
function . i

C(p) = pmp+9)/ W(p),
and

w(p) = wlp2 + 2pg + wzq?‘,_ g:=1-p, _ 4)
are the genotype frequencies with a selective influence in random mating. In this
paper, we investigate the diffusion approximation in an attractive case (see [21 — 23]):

0<wp<1, k=12 _ '
where wy are the viability coeffici€nts of A;4; allele individuals and the regression
function (4) can be transformed into the following expression

C) = p + C() /WD), )

where

Co(P) = vp(-p)(Pp—p) - (6)
suchthat vy :=1-w; and v = v; + v, ate the selection coefficients*. The cubic
parabola (6) has three real roots pg =0, p; =1 and, at the equilibrium point, p =
=v,/V,0<p <1, such that ' '

Cp(0) > 0, Co)>0 and Cyp) <O.

Moreover, by using the definitions of the regression function (4) to (6) we obtain the
following important linkage representation =

Cp) - p = (p—P)1-v(P)], ' )
where -

' w(p) = vp(l-p)/wp) - (@8

* Selection coefficient values less than zero i.e v, v, <0 describe advantageous alleles and values
Ereater than zero describe deleterious alleles in the pc)pglation. The neutral case vy, v, = 0 is excluded
ere.
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is the recombination function such that
0<b:=C’(p)=1—v(p)zl—v0<1, )]

where v(p) = A/(1-A) =: vy, 0<vy<1 and b, the drift coefficient, is a fixed
value depending on the viability coefficients. .
From equation (5), the genotype frequency w(p) has the following representation
w(p) = 1-wp® - vg?, * (10)
which leads us to the inequality v

0<v(pp) =<1l

Furthermore, by considering the continuity property of w(p), and for small enough
&> 0, there exist the stronger inequalities

O<vlp)—c=sv(p)svip)+ec<l,
c = max |[v(p)—v(p)l;
pl<s

11
lp-
where v(p)+ c = b. Finally, by considering the recurrence relation
Praa = C(p,), 20, 12)

for pg e [0, 1], also fixed, then the unique equilibrium point of the recurrence relation
(12)is p: p = C(p).

3. Theorem 1. The notation and definition for the normalized process of allele
frequency is introduced

W = N(P-p) for r2ro. @
The following convergence of the normalized process takes place
D =& for r20, N e, (14)

-where r is sufficiently large and the limiting process (., r=0, is determined by
the following autoregressive diffusion approximation

Cri1 = b, + 00,4, 720, (15)

suchthat ®,, r21 is a sequence of independent and identically distributed random
variables and G2 = B(p). Furthermore the initial condition for o is defined as
follows

Cgﬁo = GOa N — co.

Remark 1. The autoregressive diffusion approximation (13) may be extended on
the process

(% = VE(n&% -p), R20,
for r — o such that .
~ c
Eaf =p+ IN

Proof of Theorem 1. 3.1. Conditional variance. Notations and definitions are
introduced for the conditional variance between the Markov chain N and the
equilibrium point p using the function C(p) with variance denoted as q!f.N) and
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variance of the frequency indicator in the i-th individual in the r-th generation, &;(r),
where

ng = ['r](N) p] rzo . (16)
and
B(p) := C(p)(1-C(p)) < 1/4. (17)
Then we obtain the following definition for the conditional variance using (16),
" AE 2
E[y%Q1n™] = Em@]" - 20€(n™) + p (18)
such that'
EM®M)? = E[E¢+DIn®)/N + (E[g¢+DIn®] N -1)/N? =

= cng)/x + (1Bl = Bu)/N + ag),

by (17), and since E[ﬁi (r+1)|-ﬂ£N)] Pk C(n](rm]. ‘Relation (18) can now be
represented as

E[y{Inf ] (ﬂgNJ)/N + (™) - 2pc(n®™) + p* =
- (el + B . -

Moreover, by considering equations (7) and (19) together, for an attractive case we
obtain the following definitions for the conditional variance:

E[y@ 1n®] = v 1-v(n®))* + BmM®) /N - (20)
or altarﬁ'atively . ' | .
E[yR 0] = v - [9(n™)-B(nt")/N], 1)
where
¢(» = (p—pP)2-¥(p) VYO0< p<L : (22)

3.2. Estimation of variance convergerice. 3.2.1. Lemma 1.
Pr{n®-p|>8} < 1/9N8%, N,r—>es,
for a sufficiently large subpopulation N and for a sufficient number of generationsr.
Proof of Lemma 1. There exists sufficiently large » and N such that the
following inequality is valid:
' W _pl <8
) |ofP —p| < 2,
Hence we can use the following inequality for &' and r such that
Pr{{n®-p|>8} < Pr{|n®™-p|>5/2}
and by Chebyshev’s inequality we obtain the following;:
Pr{|n®-pM|>38/2} < EB(MM)/9INS* < 1/9N>. (23)
Proposition. The conditional variance _
E[W @ 1] = ¥  [o(n®)-Bm®)/N], 721

and for large enough N is a supermartingale.
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Proof. By considering the property of a supermartingale (see [8, 24] such that
E[ gN)|ﬂ(N)] = (N) e E['r](N] < W(N).
we require that
o(né™) = B(n™)/ N

and by using the representations for B( )/ N from (17), and cp( _EN )) from (22),
we have

V) (n) > caf)-ca))
and it follows that

lim y® > (1-A)2/WN@2-34), r=2rg

N r—jeo

and sufficiently large N. By further considering that Ip(N ) <1 and A<1/2 for N,
r =1 then the following inequality

=2 1/2N, Nz=1,

holds. Hence the conditional mean square value is a supermartingale.
3.3. Lemma 2. For an atiractive equilibrium point p, 0 < p <1, the expected

variance A(rN) 1= E,t[n,(.N)— p} = E v ) satisfies the following inequality:

3

AN < B/N +b2AM, r 20, (24

where 0 < b < 1 depends on selection coefficients and B = By +B,.
Proof. By considering the variance convergence with stationary d1str1but10n of
frequency indicators i ina subpopulation N, we have -

Eqy®™ = Eq®-En® n@]* + E[E[n® [n®)]- p]z &

and by considering the definition of the regression function C(p) in (3), we obtain the
following indicators for averaged frequency

I = E®-En® Q] = En@®-cn®)]* (26)
and by definition of p, we have
a® = BB In®]-o]" = Efc(n)-e] - @7)

The variance (or mean square distance between the averaged frequency and frequency

equilibrium in a subpopulation N') A(N ) can be represented as follows, using (26)
and (27),

590 = BfnO-c(r)) + Exfcn®) o] @

and by definition of the variance, in (17), we obtain for the first term in (28) an upper
bound,

IM = EB(nM)/N <1/4N8 (29)

from (26). Now we consider the second term in (28) by using the representation of the
regression function from (7). Hence
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o® = EnM-p]*(L-v(n®))’,
where
1 = 1(m@-p|<5)
and
HM = 1(|n®-p|>3)
are the internal and external averaged frequency indicators for
Efi-v(n®))* = E(L-v(n®)) [E® + 1], 30)
By using the inequality from (9) we can estimate the first term in (30) to be
E(1—v(n®)f1(|n-p|<8) < b* <1 (1)
and for the second term we get
E(l—v(nEN)))ZI(]nEN)—pb 8) < Pr{|n®™-p|>5}.

Hence, by recalling inequality (23) for the second term I J(rN) , in (30) we get

E t—v(n®)]*1(In®~p|>8) <1/ 9NE?. (32)
By then uniting the inequalities (31) and (32) we obtain,
oM < 1/9N8* + b2Ey M) (33)
and by substituting (29) and (33) into (28) we have
A < 1/4N8* +1/9NS* + b*AW), (34)

where AEN ) = En\pEN ), or equivalently,
AM < B/N +b2AW), B =1/48* +1/98% (35)
By induction from (35), we obtain the following condition

AN < B oo L A,

LT A-bN T (1-b7)
where AV := E w{V*. Note thatin the case E,n§" #p we use the fact that b <
<1, hence b2 — 0 as r — o such that the variance convergence

lim Egy®™ =0 V r,N— oo,
N—joo

follows from Lemma 2.
34. Lemma 3. The limit process §, t 20, is a diffusion process of
Ornstein — Uhlenbeck type with discrete time and has the following representation

E:
W, =Yoo, t=1, , 36)
r=1

where ®©r are independent normally distributed random variables with variance

* In the trivial case E,m E,N) = p, the following initial condition is obtained A{Y := p(1-p)/N=
= A/Nv andsince 0<A<1/2, wecansay that AP <1/2Nv.
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" Eo? = o* = B(p).

Proof of Lemnma 3. By the central limit theorem for normalized sums of frequency. .
indicators in a subpopulation N after r gencrauons the following weak convergence
takes place:

o =t -t 0, T<r< m Now

We may now calculate the standard deviation and variance of (DE,N ) as follows

Eo® = EJt@ - 5¢™] = [E[CE’.,‘I%ICEN’]— bt @
By expectation (37) we obtain
B0 = B[] 5 0, Nsw 68

by the continuity property and hence
' E®, =0, r>1
By using equation (38) the expected variance of 0)9'0 may be calculated
2 : 2 '
Ef(o) = B[t - L] 69
and by again-considering (37) then this equals o
. 2
Eo[¢) — E[CER1EE] + 0 @) -v(n@))]” =

EL0) ~ B[N + b @ -v(n))]"

Finally, by recalling the definition of COI]dlthDﬂl variance we may trausform (39) into
the following form

B = 30) + B

such that the second term on the RHS tends to zero by the continuity property.
Therefore we can conclude that

lim E(0®)* = B(p) = o (40)

N—es '
and that _
E0? = Alv.
By limit (40), the martingale limit has variance equal to the sum of individual variances
@2, r>1. Hence, we may conclude, that the random variables ®,, are independent
(see [7, 8, 24]). This completes the proof of Theorem 1.
4. Process of averaged frequency.

4.1. Theorem 2. The regression function C(p) has the property of a covergent .
avemged frequency such that

ZnENJIN —pt =0, N—>oo, (41)

takes place by probability.

Martingale representation of the process of.averaged frequency. By considering
the sum and square characteristics of the martingale-differences we may demonstrate
the process in which the averaged allele frequencies in the subpopulation, size N
converge to an equilibrium.
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The convergent averaged frequency is derived as follows:
‘Nt—1 . Ne=1
N N
uf = TG - (Il = SR - (/N @)
r=0 r=0

by definition of the martingale-differences (see [8, 25]). The square characteristic of
the martingale in (42) is as follows:

Nt=1 2 g Ni=1 5
W™, = 3 E[[nf - ()] Inf0]/ x4 = ZB(nEN))/N. 3)
r=0

There then exists the following asymptotic estlmatlon from the continuity property
such that

(UM™Y, < B(p)t/N = At/ VN =0, N>,
- hence by the limit theorem for martingales [24] we obtain
= Vo™ = 0 as N—ooo (44)
with probability \onc. The martingale in (42) can now be transformed in the following

way:

N1 Nt—1
b = @R /N - SC(a) /N -

r=0 r=0

= S0 12 - - S lea®)-elv @

=1

Consider now (7) and inequality (9) by substituting we have the following

representation
(") = p = b[n~p] + (v(p) - v(n¥™))[n{"- p]- (46)
By substituting (46) into (45) we obtain the following form

Ne=1
m =@~ b)( >, nd/N - pf} -

- L (-] - S ).

Proof of Theorem 2. By the continuity property of the regression function C(p)

and (9) we obtain the following representation for the process of averaged frequency
(M)
Hi s

‘ N1 ;
b
w® = - b)[ 2, NE - pr) + 2(n6” - nfP) @7
Fd r=1 )
hence
Nt
i = vy ¥ /N —pt = 0, N>,
" r=1

by probability. '

By recalling the normalized process E;CN) for the process of averaged frequency
such that
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W = S[E - B[R 1) “®)

r=0
where

B[¢2 ] = VR ([E[n] In¢"]-p]) = VF[C(n®)-p].  ¢9)
Then by (46) and then substituting into (49) we have the following representatlon

B[] = TN (o =] + (e —m®)nD-p). GO

Then by substituting (50) into equation (48) we obtain .

L o
0 = S8 - R (o[nep])] + o oD

r=0

where

o = ZC(NJ(V(P) v( (N)))

r=0

and we have the following

T .
" = 3 [c8] - 6] + o (52)
r=0

and by the continuity property ") — 0, N, r — o, so (52) reduces to

=1 e
uf = S[e90 - bEg].
r=0
The square characteristic of martingale (52) according to (1’?) and (49) has the
following representation _ _ : e

t—1
(u®y, =3 B(n™)
r=0

and by the contmulty property we have

(n”‘”); =" tB(p)—At/v

Then by the limit theorem for martingales in series scheme [23] we conclude that the
following limit by convergence takes place

W = TR - b > W, Noses
; =0 -
where W, is a limiting process of normalized averaged frequency with independent

increments. This completes the proof of Theorem 2.
Remark 2. The diffusion approximation in discrete form considered here may be
mvestlgated with multidimensional stochastic Markov mode.ls with persistent

regression.
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