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METHODS OF DERIVATION
OF THE STOCHASTIC BOLTZMANN HIERARCHY

METO/[Y BUBEJJEHHS
CTOXACTHYIHOI IEPAPXIT BOJILIIMAHA

Different methods of derivation of the stochastic Boltzmann hierarchy, associated with the stochastic
dynamic that is the Boltzmann — Grad limit of the Hamiltonian dynamics of hard spheres, are considered.
Solutions of the stochastic Boltzmann hierarchy are the Boltzmann — Grad limit of solutions of the
BBGKY hierarchy of hard spheres in the entire phase space. A new conception of reduced distribution
functions, associated with the stochastic dynamics are introduced. They takes into account contributions
from hyperplanes of lower dimension where stochastic point particles interact. Solutions of the
Boltzmann equation coincide with one-particle distribution functions of the stochastic Boltzmann
hierarchy and they are represented by integrals over the hyperplanes where stochastic point particles
interact, 1

PosrusiryTo pisii MeTo/[H BHBejIelIs croxacTHuIol iepapxii, 1o BijiNoBjjlae croXacTHWIIN qunamini,
AKa e rpandielo BoJbnmaia — I'pejla ijt ramisinronosol JiMIaMiKK NPYXKIIMX KyJib., Posb’ssku
croxacrHurol iepapxii e rpanunnelo Bosmmimana — I'pejia posn’sskin iepapxii BBI'KI jursa mpyskimax
KyJm y BenoMy (hasopomy npocropi. 3anponoriosario 1oy Konfemiio pejiykonainnx dyynkitii# posmo-
JULJIY, IO BijimoBijialoTs croxactHunift jpunamini. Honi doynknii posnojiiiy npaxoByioTh BKJIAJH Bif
IiMeprJIomuIl MeIIIKHX poaMipliocTet, jie B3aeMojlilIoTh CTOXACTHHIN TOYKOoBI YacTHIKHE. Posp'sskH
pisisis BoJinlpMania criisna/ialorh 3 oJlIoYacTHIIKOBHMH (YIKITIAME posnojlijly croxacTHyllol iepap-
xii Bosisimana i 306paxcy1oTsest iirrel’pasiaMy 1o 1'inepnoBepxiisiX, Jie CroXacTHuli TOUKoBl yacTky
R32EMOJIIIOTE.

Introduction. Given paper is devoted to different methods of derivation of the
stochastic Boltzmann hierarchy for hard spheres. We show that the usual Boltzmann
hierarchy can be derived directly from the Boltzmann equation for the distribution
functions that are product of solutions of the Boltzmann equation. Solutions of the
usual Boltzmann hierarchy are the Boltzmann — Grad limit of solutions of the BBGKY
hierarchy for hard spheres outside the hyperplanes where the difference of positions are
parallel to the difference of momenta.

In series of papers [1, 2] we showed that the Boltzmann — Grad limit of the
Hamiltonian dynamics of hard spheres defines the stochastic dynamics of point
particles which interact if the differences of initial positions are parallel to the
difference of initial momenta, We derived the stochastic Boltzmann hierarchy
associated with the stochastic dynamics while the BBGKY hierarchy is associated with
the Hamiltonian dynamics.

The stochastic Boltzmann hierarchy differs from the usual Boltzmann hierarchy by
additional terms with 8-functions and some boundary conditions. Different equivalent
representations of the stochastic Boltzmann hierarchy are given. These representations
are connected with equivalent representations of the infinitesimal operator of the
evolution operator of the stochastic dynamics.

We introduce a new conception of reduced distribution functions that takes into
account contributions from the above mentioned hyperplanes of lower dimension
where stochastic particles interact. These distribution functions satisfy the stochastic
Boltzmann hierarchy and they coincide with the Boltzmann — Grad limit of solutions of
the BBGKY hierarchy for hard spheres in the entire phase space.

We show that solutions of the Boltzmann equations coincide with the one-particle
distribution function of the stochastic Boltzmann hierarchy with initial chaotic data.
Iterations of the Boltzmann equation and the Boltzmann hierarchies are represented by
integrals over the hyperplanes of lower dimension where the stochastic particles
interact. It is a surprise that this property of solutions of the Boltzmann equation and
the Boltzmann hierarchies have not been observed earlier.

Given paper is continuation of series of paper [1, 2] with the same denotation and it
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could be considered.as detailed exposition of results announced in preprint [3].

I. The Boltzmann hierarchy and-the stochastic Boltzmann hierarchy. 1..The.
Boltzmann hierarchy. There exist two methods of the derivation of the. Boltzmann .
hierarchy for hard spheres. The first one — from the Boltzmann equation, the second .
one — from the BBGKY hierarchy for systems of hard spheres in the Boltzmann — Grad.
limit. Consider the first method.

‘We have the Boltzmann equation for hard spheres

(¢, x
TEH < —py 3£ 5) +-f an [ o 1= o)
X [F(t qy, Pt gy P2)—F (6 a1, p)f(t g, p2)), 120, (1.1)

where
x=(g,p) Inl=1 Snin:(p-p)20),
pi = pi—n-(p1=p2), P2 =Pr+nn - (p1—p2)
We consider the Cauchy problem to equation (1.1)
ftx)|1=0 = (0, x;) (1.2).

in certain functional space and suppose that solution of (1.1), (1.2) exists.
Define the, associate with solution of the Boltzmann equation, sequence of s-
particle distribution functions

Filkiy oo B) 2 FRANTE 5 - FE %) B (1.3)

Fy(t x)) = (8 x)).

From (1.3) and (1.1), (1.2) it follows that sequence (1.3) satisfies the following .
chain of integro-differential equations

AF,(t, xy, ..., S . 9
_(_xér_x) = Z_p;a_q;_p;(t,xl,...,x,\.)+

o
Z j _[ dp.s—f—[n (P, p,s+l) [F\+I(t Xl -een b pl’ s X G pa+1) -
i=l ¢2
= Bl Fysonery G Privss s o p_\.,'_l)], §20l, w20 (1.4)
with initial data
F.(t %55 ,x‘,.)|f=0 = F(0,x,...,%) = F (0, x1) ... F1(0, x,). (1.5)

We say that initial data (1.5) satisfy the chaos property.

The chain of equations (1.4) is known us the Boltzmann hierarchy.

It is obvious that the Boltzmann hierarchy (1.4)-with initial data.(1.5)'is equivalent -
to the Boltzmann equation (1.1) in the following meaning. .

‘We have showed that the sequence of the . s-particle distribution functions'(1.3) are
solutions of the Boltzmann hierarchy (1.4) with initial data (1.5). And, vice versa,
solutions of the Boltzmann hierarchy (1.4)-with initial data (1.5) have also-the:chaos-
property, i. e., the s-particle distribution functions are the products of the one-particle
distribution functions

F'.r(r:xl? ?x.\') = Fl (1", )—‘1) Fl(t’x.s')‘
‘where the one-particle distribution functions satisfies the Boltzmann equation (1.1).
The last assertion follows directly from (1.4). Indeed the Boltzmann hierarchy
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476 ) D. YA. PETRINA

admits the separation of variables, because in the right-hand side of (1.4) we have the
sum of s operators that act with respect to each s-variables x;, i=1,...,s.

2. The stochastic Boltzmann hierarchy. Now consider the second method. .
‘We have the BBGKY hierarchy for systems of hard spheres with diameter a

OF%(t, xy, ..., X, d 0
%l_r_._-") = ZPI' ‘a_q:ﬁa(r’ L
i=l i

&
+ ‘21 az f dTl Jdp.\"i‘l-rl ’ (p!'_p.!l-l‘l) [E!‘a'i-l(t’ Xl eees s Px*’ ceey Xy g;—an, P:-i-l) =

= SE

— FAt X oy @ Py ooy X @+ an, pey)), 620 (1.6)
with initial data

Fyt, %1, oee s %)l 1m0 = Fy(0 31,00 X,)

The distribution functions F(xy, ..., x,) aré symmetric ‘and satisfy the following

conditions F'(, Xy, ..., x;) =0 if |g;—g;|< a atleast for one pair (i,7) < (1,...
..., ). This means that the particles under consideration are hard spheres and the

distances between their centers should be greater or equal a, i. e. hard spheres occupy
the admissible configurations.

The distribution functions F/(t, x;,..., x,) satisfy the following boundary
conditions ‘

Fl@t+0,x,..., x, s Xjy ey X)) = Fy(t Xy, x?,..',x},...,x&.)

if gi—q; =any Ny (pi-pj)20,

E',“(r+0,x1,...,x,-,...,).},...,x_,): Bl 2y ooy By sy Xgyney X )

if gi—gj=any, M- (pi—pp)=0,

x = (@ p). % = (g5 p)) 1

We have also the following boundary conditions in the Poisson bracket

e 3
- Z pi=— F(t, x5 ..., x). If gj—gj=any and My - (p;—py)20, i.e. Ny € 5%,
i=l SQ;‘ .
then the momenta (p;, p;) should be replaced by (p;, pj). The momenta (p;, p;) do
not change if 1 (p,-_pj)z 0, i.e. nye g

Let us stress that the boundary conditions in the Poisson bracket are of great
importance because these boundary conditions are associated with the dynamics of
hard spheres. Namely they are responsible for the jumps of momenta (p;, p;) —

- (pr, p}) when hard spheres touch each other (g;—g;=am;) and elastically
collide. The Poisson bracket together with the boundary conditions is the infinitesimal
operator of the evolution operator of s hard spheres. (see [4, 5]).

Introduce the sequence of renormalized distribution functions

Fo(t, %y ey %) = @@ F2(t X1, %,), s21 (1.8)

and tend the diameter a to zero, a — 0. We suppose that there exists the Boltzmann
— Grad limit of the renormalized sequence (1.8) in some sense (see [5])
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lim B oy ) = B Bpes®)); SE L - (1.9)
Performing formally the limiting procedure (1.9) in (1.6) we obtain
OF N 2y, e X)) d 2}
L = Ep,- 5q; ToCt ) +

5
+
i=l

j dn _[ Apys1M - Py = Poat) [Foat (& X1 oos Gy P s oy X @1 Piat) —
s3

i ,r-{-](r: xl:---:gf: pf_)"'yx.r’ f,{'p p.!'+1)]' (110)

At first sight hierarchy (1.10), that was obtained from the BBGKY hierarchy in the
Boltzmann — Grad limits looks like the Boltzmann hierarchy (1.4) obtained from the
Boltzmann equation (1.1), In fact, there exist principal differences between them.

Namely, the distribution functions F(t, xy, ..., x,) satisfy the following boundary
conditions:
Fo(h A4 0,25y Bpywy Eiyseey x) = Bt g5 oes x}k, — x}‘, sy

if gi=qj, g (pi—pp20,

Fo@+0,x,...,%... » Xjy oee v X )= Fo(t,xy, oo, x;, ... s X oo ) Xy)

if gi=g;, My (pi-p)<0,

x = (g p)s X = (g P)). ' (1.7°)

. " L :
In hierarchy (1.10) we have also the Poisson bracket — z P ai Fy(t, xp, ...\, x5)
= q;
i=l L

‘with boundary conditions according to which one should replace (p;, p;) by (p, pj)
if gi=g; and My (p;—p))20,1.e.my€e Sf. The momenta (p;, p;) do not change if

Mg @—p))<0, L. e. My € S2. These boundary conditions follow from the
corresponding boundary conditions of the BBGKY hierarchy (1.4) for hard spheres.
For hard spheres the boundary conditions are given on the spheres g¢;—g;=am that
are reduced to the hyperplanes g;j—g;=0 in the Boltzmann — Grad limit. In hierarchy
(1.4) these boundary conditions are absent, because they are also absent in the
Boltzmann equation (1.1).

The second principal difference consists in random character of the unit vector m
in (1.10). In the BBGKY hierarchy (1.6) the vector 1 is directed between the centers
of colliding spheres and defines a relative shift of the centers of the spheres. In the
hierarchy (1.10) we have point-wise particles, and the vector 1 is random one with

constant density of probability on the sphere §2. It characterizes how the point-wise
particles were obtained from the colliding hard spheres. The details of the mechanism
of obtaining the stochastic point-wise particles from hard spheres have been described
in papers [1 —3].

Thus, we have derived two different hierarchies: (1.4) from the Boltzmann equation
and (1.10) from the BBGKY hierarchy for hard spheres. The difference consists in the
‘boundary conditions for the distribution functions and for the Poisson bracket (of the
free particles) in hierarchy (1.10) obtained from the BBGKY hierarchy for hard
spheres. These boundary conditions are absent for hierarchy (1.4) obtained from the
Boltzmann equation.

More careful analysis of the derivation of the hierarchy (1.10) shows that there is
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.eq.uivalent'to (1.10) hierarchy with one additional special term with &-functions and
finally the hierarchy: for limit sequence (1.9) looks as follows

OF,(t, Xy, ..., X, s g
%‘)‘: -2 P % B,z 3. 8lar— gy (P — pj) X
i=1 i

i<j=l

i \Pi T PjILEL Xy ey ,';P;'*;---, j»P:‘kv'-’ 1P
x 8y - (p — PONEGE X1, -0 g q xs)

= F(t X eees Gps Ppy oo s @p Ppsoees %] + 3, [ @0 [ dppst |- (g = Poat)] X

i=1 §2

X [ﬁ-&-l(n Xpseeos Gis PJ?‘""’ Xys Gi» p:-lvl) e F_:,-q-[(r: Xsewss iy Piaeves Xgs Gis p.s'+l)]: (111)

where 6 is the Hewiside function, We will call hierarchy (1.11) as the stochastic
Boltzmann hierarchy.

And again we have the above described boundary conditions for the distribution
functions (1.7’) and in the Poisson bracket. Later we will show that hierarchies (1.10)
and (1.11) are equivalent.

Thus, the Boltzmann hierarchy (1.4) is not the Boltzmann — Grad limit of the
BBGKY hierarchy. The Boltzmann — Grad limit of the BBGKY hierarchy is the
stochastic hierarchy (1.11) (or (1.10)) that differs from the Boltzmann hierarchy (1.4)
by the boundary conditions for the distributions functions (1.7°) and in the Poisson
bracket and additional term with &-functions.

Nevertheless the Boltzmann hierarchy (1.4) is of great importance, because
solutions of the Boltzmann hierarchy (1.4) are the Boltzmann — Grad limit of the
solutions of the BBGKY hierarchy (1.6) for hard spheres in the following sense.

3. Solutions of the Boltzinann hierarchy and the Boltzmann — Grad limit of the
solutions of the BBGKY hierarchy. W e know that solutions of the Boltzmann
hierarchy (1.4) and the BBGKY hierarchy (1.6) exist locally in time for initial data
from the space Er of sequences of functions bounded with respect to positions and
exponentially decreasing with respect to squared momenta. Solutions of the both
hierarchies exist globally in time for initial data from the space Xg g of the sequences
of functions exponentially decreasing with respect to squared momenta and positions.
These solutions can be represented by series of iterations [5].

Consider a compact K, in the space of positions (¢, ..., ¢,) suchthat | g;—gq;[2

Zag(a), (i,j)c(1,...,5), s=22 and ag(a) -0 as a —0 in such a way that

lim -= (. Consider also a compact in the momentum space (py,...,P)
“a—0 ag (a)

q}pf + i+ pf <po and cones Vj; with respect to differences p; —pj, (i,j)< (1, ...
.., 8), § 22 with axes parallel to the vectors g;—g; with radius of the basis equal to

, and height pg.

ag(a)
Then
b (B X oo ) = Bl X v s %)) =0 w22 (112)
a—0
uniformly with respect (g, ..., q,)< K, and with respect to momenta (py, ..., p;)
outside the cones U:‘tj:l Vi;. We suppose that the limits (1.12) exist for the initial
distribution functions F%(0, xi, ..., x,), F,(0, xq, ..., x,) for (x{,...,%,) on arbitrary

compacts of admissible configurations.
In other words renormalized solutions of the BEBGKY hierarchy (1.6) tends in the
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Boltzmann — Grad limit to the solutions of the Boltzmann hierarchy (1.4) outside the
hyperplanes q;— q;=0, and hyperplanes with vectors p;— p; parallel to the vector
qi—qj, (,j)< (1,...,5). Note that all vectors p;—p; are parallel to vector q;—
—-gi=0, s22. -
For s=1 we have

lim (BA(t, x) — B(t, ) =

a—0
in the entire phase space of one particle. Note that in some papers it was made the
assertions that formulae (1.12) hold outside the hyperplanes g;—q; =0, (i,j)< (1,...

.., ). Itis arough mistake.

Thus, solutions of the Boltzmann hierarchy are the Boltzmann — Grad limit of the
solutions of the BBGKY hierarchy for hard spheres outside the above described
hyperplanes for s 22 and in the entire phase space for s="1.

Note that the term with &-functions was not obtained in (1.10) because the
Boltzmann — Grad limit was performed on the admissible configurations and outside
the above described hyperplanes where &-functions are different from zero. In the
next section we will show that solutions of the hierarchy (1.11) are the Boltzmann —
Grad limit of the solutions of the BBGKY hierarchy (1.6) in the entire phase space.
We will show that the hierarchy (1.11) is associated with the stochastic dynamics
introduced in series of papers [1-3] while the BBGKY hierarchy is associated with the
Hamiltonian dynamics of hard spheres. For this reason we will call the hierarchy
(1.11) as the stochastic Boltzmann hierarchy and hierarchy (1.4) as the Boltzmann

hierarchy.
II. Derivation of the stochastic Boltzmann hierarchy from the evolution

operator of the BBGKY hierarchy for hard spheres. 1. Solutions of the BBGKY
hierarchy for hard spheres. Consider the solutions of the BBGKY hierarchy (1.6)

represented by group of the evolution operators [4, 5]. Denote by F () the sequence
of distribution functions ;

Fﬂ(r) = (Fia(t’ xl)! UL F,'ra(r! (I),\')= “')r (I)&' = (xl: Wy :x.r)- (2-1)

The sequence FY( t} can be represented by the group of evolution operator U“(t) as
follows

Ft) = UYF©) = &% s¢ne 1 F0). (2.2)

The meaning of operators _faix, S8%(~t) can be found in [4, 5]. From (2.2) we obtain
the following expression for

F.::ﬂ(r’ (x).r) = 2 Z ( 1) k)1 jd(x)::—i-n ;I-i-n—k(_r’ (x).r-{»n—-k)ﬁin(o! (x).\’+.’l)’

s2 1, Ay, = digyy e dXyey @23)

Here Sg,,_x(=2 (X)y4n_k) is operator of evolutlon of s +n—k particles with
initial phase points (x)y4,_k-

The group U“(t) is strongly continuous bounded operator in the space L of direct
sum of integrable functions. The infinitesimal operator of the group U“(#) coincides
on some everywhere dense set Ly in L with the operator in the right-hand side of
hierarchy (1.6).

The group U“(¢) has also a meaning in the space Eg of sequcnceé of functions
bounded with respect to positions and exponentially decreasing with respect to squared
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momenta for finite interval of time and globally in time for sequences of locally
‘perturbed equilibrium states (for details see [4, 5]).

Now use the group property of U“(¢) and represent F(z+ At) through F*(z)
Ft+At) = UYADU(H)FU0) = U(AF(t). (2.4)

We will use the representation of the evolution operator U“(¢) via series of
iteration

-1
U4 (1) = 2 Ja’rl [ dty S0 E)AS (1) ... S, )AS (- 1,),  (2.5)
0

n=0
where the operator A is defined by the second term of the right-hand side of the
hierarchy (1.6) and the operator S9(—t) is direct sum of the evolution operators of s-
particle subsystem Sy (—t, (x);), s = 1. We restrict ourselves to t>0, At>0.

Consider an infinitesimal At and represent U“(At) by the following identical to
(2.5) expression

At
U“(At) = S*(-An)+ [ dus®(x— ADA“S®(-T). (2.6)
0

Substituting (2.6) into (2.4) we obtain
At

Fi(t+An) = S“(-ADFY )+ [ dus“(x — ANA“S* (- F(t) @.7)
: 0

or componentwise

Fo(t + At (x);) = S{(=At, (0),)F'(t, (x),) +

= jd«csam—m () )Z [ dn [ dpgiim - (p; = Peat)

i=1 Si

> [ .s+1( T, (l }s‘i-l) +I(t (x)-"+l)|‘!s+l Wﬁm

.9+1( T (x)a+1)ﬁa+1(r (x)r-t-l)lq,_,_, q;+r:n't] (2"8)‘
where (X)541 = (X[s s @is Prs e s Xgs Qogls Pes)) in term with number i.

2. The Boltzmann — Grad limit. Now multiply relation (2.9) by a*, use the
-renormalized functions

Bt (x),) = a¥FP( (%)), s 21

and tend diameter a to zero. This procedure is known as the Boltzmann — Grad Inmt
Taking into account that

lim Sf'(—At, (x);) = S,(—=At, (X)) (2.9)
a—30

where S;(—At, (x),) is the evolution operator corresponding to the stochastic
dynamics [1 — 3] and supposing existence of the Boltzmann — Grad limit '

lim F].“(r, (x)e) = F(t.(x)g) s21 (2.10)
a—0
we obtain from (2.8) the following relation in the entire phase space (x)
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F.r(t"'Arv (x):r) = :S&.(—Ar, (x)..;)ﬂ(f, (x)y) +
At 8 i
+ [ duSa-An @) X [ dn [ dpenin: (b= o) X
0 = Si :

X [SpaiCT () gs 1) For (8 (xj':ﬂ)lq.‘_”:g.rf +

#* S_,-+1(—T, (x).s-a—l)ﬁ.‘rﬂ(t» (x).rﬂ)lql,_'_]:(ﬁ] = Sx("é‘t’ (x).._.)F..‘.(t, (x)a') +

¥ At
+ Ez[,._,- dx.r-t»l _I- dt J dn:'a'+1n:'.r+1 '(p,-' = P.r+1)5('5':' —PiT— qs+1 + p.\r-i-l";) X
= 0 S.i

x [E\"{'l(r) di _plAr:pl: veey QF_PJT_P?(ar _t): P:: iy Q;;+1_P.g-+11—
— Pes1(At =), Pryy) = Fopi(t. a1 =PI AL PLa oo s Q= PiBE Py s Qo) —
Do 1AL per )] =S, (—AL W))F (8 (X)) + L, s 2 1. (2.11)

Obtaining the final expression for I; we replace the operators S, (T = At, (x),),
Sep1(—7T, ) si1)s Ssu1(=7, (x),41) of the stochastic evolution bythe corresponding: .
operators SO(T — At, (x),), S% (=T (5)gr1)s S (=7, (x),41) of the free.

evolution and neglect terms of higher order with respect to At. (see derivation of
formula (4.3)). It is obvious that we can also replace all these operators by unit :

At
operators under integral sign Io dr.
As known [1 — 3]

Se(=At ()Pt () = Fylts @1 =p1AL Py e gi=Pyo=

- P?(At" t)l P;‘*, FiEy Qj_PjT_P:(At_T): P}‘: ey Q.v-p.rAt,P_\-)

if g;—g;=(p;—pp)t, forsome 0< 1 <At and some pair (i,j)c (1,...,8), nj€.
e S, :

S.‘.(—AE, (x).\r)F.\‘(ts (x).r) = F_‘.(f, a,—P At, Ppeeadi—
—PpiAt, py ... @i = PjAL P ..., 45— PyALD)
if g;—g;# (pi—p;)t forall pairs (i,j)< (1,....s) and for all 0 <t <At and we

suppose that At is infinitesimal.
Denote by D_,, theset |J |J (g;-4q;=(p;—p;)t). Then the operator

(i,J) 0=T=At
S.(=At, (x),) is equalto S(—At,(x),) outside.of the set D_,,.

From (2.11) we see that the function F,(¢ + At, (x);) depends on the random:
vectors T created on the interval (t,z+At) for (x); cD_,, only through the term
S,(=At, (x),)F,(t, (x),), the second term I, does not depend on these random-
vectors.

3. The functional (F,(t + At), ;). Now define the functional (F,(t + At), ¢,)
that is the average of the observable ©,((x),) over the state F.(t+ At, (x);) with .
respect to the random vectors Mg, 1 < <j <s corresponding to.the stochastic
dynamics described by the operator S,(— A'r,'(x)_,) for infinitesimal. A¢. .In doing this
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‘we take into account the contribution from the set D_,,. According to the definition

[1 — 3], the functional (F,(t + At), ¢;) is equal to the two terms. One of them is
defined by the average with respect to the random vectors 1;; of integral over the set

D_,, with integrand
[ (=4, (x),) = S7(= A, (x))] Fy (8, (0),) 95 (x),).
The second one is defined by integral over the entire phase space of s-particle
system with integrand -
[ (=A%, (x),) Fy(t, (0),) + L1 9, ((6),):

Finally we obtain the functional
s At
(Fy(t+At), @) = Jd(x)J.{ >, [ax [ dnymy - (pi—p)d(g; — pre—g; + py0) %
i<j=1 o 52
X [Fx(tl Q]. _plAt}Plt seey Q;_Pf":_P:{&t = T)n Pf‘a seey Q’j_PjT_
- p}(At - T)) P}; seny q.\' _PJAI, P.r)_ Fx(rv ‘Ij - P Arvplv sery Q.-“‘P.-Af,

Pis -+ @5 —PjAL Py .o, 45— DAL Pg) 195 (%)) } +
+ [do,[80(=At (DNIEE (D)0, (%)) +

+ _[{ _[d(x).!+l _[dT _[ dn!\-i-lnu-}-l (P, p.r+1)8(.91 pPit— Qa+1+Ps+!T)x
o 2
X [Fypi(t, g1 ~p1AL Yy o @y=Pyv = pi (At = T), Pj s s Gg—PsAL Py,

—Pea1T— Pep1(At =), prig) = Fyp (8 gy —p1 At py, ..., g —piAL,

ds+1

Pis -+ s Ay — Pyt Pyy Qyp1— Py 1 AL Py D] ((x)y) } . (2.12)

From (2.12) we obtain
Fo(t+At, (x);) = SP(=At (x),)F (8 (x),) +

At
+ Ex‘, _[ dt J d‘ﬂ.{jﬂg : (Pf—Pj)S(qi —pt—g;t PJT) X
i<j=lo 52
x [Fy(t, g1 =P1AL Py, ..., gi=PiT~P{ (At =), P}, ..., =Py~
- Pj(At =), Pj, ..., @ —PyAL p) = Fy(t, a1 —P1AL Py -, i
Pis -+ » G —PiL, ..., gs— AL, p)] +

& At
+ Z de.\'ﬂ _[ dt _[ Mg Mig+1°(Pi — Pya1)(@; — PiT — Gl + Pys1™) X
i=1 0 52
X [Fy1(t, g1 =p1 At py, ..., gi— Pt — P (At =), P}, ..., ¢ —PyAL, Py,
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Q1= Ps+1T— Prapt (At =), piy1) = Fop1(t @1 =PI AL Py, ..., g;— piAt,
Ppoees gy PAI Pys Qe 1~ pr-{-lAr p.r-!-l)] (2 12’)

In the distribution functions (2.12") the averaging proccdure. is performed with
respect to the random vectors 1 in points ¢;—¢;=T(p;—p;) 0<T<At 1<i<j<
< s, where stochastic particles interact. We preserve for them the same denotation
F.,(E+Ar, x,) as for these defined by (2.11). In expression (2.12) the contributions
from the hyperplanes D_,, of lower dimension, where the stochastic particles interact,
are taken into account. Usually in statistical mechanics the hyperplanes of lower
dimension are neglected. We will show later (Section IV) that solutions of the
Boltzmann equation and hierarchy are expressed in terms of introduced above
distribution functions that takes into account the contributions from the hyperplanes
where the stochastic particles interact.

Note that the average of the observable @,((x),) overthe state F, (¢ + At, (x),)
(2.12') is equal to the following integral

(Fye+ A, @) = [ Fy(t+Az, (0),)0,(00),)d(x),

analogously to the usual statistical mechanics.
4. The stochastic Boltzmann hierarchy. It follows directly from (2.12) that. F(z,

(x),), s=1 satisfy the following equations in the weak form

(a}gff)!({)sj = J'd(x),\[ ZP: F(r &7 )J 0,((x),) +
i=] .

+ Jd(x).w{ > [ dyny - (ri-p)8(a; — 4) %
i<j=152

X {‘F,\'(r: ql:p].: e iy p?: reey Qj» p}k) weey 'g.\'a p.\‘)_

_'F',r(r» JraProeees s Piyeees QJ! Pj’ Rk q,\" p,\')] }(p.\.(():)&-)‘i'

+ | {2 [d@)ssr [ digaisar - (Pi=P)8(as = gya) X

=1 52

x [F:.'+l(r: g1 Prs-a i P:’k! e Gy Py Gy 1o p:+l)_

_F'.“+1(rl C][; P[a---:g;‘: pf}"-?q.\f‘ p.\’! q.“'l'jp.r-l—f)] }(P.l'((x).i‘)' 5 2 ]' (2'13)

It follows from (2.13) that

IF, (¢, (x), )

& 2 , F(z(;))ﬁu

+ z j dngmg; - (pi—p;)d(g; — 4;) X

i<j=l1 _s'_%

X [Fo 8 @1 Pyvsss s PR veeev G Py vso Qg P~
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—Fy(6, q1:P1s oo s Qs Pis s Gp Pjis o+ » 4o Ps)] +

¥
+ _[d(xlm J; Mg Mis+1 * (Pi— P (g — gya1) X
$2 :

i=1
* *
X [Fyp1(t @1 Prs s Qs Pisoves Do Py Gy Pra1) =

- .B‘-i-i(r! ql!pi)'--:qfrpf)---)g.vap_r) Q.!'+l P.!l'-'}-l)]I s 2 L (214‘)

The distribution functions (2.12") that satisfy (2.14) do not depend on any random
vectors, because the the infinitesimal operator in (2.14) does not depend on any random
vectors, they are averaged with respect to the all random vectors.

From (2.14) we derive equations for distribution functions that depend on the
random vectors M i 1<i,j<s. They are given by formula (2.11). We use for these

functions again the same denotation Fj(z, (x),). For arbitrary fixed n; we have

F(M(x),) _ = 3
=B le o E(t, (x);) +

+ Z o(n; - (Bi—pj)My - (Pi—pj)8(g; — q;) X

i<j=1
X [Fs(t! QIsplr ves :Q‘;‘: Pf’: sy 9’;- P}, sy q,\')ps)_
_F_r(t) qlupla seay th;’) wesy Qj-Pjs Y 9_5-, p_r)] +

+ 3 J.d(x)xﬂ f Mg+ Mig+1 - (Pr = Pra1)O(G; = Gg1) X

i=l 52
X [F_,-+1(f, g Prs - dps P?! v Gy Pys Gy s P:+l)_

= Fy1(6:91 P1s oo s Qs Pis o » D P> Gy Pa1) ] (2.15)
The last term in the right-hand side of (2.15) depends on the same random vectors
as ‘F,(t, (x),) because s+ 1-th particle can interact with the rest s particles only for
momenta p,,, of the set of lower dimension that does. not contribute to integral with
respect to py. . ;
Formulae (2.12), (2.12°) represent the exact expression of the semigroup of the
evolution operator U(At) associated with the stochastic Boltzmann hierarchy (2.14)

F(t+At) = U(At)F(1), (2.16)

where F () is the sequence of distribution function F(t, (x);), s = 1 and

Fy(t+At, (x)g) = (UADF (1)) o((x),)-
Semigroup U(t) with orbitrary ¢ is defined by formula

n n !
U) = lim gl U(At;), ;m,. =t (2.17)

Corresponding semigroup U (At) for hierarchy (2.15) is defined by formula (2.11).
For this semigroup formulae (2.16), (2.17) also hold.

OI. Equivalence of different forms of the stochastic Boltzmann hierarchy.
1. Different representations of the infinitesimal operator of the semigroup

S;(-t, (x)s). ‘We have obtained the stochastic Boltzmann hierarchy (2.15) in the weak
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aS,‘»("At, (x).':) F_;(f, (x),r) A ‘zv’ pi % ﬁ-(t; (x)&.) +
i=1 i

oAt asiB
+ 3, 0y - (pi—p)8(gi—g)IE( (003) — B ()], (3.5)
i<j=1

Substituting the last expression into hierarchy (3.1) we obtain the stochastic
Boltzmann hierarchy (1.11).
Note that we have the boundary condition in the Poisson bracket according to

which the momenta (p;, p;) should be replaced by (p. p;} if g;=g; and My (p;—

We stress that expressions (3.2) or (3.3) and (3.4) are identical in the following

BB 6| prra 5 given by Skpreasions
dAt At=0 ’

(3.2), (3.3), for calculation of functionals (averages) one should use expression (3.4).
Now we want to explain from physical point of view in what sense expressions

(3.2), (3.3) and (3.4) are identical. For this aim we consider the following simple

example. In the three-dimensional space we have a mass m distributed along the first

.axis with density m(g!), m= _[ m(q')dg'. The distribution m(g!) considered as in
the three-dimensional space is concentrated on the first axis
m(q) = m(q")|2=0,3=0. m(g) =0 if g2#0 or g>#0. (3.6
This distribution considered as the generalized function in three-dimensional space
is identical to the following function
m(g) = m(g")3(g*)8(¢%) X))
and corresponding mass is equal to

The functional of distribution (3.6) with test functions ¢(g) defined on the three-
dimensional space should be calculate with help the distribution (3.7) as follows

(m, ) = [ m(g"8(g)8(4*)9(a)dg = [ m(g') 9(g",0,0)dg".  (3.8)

Thus, numerically distribution of mass are given by expression (3.6), for calculation
of functionals one should use expression (3.7). In this sense expressions (3.6) and (3.7)
are identical.

In expressions (3.2) and (3.3) we have one-dimensional & function &(ty) =
S(q;l —q})(pil - pf)‘ As known one-dimensional &-function is equivalent to the
following boundary condition for ¢;=g;; M- (p;—p;)20.

sense. Namely, numerically

CE 0, X1 e Xy e Ky ooy 2= Fy(l Xy ey s P eees @ P eves X)s
Fo(t=0,2%1, vy Xy ven s Xy i 1 %)= Fp(l g, eoe s Xpyoie s Xy ooy X9 (3.9)
For g;=g;, nyj- (pj—p;)<0 wehave
F (t-0, (x);) = F,(t+0, (x),). (3.10)

2. Different forms of the stochastic Boltzmann hierarchy. Thus, the stochastic
Boltzmann hierarchy (1.11) is equivalent to the usual Boltzmann hierarchy (1.4)
without &-function
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sense from relation (2.12), (2.12"). Now we derive it by differentiating relation (2.11)
using point by point convergence and show that the stochastic Boltzmann hierarchy
(2.15) is equivalent to hierarchy (1.10) with boundary conditions in the Poisson bracket

and in the functions F(t, (x);).
We have

aF.‘\'(t: (x).r) - 38"\.(—Ar, (x).s')
dt d(AD)

Fy(t, (x),) +
Ar=0

+ 2 _[dxa'-l—l J i1 Migs1 * (Pi— Py41)0(q; — Gy41)
Sz
X[ s+1(5 @ P15 G P ooos Dyals Poal) =
=Fy (6 i Py o5 Qi Pis oo s st 15 P.\'-I-l)]' (3.1)

For the infinitesimal operator of the semigroup S,(— ¢, (x),) we obtained the
following expression [1]
asS,(—At, (x),) N 0
. A Rt (x = — . — F.(t, (x).) +
S B W) = = X g5 B ()

T E My - (= p)3(At—T) [Fi(t, (x)*)uF(r ) lgmg;» A2 =0, (B2)

i<j=1
xX)y = ®peees Gy Pj;u-:Qj:Pj,---:x_y)-

Consider the function 8(Af—1 i) |ar=0. In the coordinate system where the first
component of the vector (g;—g;) is directed along the vector 'q ij the time of collision

;j is defined as follows
QJ'I — Qj
P —pi

Tj =

The (i, j)th term in (3.2) can be expressed as follows
6(p! — pP(a} — a)) - (o} = PPLEE () = Bt D]l 2 g2 0, -2 =00

ny- (pi—p) = (bf = p))- &3

This term is different from zero on the first axis q} = q_:- (with respect to the vector
g;—gq;, i.e. for q? - q} =0, q? - q_? =0) and considered as a generalized function
in the three-dimensional space is equal to

6(p} — pH8(a} — a)8(al — a}(a} — a}) - (i — PRIE (003) = Byt (0),)] =
o(ny - (=PI —apmy - (= PPLEE (D) — K (0] (3.4

(For- analogous calculation see [6, p. 48].) Obtained expression does not depend on
‘choice of coordinate system because &(g;—g;) and M ;- (p; — p;) are invariant under

rotation.
Substituting expression (3.4) into (3.3) we obtain finally [1 — 3]
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t, (x),) +

F(t (%)) _ _ % i
ot El " 3g;

b
+ dewl J M1 Niga1 * (Pr=Ps+1)8(G; — Ggs1) X
i=| 2

X [Fra1 (8 %05 s @1 Pl s ove s Grals Posl) —

—~Fep (%) o0 @ Pis oo Geap Pse))y 521
but with the boundary conditions (3.9), (3.10) and the boundary conditions in the
Poisson bracket according to which for g;= qj> Mij- (pi—p;)2 0 the momenta (p;, pJ)
should be replaced by (p;, p J) in it.
The stochastic Boltzmann hierarchy with three-dimensional 8-function (1.11)

aF(f(x)) Z\‘ ,‘\.))+

+ Y, 6(n; - (pi—p)8(gi—g ) [F(t, (0)F) — Bt ()] +
i<j=1

+ 2 de.‘.-i-l J g1 M1 * (Pi— p\+1)5(9'1 Q1) X
=1 S‘*

* *
L1 0 %4 s By G Pt

—Fo (2 @ Py s Gsxp Pee)]s 8 21

has the same structure as the BBGKY hierarchy for smooth potentials, because the,
integral term is obtained from the infinitesimal operator with 8-functions, that describe
interaction of the stochastic particles, by integrating over x,,, and averaging with
respect to M ;.- We have, of course, the boundary conditions in the Poisson bracket

and for distribution functions. In the both form of the stochastic Boltzmann hierarchy
(1.4) and (1.11) we use different equivalent representation (3.2) and (3.5) of the

infinitesimal operator #, of the stochastic evolution operator S, (-1, (x),).
We can represent the stochastic Boltzmann hierarchies (1.4) and (1.11) in the
following form independent from representation of the operator H,:

IE(L (),)

S = IE (6 ();) +

+ z J s+ I d‘n:r+1ﬂn+1 (pa’ ps+l)8(QI = ‘L) %
S+
X [Fya1(t Xy -0 g P}k> vy Gpioty Pret )=
FoatliboXi ores i Divnesleits Pkl 22 1. @3.11)
IV. Boltzmann equation and its solutions in terms of the stochastic dynamics.
1. Iterations of the Boltzimann equation. In this section we show that the Boltzmann

equation and its solutions can be represented in terms of the stochastic dynamics and
functional associated with it. For the sake of simplicity, we start with solution of the
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Boltzmann equation (1.1) in the second approximation.
It is obvious that the Boltzmann equation (1.1) with-the initial data (1.2) can be
represented as.the following integral equation

t
Ftx) =0, q1—pit,p) + ePV0D [ dv [ dn [dpym- (py—ps) X

0o 2
X [f('l:: QI ] P?)f(ra 9'] » p;)_f(Ta q) ,Pl)f(T; QI’Pz)] (4'1)
The first approximation of solutions of (4.1) is equal to
FD(E x) = £(0, g —pyt, py). (4.2)

Substituting .(4.2) into (4.1) we obtain the second.approximation of solutions of
(4.1)

t
FAx) = £, qr-pit,p)+ [ dv [ dn [dpym- (p—pp)e?¥ 1 x
0o 2
x [£(0, g1 = pi T p{)F(0, g — P2 p3)—f(0, g1 — Py p1)f(0, g1 —pat, pp)] =
!
=10, q1—pitp)) + [ du [ dn [dpyn - (py—p2) [£(0, a1 —py (t-T)- pi%, PI)X
0o s ;
Xf(0, g1 —py(t=T)— p3T, p3) —f(0, g1 —p1t p1) (0, gy = paT—py(t=1), p3)] =
r _
= f(0.q-pit,p)+ [ dt [ dn [dpym-(p—py) X
o s
Xf(0,q;—pyT— pi (t=71), p{)F(0, gy —pyT— p3(t—1), p3)—
—f(0, g, —p1 6, p)f 0, g —p1T—pa(t—1T), p2)] =

t
= £(0,q1-p1tp)+ [ dt [ dn [dpydgrm - (p—py)8a; — pre— a2 + pav) X
0

5
x [£(0, q1¢-p1 = pi (=), P1)F(0. @3 =pat— p3(t=1T), p3)—
Now consider the two-particle stochastic system with initial distribution function
F3(0,x1, %) = F(0, x,)f(0, x3), _[dxf(O, x) =1 (4.4)

It is easy to see that the second approximation (4.3) can be identically represented
as follows

f(?‘)(f,x]) = FI(I‘,Il) = Jsg(—f, ):1,):2)}2;_(0, Xy, xZ)fixz +

1 .
+ [ duv [ dn [dpydg, - (p1—p2)8(a = piT— 42 + PaT) X
0o s

x [S?. (_ t, X1» x?.)FZ(_Os x|‘) Ig) 52 S?? (_ (3 xl: xg) F:-',(O’ xl ] xz)]) (4'5)
where F(t, x;) coincides with the one-particle distribution function of the given two-
particle stochastic system,
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Multiply the both sides of (4.5) by test function ¢ (x;) and integrate over the
variable x;. We obtain '

I Fl (t’xl){pl (xl)dxl. = _[ S?(.} (_r»xlaxz)Fz(oaxl!&)‘Pl(xl)dxldxz'l'

t
+ I dt _[ dn jdrl dxyN - (p1—P2)8(g — Pt — g3 + PyT) X
0 B

X [S5 (=1, 2y, %) F3 (0, x;, X3) — S5 (=2, X1, %) F5 (0, x;, %) 1 01 (x;) =

2 (S3(-F3(0), 92 @.6)

where (S;(—#)F,(0), @) is the functional [1 — 3] that represents the average of the
one-particle observable

@2(x1, X)) = Q1 (x) + @1(x2)
over the state Sy (— £, xy, X5) F5 (0, xq, x5).

Thus, we have shown that the second approximation of the solution of the
Boltzmann equation coincides with the one-particle distribrition function of the two
particle stochastic system with chaotic initial distribution function (4.4).

Note that in definition of the one-particle distribution function the contribution of
the two particle distribution function on the hyperplanes of lower dimension gy —p;T—
— g, + p,T=0 is taken into account. Usually in statistical mechanics the sets of lower
dimension are neglected.

Now proceed to general case.
Introduce the following function

fta-ptnp) = f(wanp), f(Tg,p) = 6“‘1”%1)?(’5:41”91),
Ftgi,p) = e"Vf(1, g0, p1) = F(T, g, + 1T py) @7
and represent equation (4.1) as follows
s
ftai—pitpy) = f(tx) = f(0, g1 —pit, 1) + _[ dr I ann-(pr—p2) X
! 0 & ]
x[F(tai—pi(t=v)= pi % pi) F (g —p (2=1)-

-3t p3)— F (g —pytpy) F (T gy —pat—pi(£=1), py)] =

!
=f(0,q,—pit,p)) + J dt _[ dnm-(p,—pa) X
0

$2
x [ F(t=-1 q1-pyv=pi (t=7), p) F(1=T, 1~ P17~

— Py(t=1), p3) - F (=1, g —pit.p)) F(t=T, @1 =2 (=B =P 1T, p2)] =

'S
=0, g —pitp)+ | &t f dn [ dp, dgyM - (py—p2)8(g; — PyT — g2 + P2 X
0 .

st
X [ jé(r‘_"c: QI'—PIT_ Pr(r_":)- pr) .}é(t—‘T) Go— P2 T—
= p3(t=7), p3)— F(t=T,q1=p1t,p1) F (1=, ga—pat, pa)] =
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¢
=f(0, g —pitp)+ _[ dt _f dan jdpz dgaM - (p1=P2)8(q1 = P1T— g2 + PaT) X
0 52

X [ Sy (=1 x1, %) Jﬁr(f—"ﬂ: g1, P1) f(r—*c, g2, P2) } —

— 80 (~t, xp, x){ (=7 q1.p1) F(t=7. a5, P2) } ). (4.8)

We represent the Boltzmann equation in terms of the operator of evolution of two
stochastic particles. In a weak form we have

If(x, q1=P15P1)91(41, 1) dg dpy =

= [ {83 (=21, %)f(0, g1, P1)F(O, g3, P2) } ) (x) vy dxy +

t
+ j dt f anmn: (p;—p2)8(g; — pit — g + paT) X
’ .

5
X [ Sa(=t,x, x){ F (2=, x)f(t—T. ) } -
— 82 (=1, x1, x){ F (2=, %)) f(t =7, %) } @1 (x;) dx; dy. (4.9)

Note that in (4.8), (4.9) the functions S, (-7, x|, x3) j?(t -T,q1,P1) Flt-m, gs,

po) and SY(~txy, %) F(t=7 g1, p)f(t=7,q;,p,) are integrated over the
hyperplane g, —p; —g3 + p2t=0, 0<1t <t From (4.8) we obtain the representation

of the n-th approximation of solution f(" (¢, x|) through the n — 1-th approximation

O x) = FP (g -pitpy) = FO, g1 -pitp) +

t
+ _[ dt _[ dn jdpz dgam - (p1—p2)d(q — Pt — @2 + poT) X
0 g2
Z(n=1) ' %y Fn-D) :
x[ -t q=p1t—p (1=} p) O (t—T, ga—pat—

—p3(t=7), p3)— FO N (t—1,q—pit.p) FO V(1= g pati p3)] =

I
= £, g =pit,py) + [ du [ dn [dpydgym - (p1=pp)8(gy — Pt = a3 + P2T) X
0

s
X [Sy(=t,x, )L F* V(-7 01, 01) F* V(-7 22 P2) } -
=8 (tx,x){ F" (-7 1, p) F* (-1 02 P 3] (4.10)

From (4.10) we see that every n-th approximation takes into account one new
collision according to 8-function 8(g, —p| — g5 + p5T). The previous collisions were

taken into account by F 1,
2. Iterations of the Boltzmann hierarchies. Solutions of the Boltzmann hierarchy
(1.4) can be represented by series of iterations

oo =1

14
Fity= Y, [dy.. [ dt,S"08°(0)ASO(-1) ... S°(t,)AS° (—1,)F(0), (4.11)
0 0

n=0

-where c;’pel'ator A 1is defined by the second term of the right-hand side of (1.4) and
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So(t) is direct sum of the evolution operators Sf(t, (x);) of the free systems. We
consider intial data F(0) such that series (4.11) is convergent [5].

Projection of (4.11) onto s-particle space is equal to s-particle distribution
function

ea |
Fy(t, (x),) = 20 | an
| &

X [ digat Misat - 1 = L) (821 (=11 1) = 821 (=1, ()] .
s3

r

J dty S)(=1, (0))S; Up(x)r)z | dxy118(a; = gg41) X

y+n—1

r+n+1( —1: (x).v-l-_nul) zi _[ fb".ﬁn 5(@',- - g.r-l-u) X
=

- X J. dnm +1 nu—t-n. (p: p\+:l)[S'.+n( n (x):-}—n) - ‘SY.!?HR(—I.'I’ (x).l'+11)]ﬁ+n(0’ (x).\'-l-n)'
53

(4.12)

From representation (4.12) it is easy to see that integral with respect to xy44, ...

.» Xy4n 18 taken over the hypersurfaces of lower dimension than phase space
(X541 -+ » Xe4n). Really, initial positions of i-th and s + j-th particles (1 £j <n, 1<
S;Ss +j—1) coincide g;=g,; and after action of the operators .S'f_{_j(—tj, (x):+j),
Sy+j(—tj; (x)54;) positions of these particles are situated on hyperplanes of lower

dimension such that vector of difference of their positions are parallel to the vector of
difference of their momenta.
Analogical result holds for the stochactic Boltzmann hierarchy (1.11). Its so]utxons

are also represented by series (4.11), (4.12) but instead of the operator Sﬂ(r) one
should put the operator S(t) of the stochactic evolution. Results of action of the

operators of stochactic evolution S, J( s srjds Serjth (D J) differ of that of

the operators of free evolution &.ﬂ-(—r-, (x)HJ-), H_J( i» (¥)g4;) only on
hyperplanes of lower dimension with respect to p;4; and we neglcd this difference in
intervals with respect to p;.4; (integration with respect to gy.; “is performed by using
&-function).
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