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APPROXIMATION OF GENERAL ZERO-RANGE POTENTIALS

AIIPOKCHMAIIA 3ATAJIbHHUX IIOTEHIITAJIIB
HYJIBOBOI'O PAOLYCA

A norm resolvent convergence result is proved for approximations of general Schridinger operators with
zero-range potentials. An approximation of the 8’-interaction by non-local non-Hermitian potentials
(without a renormalization of the coupling constant) is also constructed.

HasepeHo pesysIsTaTH Npo ANpOKCHMaLiiio 3aransHux oneparopis Illpeninrepa 3 noTeHmiagoM HyJIb0-
BOro pafiyca B ceHci pe3osbBeHTHOI 361k HOCTI 3a HopMoto. [To6ynoBaHo ampokceEManio & -p3aemopil
3a JIONIOMOr'010 HEeJIOKAJILHHX HeepMiTOBHX noTeHUiamie (Ge3 nepeHOpMyBaHHS KOHCTAHTH B3aeMOIIL).

1. Introduction. Zero-range potentials play an important role in solvable models of
quantum mechanics [1]. Schrddinger operators with zero-range potentials are self-
adjoint extensions of the free operator —A defined on the set Cpy’ ([R" \ {0 }) In the
one-dimensional case, extensions form a four parameter family of operators [1 —5].
The case of a &-potential has been well studied. The case of &’-potentials has also
been considered in some papers [1, 6, 7]. In particular, there were studies on
approximation (in the strong resp. norm resolvent sense) of Schrédinger operators with
a zero-range potential using regular potentials [1, 4, 6, 8, 9]. In [10] new results were

obtained concerning the possibility of approximating a 8 “-interaction (and a general
zero-range interaction) with a triple 8-functions that have appropriate strengths and
approach each other. In this article we give a more general construction of

approximations of &’-interaction and general zero-range interaction.
2. Zero-range potentials. A one-dimensional Schrédinger operator corresponding
to a zero-range potential at the point x =0 can be given by the following expression:

2
Loy i3) = =25 + 08(a e (0) +BE (0 g (0) +

+ YO(X) 1eg(0) — T8/ (X)treg (0)- (€
Here o.= ®, B = P, and 7 are given numbers, 8(x) and &’(x) are the Dirac 3-
function and its derivative (with support at 0), %.,(0) = %{u(—i—ﬂ)-{—u(—{))],

W reg(0) = %[ ' (+0)+u/(—0)] are regularized values of the function u(x) and its

o . & . . o
derivative at the point x =0, the operator F is understood in the distribution sense.
X

Expression (1) defines an operator with the domain
W3 (o0, 0) @ W5 (0, +20) C Ly( =0, +e2)..

The values of L, g ;% belong to the space H_ which is the direct sum of the space

L, and a two-dimensional space containing 8(x) and &(x).
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APPROXIMATION OF GENERAL ZERO-RANGE POTENTIALS 583

Expression (1) defines a self-adjoint operator Ly g in the space L, with the
domain consisting of all u such that L g 4 € Ly. The operator L, . acts on.
these functions as pure differentiation for x#0, L g ,#(x) =-u"(x).

Note that the domain of the self-adjoint operator L g ., can be described in terms

of boundary conditions at the point x = 0. These conditions can be obtained from (1)
by using rules for generalized differentiation of piecewise discontinuous functions,

u(+0) — u(-0) = pu’ reg(o) = 'Yureg(o)=

2
W (+0) — w(—0) = 0w e (0) + YU 165(0). @
These conditions can also be written as
1+% —% (H(m)) 1—% g [u(—O)] &
S8 g D) & 1+ Y\ 0
2 2 2
We remark that (3) is the general form of self-adjoint conditions at the point O for the

2
operator ~= in the space L, (—o, +20).
X

In the particular case where {3 == 0, the boundary conditions (3) are reduced to
the form

u(+0) = u(=0) = 16g(0),
@
W(+0) — w'(=0) = oure(0),
and correspond to a 3-interaction at the point x =0 with coupling constant o.
In the case where a =7y =0, the boundary conditions (3) become
W(+0) = ¥ (-0) = u;eg(o))
®)

u(+0) — u(=0) = Pureg(0),

and correspond to a &’-interaction at the point x = 0 with coupling constant
(,strength™) B.
Together with the operator L g . with zero-range potential, we consider a

2
sequence of Schrodinger operator: -—;;2—+ V,(x) with usual absolutely integrable
potentials V,(x) having compact support such that the supports shrink to the point x =

Definition 1. We say that a sequence of regular potentials V,(x) approximates
2
a zero-range potential with characteristics (o, B, v) if —;’ 7+ Va(x) = Loy

in the norm resolvent sense, i. e.

2 -1 .
[_;iz + V- kz) ~(Lopy — #) 1

(where ||| is the operator norm in Lo(—ee, oo)).
Let V,(x) be a sequence which approximates a (o, f, Y)-zero range potential.

Then for any u e !D( Q,B,T) there exists a sequence u, —%2 5 4 such that

=0 ©
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dz PVZ—Z d?.
‘——Zuﬂ B —E u,

Vi tty —s ()i, (0) + BE (I (0) + () — T& @ (), (D)

42 ”
[—? + T/;Jun = LG.,ﬁ,Tu =-u (x) (x # 0)
1
It is well known that if V,(x) , 08(x) for n—> oo, then the sequence V,(x)
approximates a 8-potential with coupling constant o.. In particular, xf o(x)eCy and

I ¢@(x)dx =1, then we can take V,(x) tobe o n@(nx).

To construct a sequence of regular potentials that approximates a &’-potential, let
us consider some auxiliary notions.

3. Oscillatory potentials.

Definition 2. We say that a locally integrable function V(x) is purely
oscillatory on an interval [a, b] if the Cauchy data for solutions of the equation

="(®) + V(@)y() = 0 ®)

on the interval [a, b) satisfy the coinditions

y(b) 1 b—a+®)\(y)
N
y®) 0 1 (@
The number w = w[V;[a,b]] is called oscillatory characteristic of the function

Vi(x) on the interval [a, b].
Example 1. Consider a three step function

]x1§a,
,  Va=1W a+l<|x|<b, (10)
0, other x.

If V1>0 and V, <0, the condition for the function Vj; to be purely oscillatory is
|V3 "2 tank, — |V [/*tanhky + 1|V;V5[/* tanh & tank, = 0, (11)

where k; = |V;['2a, ky= |V [*(b-a-1).
Here the oscillatory characteristic of the function V), is determined from the
formula

inh 2k;

= 1/2 -—-1!25
W{Va] = (W25 2 S

(1172 tanh &y + V5| ™/? tank, + 1) — 2b. (12)

‘We can pass to the case of V; <0 and V, >0 by replacing tanhk; by —tank; in
formula (11) and hyperbolic functions by corresponding trigonometric ones in
formula (12).

Property 1. If a purely oscillatory function V(x) on an interval [a, b] is
extended with the zero value outside of [a, b], then the resulting function V(x) is
purely oscillatory on any interval [a’,b’]>[a, b], and the oscillatory characteristic is
preserved,
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W V[, b']] = w[V;[a b]].

This identity allows to regard purely oscillatory functions as compactly supported
functions defined on the whole axis. The oscillatory characteristic of a function with
compact support will be denoted by w([V]. Regardless the fact that purely oscillatory
functions do not form a linear space, some of them can still be added. More precisely,
we have the following Properties, which are easily proved.

Property 2. If the supports of two compactly supported purely oscillatory
functions V; and V, belong to nonintersecting intervals, the sum V; + V,, is a purely
oscillatory function, and

MV+%] = wW]+ K]

Property 3. If V(x) is a purely oscillatory function on intervals [a, b] and [aq,
¢], where b <c, then V(x) is a purely oscillatory function on the interval [b, c¢], and

wVi[b,cl] = w[V;[a,c] - w[V;[ab]].

Definition 3. Let V(x) be a purely oscillatory function with compact support.
We say that the function V(x) admits a purely oscillatory restriction to the interval
[a, b], if V(x) is purely oscillatory on the intervals (—ce, a), (b, +e), and,
hence, on the interval [a, b].

Since the oscillatory characteristic is an additive function of intervals on which the
function admits a purely oscillatory restriction, one can introduce a local density of
oscillatory characteristic.

Definition 4. Let V(x) be a purely oscillatory function with compact support.
The function w(x) = w(x; V) is called density of the oscillatory characteristic w of
the function V(x), if for any interval [a, b] on which V(x) admits a purely
oscillatory restriction,

b

wVilab]] = [ ol V)dx. (13)

a

Lemma 1. Let V(x) be an absolutely integrable purely oscillatory function with
compact support. Then its oscillatory characteristic admits a density ®(x; V)

Proof. Consider a minimal algebra S of subsets containing all intervals [a, b)
on which V(x) admits an oscillatory restriction. The values of the oscillatory
characteristic w[V;[a, b]] on intervals [a, b) € S define an additive set function on
S. Since for small intervals one has |w(Vi[a,b])|<c(b—a)? this function is
absolutely continuous with respect to the Lebesgue measure. By the Radon — Nikodym
theorem, there exists a unique function ®(x)€ Lj(—co, +o;5;dx) such that (13)
holds, i.e. @(x) is the density of the oscillatory characteristic, ®(x) = ®(x; V).

Very important is how the oscillatory character:stm depends on the scaling
properties of the function.

Lemma 2. Let V(x) be a purely oscillatory function with compact support, and
let ® (x; V) be the density of the oscillatory characteristic. Then the function

Ve(x)=e"2V(x/e) is also a purely oscillatory function, and
' o(x; Vz) = o(x/e, V). (14)

Proof. If x isreplaced with x/e in equation (8), then we get

MOETCIOR
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Hence, if V(x) is purely oscillatory on the interval [a, b], then V,(x) = _j:z_v[fj is
g” \g

purely oscillatory on the interval [ae, be]. We also have that w[ V;[ae, be]] =
=ew[V;[a b]]. Formula (14) now follows from (13) as seen from the change of
variables in the integral,

b be
W Ves [ag, be]] = ew[Vi[a,b]] = ef ox, V)dx = f“’[f”’)"’"'

ag

4. Approximation of &’-interaction. We will be considering a Schrédinger
operator L = —;—;+ Vu(x), where the real valued regular potential V has a
sufficiently small support, supp V < [~¢, €], € > 0. Suppose that the relations for the
Cauchy data are defined for the equation [—fxiz- + I’;l(x):ry =0 at the points x = —¢

. o Py
and x=¢€ by a matrix M = :
1 8

y(+e) o By »-®
( : ] B ( g : (15)
Y'(+e) Y1 S \Y(-#)
One can expect that, for small €, the resolvent of the operator £, will be close in

norm to the resolvent of a Schrédinger operator with point interaction at the point x =0
given by the boundary conditions at the point x =0 in terms of the matrix M:

YHEOY (o By 2-0)
y'(+0) 11 8 J)\Y'(=0)
In particular, one can expect that a sequence of purely oscillatory potentials ¥, (x)
such that the corresponding sequence of densities of oscillatory characteristics
@(x, V,(x)) converges to the Dirac §-function as n — co will approximate a 8-
interaction. To formulate and prove a precise statement, we will need the following
notion.

Definition 5. We will say that a family R of locally integrable potentials V(x)
is uniformly regular if there exists a constant C such that, for any solution of the
equation —y"' +V(x)y —kzyz 0 (lkzlél) with a potential Ve N, the
following estimate holds:

b
[P < dy@F +Hy@F )P + Y®PF]L a7

The potentials considered in Example 1 for different values of the parameters V;
and V, form uniformly regular families of potentials. This can be easily seen, since

the solution y can be written in an explicit way. Note that these families contain
purely oscillating potentials with arbitrarily large values of oscillatory characteristic.

Let us now formulate the main result.
Theorem 1. Let a uniformly regular family of purely oscillatory potentials

V(x;E), >0, be given, and assume that th supports of the potentials lie in the
€
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APPROXIMATION OF GENERAL ZERO-RANGE POTENTIALS 587

finite interval [~1, 1] and that the oscillatory characteristic eguals g, where B =

)2

1 ; p
Then the sequence of scaled potentials Vg(x) = E—ZV( S E] approximates a d’-

interaction at the point x =0 with coupling constant B as € — 0.

= B is a fixed number,

Proof. The resolvent of the operator £, = —;fd—f + V,(x) and the resolvent of the
X

operator Lggaqo With &’-interaction that has coupling constant B are integral
operators, the kernels of which are the corresponding Green's functions, which can be
given in the form

1N {y'l(x)y?.(x)’ X<y, (18)

G(x,y: k) = =
Wn0a&),  x>y.
Here y;(x) and y,(x) are independent solutions of the equation
=Y+ Ve(x)y; — Ky = 0

in the case of the operator £, and solutions of the equation — y; - k*9; = 0 subject
to boundary conditions (5) at the point x = 0 in the case of a Schrédinger operator
with &’-interaction. The number W in (18) is the Wronskian of the corresponding

solutions. Without loss of generality, we can assume that y;(x) = j(x) = g

(Fhk>0) for x<—¢, and y,(x) = J(x) = e** for x> e. By using the conditions of
the theorem one can show that y,(x) and J,(x) sufficiently close for x > &, the

same is true for y,(x) and j,(x) for x <—e. Moreover, E:] yi(x)Pdx <Ce, i=

=1, 2, for some constant C > 0. This leads to the estimate for the resolvents:

6o G s

The proof follows from this inequality by making & approach 0.

Remark. The condition of local integrability for purely oscillatory potentials in
Theorem 1 can be weakened: An important example is the potential in the form of the
sum of three Dirac 6-functions,

L2
P
considered in [10] and approximating a &’-interaction (as € — 0).

The sequence of potentials (19) approximates a § "-interaction at the point x =0 in
the sense of Definition 1 with the coupling constant  for e > 0. It is easy to check
this directly, since the resolvent of a one-dimensional Schrédinger operator with
potential (19), as it is the case for the resolvent of the Schrodinger operator with a 8-
interaction, has a simple explicit form [1].

We also remark that potentials (19) satisfy condition (9) for a purely oscillatory
function with a <—¢, b>e.

5. Approximation of &’-interactions with nonlocal potentials. Consider a free
Schrédinger operator perturbed by a one-dimensional operator,

-1
Vi, e(x) = E%—B(x} - é[l } (8(x + &) + 8(x — g)), 19
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d*u
Lu(x) = gre V1(x)(®, V). (20)

If the perturbation is self-adjoint, i. e. V, =—BV;, B= B is a real number, then there
exists a sequence V,(x)— &’(x) and a sequence of real numbers B,— 0 such that

2
the sequence of operators L = m% —B,V,(:; V,) converges in the strong resolvent
X

sense to a Schrédinger operator with &’-interaction [1, 3].

If the one-dimensional perturbation is not self-adjoint, then we can get rid of the
renormalization condition imposed on the coupling constant, B, — 0, in the same way
as it has been done in [11] for a interaction in the three-dimensional space.

3 -2
Theorem 2. Let two sequences of regular potentials V;E-’ )(x) —1g &8(x) for
n—ee, j=1,2, andlet supp V,,“) lie to the left of supp V,,(z). Then the seguence
of Schradinger operators L,
Lau = _? - BV (x)(u, VE?) (1)
converges in the strong resolvent sense to a Schrédinger operator with & '-

interaction at the point x =0 with density B.
Proof. The resolvent of the operator L, can be represented in the form

(camF)1 = Rat - B1- R UO) R V(RS WD), @

2 -1
where R ; = [—f—z- ~ k2 J is the resolvent of the free operator which is an integral
. x
operator with the kernel G(x, y; k)=— ‘Hx sl k> 0.
Consider the expression
T, = (RO, V) jj k2 =31y () V@ (x) dx dy. (23)

Since supp 1/;1(1) < supp 1,;:(2) and V,fj)(x) — 8’(x), we have that

Iy= o [ DY) VP x)dxdy

I

ik

‘[ o= V(Z)(x)dx f e vD(y)dy » = 3

2k

Because RkV}i)ﬁ_)—%signxeikl"f, we have, due to (22), that (L,,—kz)"1
converges, relatively to the operator norm, to an integral operator with the kernel
i 1 ik(x|+|yD
Gplx, y; k) = — ’klx 4 -——E—-—51 xsignye ru, 24
B(% y; K) T ikp/2 45 Enxsigny (24)

This kernel is a Green’s function for the Schrédinger operator with &’-interaction with
coupling constant B [1].

Example 2. As an example of functions V;‘U)(x), j =1, 2, satisfying the
conditions of Theorem 2, we can take the following:

ISSN 0041-6053. Ykp. mam. xypH., 2000, m. 52, N* 5



APPROXIMATION OF GENERAL ZERO-RANGE POTENTIALS 589

n?, . <x<0,
i
VD(x) = 1-n%, 0<x< =
0 other x.

?

V(%) = V,,m(x—g}
n

In this case, J, from condition (23) can be explicitly calculated,

as

10.

11.

.4 5
_inT e e\t ik
To= =) =3
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