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SPECTRUM AND STATES OF BCS HAMILTONIAN
IN FINITE DOMAIN. I. SPECTRUM

CIIEKTP TA CTAHHU I'AMIJIbTOHIAHA BKIII
B CKIHYEHHIM OBJIACTIL. I. CHEKTP

The BCS Hamiltonian in a finite cube with periodic boundary condition is considered. The special sub-
space of pairs of particles with opposite momenta and spin is introduced. It is proved that, in this sub-
space, the spectrum of the BCS Hamiltonian is defined exactly for one pair, and for n pairs the spec-
trum is defined through the eigenvalues of one pair and a term that tends to zero as the volume of the
cube tends to infinity. On the subspace of pairs, the BCS Hamiltonian can be represented as a sum of
two operators. One of them describes the spectra of noninteracting pairs and the other one describes the
interaction between pairs that tends to zero as the volume of the cube tends to infinity. It is proved that,
on the subspace of pairs, as the volume of the cube tends to infinity, the BCS Hamiltonian tends to the
approximating Hamiltonian, which is a quadratic form with respect to the operators of creation and an-
nihilation.

Posrnsauyro ramineronian BKIII B ckinyeRHOMY Ky6i NpH nepiofMyHuX rpaHHYHEX yMoBax., BeeneHo
crieianbHEH MiANPOCTIp Nap YacTOK 3 MPOTHJIEXKHUMH iMIyJibcaMH i cminoM. JloBeneHo, IO B LbOMY
nipnpocTopi cnekTp raminbToniaHa BKIII Bu3sHavaeThC A TOYHO AJ1A OOHIEl napH, a y BHNAOKy n map
— 4epes BJIACHI 3HAYEHHA OAHiel NapH 3 TOUHICTIO 0 YJeHa, 110 NpAMYE 0 HyJId, Koau 06’eM KyGa
npsimye o HeckindenHocti. Ha nigmpoctopi nap raminsTonian BKII Moxke 6yTH 306paXieHHN AK
cyma fBox onepaTopis, OAMH 3 HMX OIMCYE CNeKTp HEB3aeMOMII0YHX nap, a Apyruil — B3aeMofIiio Mix
napamH, IO NPAMYE X0 HYJIA, Ko o6’eM Kyba ipAMye o HecKingeHHocTi, [loBemeHo, 10 Ha MiANpo-
cTopi nap, KoJTH 06’em KyGa npaAMye 10 HeckinvennocTi, raminsronian BKII npamye fo anpoKcuMy-
1040ro ramiJIbTOHiaHa, 10 € KBaJpaTH4HOI hopMOI0 BiJHOCHO ONMEpaTOpiB HAPOAJKEHHSA T4 3HH-
LIEHHA,

Introduction. Bogolyubov model Hamiltonian of superfluidity [1] and Bardeen —
Cooper — Schrieffer model Hamiltonian of superconductivity [2] constantly attract at-
tention of researcher during last fifty years. This is, on the one hand, due to the
importance of the superfluidity and superconductivity phenomena they describe and, on
the other hand, because of the fact that they admit exact solutions in the sense that their

- states can be exactly calculated in the thermodynamic limit. The latter is especially
attractive from the viewpoint of mathematical physics because exactly solvable models
with nontrivial interaction are very rare.

The problem of rigorous proof of exact solvability of these models in the thermo-
dynamic limit has a long intriguing history and has not been solved completely so far.
In his pioneering work on the theory of superfluidity [1], Bogolyubov gave several rea-
sons why his model Hamiltonian can appear to be exactly solvable. He indicated that
the operators of creation and annihilation of bosons with zero momenta in the thermo-
dynamic limit commute with the whole algebra of observables and, therefore, they are
multiples of the identity operator; in other words, they are c-numbers. The model
Hamiltonian obtained after the replacement of such operators by c-numbers is called
an approximating Hamiltonian. It can be reduced to quadratic forms, diagonalized with
a u-v-transformation, and then exactly solved.

As to the BCS model Hamiltonian, Bardeen, Cooper, and Schrieffer [2] indicated
that their solution, obtained by a variation method, is exact in the thermodynamic limit.
Bogolyubov, Zubarev and Tserkovnikov [3] showed (within the framework of pertur-
bation theory) that, in the thermodynamic limit, the BGS model Hamiltonian is equiv-
alent to a certain approximating Hamiltonian obtained from the model one by the re-
placement of certain operator expressions by c-numbers and is a quadratic form with
respect to the operators of creation and annihilation. (The equivalence of two Hamil-
tonians is understood as the coincidence of their states in the thermodynamic limit.)
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This approximating Hamiltonian can be diagonalized, which gives exact expressions
for its spectrum and states.

The equivalence of the model and approximating Hamiltonians (under nonzero
temperature) was proved in the series of works by N. N. Bogolyubov [4] and
N. N. Bogolyubov (Jr.) [5, 6] with the use of an equation for Green functions and
certain very accurate estimates.

Haag [7] found out that the approximating Hamiltonian that corresponds to the BCS
model can be obtained from the model one with the use of the fact that certain operator
expressions commute in the thermodynamic limit with the algebra of all observables,
and, thus, they are c-numbers.

For a simplified BCS Hamiltonian with spin operators instead of fermion ones,
Thirring [8] rigorously calculated the states in the thermodynamic limit and showed
that they coincide with the states of the corresponding approximating Hamiltonian.

Petrina [9, 10] suggested to consider the BCS Hamiltonian and the equation of
states in the spaces of translation-invariant functions and thus established the
equivalence of the model and approximating Hamiltonians in the thermodynamic limit.
An analogous result was also obtained for the Bogolyubov superfluidity
Hamiltonian [11].

At present, there are numerous works dealing with the models of superfluidity and
superconductivity (we refer readers to [5, 6, 12] for references), but in none of them
one can find the traditional scheme of quantum statistical mechanics: the calculation of
spectrum and averages and subsequent thermodynamic limit transition. The only
exception is the N, N. Bogolyubov’s work [4] on the ground state in the BCS model.

This approach seemed to be pointless because these Hamiltonians are polynomials
of the fourth degree in the operators of creation and annihilation and, seemingly, are as
complex as the general Hamiltonians.

The hope of success appeared only after it was discovered that the model super-
fluidity and superconductivity Hamiltonians have invariant subspaces of the general
Fock space, namely, the subspaces of pairs and condensate and subspaces of pairs, re-
spectively [12].

We begin a series of papers, in which we investigate the spectra of the BCS and
Bogolyubov Hamiltonians in the subspaces indicated above and, on this basis, we in-
vestigate the corresponding states in the thermodynamic limit and prove the thermody-
namic equivalence of these Hamiltonians and their approximating Hamiltonians.

In the first paper of this series, we investigate the spectra of the BCS Hamiltonian.

It is established that, in these subspaces of pairs, the spectrum of the BCS Hamil-
tonian can be exactly obtained in the following sense: There is some basic Hamilton-
ian that describes only the interaction of two particles, which constitute a pair (“pair”
Hamiltonian), and its spectrum can be exactly determined from a certain algebraic
equation, The general BCS Hamiltonian is the sum of the Hamiltonian indicated,
which leads to the creation of pairs, and the Hamiltonian that describes the interaction

of pairs, the norm of which is proportional to 1/ v''2, where V is the volume of the

system. This implies that the spectrum of the general BCS Hamiltonian is a small per-
turbation of the spectrum of the “pair” Hamiltonian, and this perturbation tends to zero

as a certain power of 1/ e

1t is proved that, on the subspace of pairs, as the volume of the cube tends to infin-
ity, the BCS Hamiltonian tends to an approximating Hamiltonian, which is a quadratic
form with respect to the operators of creation and annihilation and which coincides
with the first part of the BCS Hamiltonian, which describes the creation of pairs.

In the second part of this work, the excited eigenvectors will be introduced, the
spectra of the BCS Hamiltonian on the excited eigenvectors will be investigated, and
the states with certain temperature and density will be investigated in the thermody-
namic limit.
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This article have been completed during my stay at ESI in November, 1998 as a
guest of the Austrian Academy of Sciences. I would like to express my gratitude to
Prof. W. Thirring for the invitation and stimulating discussions.

1. Fock space of systems of fermions. I. General Fock space. Consider a

system of fermions with spin s = (1/2,—1/2) enclosed in a cube A in the three-
dimensional Euclidean space E with periodic boundary conditions. Denote by L the
length of the edge of the cube A centered at the origin. Denote by & the quasidiscrete

momenta that take the values k= (2n/L)n, n = (ny, ny, n3), where the numbers n;,
i=1, 2,3, run through the entire set of integer numbers Z. Let k = (k,s) be the
vector of momentum k and spin 1/2 or —1/2.

Denote by ¥, the Hilbert space of functions fn(El yeees k) =F((k),) thatde-

pend on vectors ki, ..., k, with the norm

1/2
Mm={2jmhﬂaﬂ o @)
FEppeenrliy
and scalar product

(for &) = . Ek fn(;’l:"':En)gn(Els”wEn)' (1.2)

For our fermion system, we need the subspace %9 of antisymmetric functions
[k, k,) with the same norm (1.1) and scalar product (1.2).
We introduce the direct sum of the spaces ¥,

- Yo, (1.3)
n=0

with obvious norm and scalar product. Note that ¢, consists of complex numbers f.
The sequences = ( fy, fi(ky)s .- 5 [y (kgs-eus kyy), ... ) of functions belonging to ¥,
with finite norm in € are elements of €7 .

Denote by a;, and aj the operators of annihilation and creation, respectively.
They satisfy the anticommutation relations

el = s
{aE, a;c-,} = 81?,!?" {a—, af,} = 0, {ak, agp =0 (1.4)
and the conditions of adjointness
(&r",?)’k = af , (a}'{) = ag. (1.5)
As is known, the operators a; and a%' are bounded in %¥ i

We define the following state through a sequence fe ¢, the vacaum |0) =
=(1,0,...), and creation operators (for simplicity, we use the same notation f for it):

f= 3 3 . Rat...qf 10) =

n=0 ...k, é
= D X o Bg - 10) @)
where
Fiaenle) = D" £, . K ), .7
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I1, ..+ , by 1S an arbitrary permutation of the numbers 1,...,7, and 1 is the parity of
. . . ’ . . 3
the permutation i, ..., iy EE];E »i ~means that the summation is carried out over

all k #...# k, and the points E #...# k, that differ only by permutations are
identified.
The scalar product of two sequences f and g (1.6) is equal to

(fg)~2 Z fnckl o B VB gy B, ) 8

I
= 2 l| E ]c:l(ib'”, En)gﬁ(’;h’ Eﬂ) (18)
n=0 " g £ 2k,

‘2. Subspace of pairs. In what follows, we consider pairs of functions with op-
posite momenta and spin (k, 1/2) and (—k,—1/2) and the corresponding operators
of annihilation @, /,, a_ _, and creation @, a, /. For the sake of sim-
plicity, we denote them by ay= a,,/,, a_x= a_ 4, and ai = ";,1/2’ afk =
ajk,~1;‘2! k=(k,1/2), —=k=(—k,—1/2). Consider the sequence

f= (0 A8, 0, 0, Kl k)8, 8, e
iy fns(kls'“, k“)6k1+k; k, -Hc a ): (19)

which describes the state with an arbitrary random number of pairs of particles with
opposite momenta and spin (8 is the Kronecker symbol).

The functions f; (k,..., k,) belong to 9¢, and are odd with respect to each
variable because the operators a,:; and a*}q satisfy the anticommutation relations,

. + + + + 3
and are symmetric because the operators a a”y and @, a’y, commute for k; #k;:

fn(kls L8 n L ﬂ) =_.f:(k1:"'9ki:"'?kn): 15]‘:5}1,
Filhiuk) & f,f(kil,...,kf").
‘We now define the states of indefinitely many pairs:

f= E E fn(kl :kn)azajkl"'a:"atho) o

n=0 k#.

=31 S flae.kdafaly, ..afat 0) =

n=0 M £k,
o 1 ¥ + o+ + _+
= ”zl’];Jh,;"k”fn(kl"n,k”)akia—kl".akﬂa_erlO)' (110)

According to (1.10), the scalar product of two sequences f and g is equal to the
following expression:

oo

(£8" = E E fo Uy ) gl By) =

n=0 ky#...#k,
= ii Z ﬁ:(kl BT AN HH (1.11)
n=0 n! ki#..#
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Remark. The antisymmetrization of the functions f; (k,..., %,)d ey +k, .‘.Gkﬂ B,

with (k,—k) # ... # (k,, —k,) consists only of this term because the other terms ob-
tained by the permutation of (&, —ky, ..., k,,—k,) are equal to zero.
‘We now consider an example of states of n pairs, which will be used in what fol-
lows. Assume that f(k),..., fi"(k) are odd functions, f'(k) =—f{(-k), i=1,...
.., n, and some of them may coincide.
Consider the following state of n pairs:

OACLAA WAL LMD
k n

= E, f:(kl,...,kn)a;; a:kl...a}; aik"10) =

ky#otk,
= 2% [l k) a0 0% 10) =
W g . 2k,
=L 3 £, k) oty .. af ot |0), (1.12)
nl g ok, B
where
k) = L 3 (). K, = %sym(ﬁ(fa)---ﬁ“(kn)),

11\ w2l
and the sum is carried out over all permutations i, ..., i, of the numbers 1, ..., n.
Note that, in the last expression in (1.12) and in (1.10), we add terms equal to zero
if some momenta from (k,...,k,) coincide.

In what follows, we shall also use a scalar product for two sequences f and g of
indefinite (random) number of pairs (1.10) of the form

(Fg) = 2 an(kx o) 85 (K (1.11%)

because the functions f; (k;,..., k,,) and g5(ky,..., k,) are also defined if some mo-
menta coincide. It is obvious that the norm of f defined according to (1.11°), ||fl| =
= (£, )12, is greater than that defined according to (1.11), || fll’ = {(£ )’ }1/2, ie.,
A= (LA

The subspace of the space % that consists of sequences (1.8)—(1.10) is the
subspace of pairs and we denote it by %i.

It is easy to prove that the entire Fock space %% can be represented as the direct
orthogonal sum of the subspace of pairs %’8? and its complement:

%" = %p @ (%7/%%).

Indeed, the only sequences g from ¢ that are not orthogonal to fe %% are the se-
quences with even number of particles that can be grouped into pairs with opposite mo-
menta. This means that ge 9€5.

In what follows, we omit the superscript F because we consider only the space
%%, ie., %F =% and %5 =%~

II. Hamiltonian and its action on the state of pairs. 1. H, on states of n
pairs. Consider the BBC Hamiltonian for a system of fermi-particles without spin in a
cube A with periodic boundary conditions
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Hy = Z [Azp—uu]a—am + & 2 -P1 By G 21
P

where V=L? is the volume of the cube A, m is the mass of a particle, and P is the
chemical potential. The potential V, , satisfies the following conditions:

%

P2 T v V.

P2:p1? -pup2 = Ypu—p2 T T Vpupae
22)

Pl S <
V?. PIZPZ[ P1:P2 |

where the constant ¥ < e does not depend on V.

Consider the action of the Hamiltonian H, on the state of pairs (1.10). The Ham-
iltonian preserves the number of particles. We consider its action on the state of one
pair and, finally, on the state of n pairs.

For the state of one pair, we have

2
iy S Ak)ahat10) = 3 (B -2 fekataty o) +

k

+ %; Vi,p H(P) a7, 10)
‘p
or, equivalently,
2kt g
HAR)R) = | TE =20 [fitk) + 2 3 Vig,p iD)- @2.3)
P

Denote the operator on the right-hand side of (2.3) by H; , =H,. Then formula
(2.3) can be represented as follows™:

(Hof)(a) = (Hzfi) (k). (2.4)

For the state of n pairs, we have

HA Z fﬂ(k] kn)a}:ﬂi—kl...ﬂ_{‘a:k"[o)=

2
= ¥ [Z—kﬂ +2" ~2un]);(k1 ) aiyaly .o %y, 10) +

h,...,k 2m
2 i
EZ Z b Vo ki ks Ky K )“h Chyos aglafpl ak at 1 100 +
VI: P kl & k k;#ki, ,kf$ n

2
2 [_kﬂ_.'. _].2_kﬂ. zl‘jﬂ]ﬁl(kl .k }akl ke ak k |0> +

T =\ 2m 2m
Fil
i %;; 2, Vipfalsos P k)@ aly, oy, .0 a2 10) =
=1 Kyyunn o p
gxv N f + _+ + +
i Y z Viok, Jalhis. o k) a0ty agaly ...ai aZp |0).
i=1 1=]#i kjyorer by

2.5)

* In what follows, we omit the sign s for the functions f} =f£,.
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Note that we add and subtract the last term in (2.5) in order to replace the sum
Zk;#k,,‘..,k,-;tk" by the sum Zk- . We also add zero terms with some equal mo-

menta.
From (2.5), we obtain (equating the coefficients of the same products of the oper-
ators of creation of pairs)

(HAS) et k) = (2"‘2 e ZM]J;(’% ) +

2m

gn
+V,§{§'
2

-‘]k‘-,pﬁf(k]:' vey ,b)---) kﬂ) -

il

% -‘{kf k;j ﬁt(k " E_;s vey kn) (2.6)
i=1 1=j=#i

By using the operator H, defined according to (2.3), (2.3”), we can represent operator
(2.6) as follows:

(Hyf) oo k) = (Ha ®I..®I+...+I®I...®H,)f,)(k,..., k) —

n

n i
= 52 2 Yty Follo s ) @7
Vid o7
In what follows, the function fn(kl,. ... k,) 1is called the wave function of » pairs.
We have proved the following theorem:

Theorem 1. The BCS Hamiltonian (2.1) is defined on the wave ﬁmct:ons of n
pairs f,(k,...,k,) according to formula (2.7).

1. Domam of definition of the Hamiltonian. I. Domain of definition of H,.

Consider the Hamiltonian in the one-pair subspace. According to (2.3) and (2.3" ), we
have

() 0) = [2’" 2u)f1cko + £ Ve p AD)- 3.1
VP
The first term on the right-hand side of (3.1) is defined on the functions fi(k) that

2
belong to ?Cf together with the functions %—k-l-f](k,), ie, filk) e %’6);,
m

2
2& filk) e ?ﬁ‘;’ . On these functions, the operator defined by the first term is self-ad-
I

joint. For the second term, we have the following estimates:

{2 [Veus| } {; mwﬁ}m

i
Vv

g

|‘_f % V:k;,pﬁ
(3.2)
¥
It follows from (3.2) that the second term in (3.1) defines an operator bounded in %¢%.
Thus, the operator H , is defined on functions fj(k) such that f(k)e ?ﬁ‘f ,
2k

2

v fill) € 9 and is self-adjoint as a sum of self-adjoint and bounded self-adjoint

ES i @] < & 3 Wil SISOF - £1IAF

ki, py

operators.
We now consider the operator
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Hy®I..Q®I+..+1®..Q H,. 3.3)
It is obvious that operator (3.3) is defined on functions f,(k,...,k,) that belong

to %L together with Y —f—fn(h,..., k), ie, iy T Sl
i=1 <m

2
> 5L fulky-.o k) € HE, and itis self-adjoint.

Indeed, this follows from the estimates

1/2 1/2
5,2 Veeoo Fo (P Ko K| < { mlpl} {2{5@,1@,...,@31’*} ;
r
2:
DI COVAPE A Z NN B] I
Kyyeon by P
Z
<& 2l Slhehmf = SAnF (3.4
VoG I i ;

Here, we have used the norm || f]] = { (£, f)}1/? defined according to (1.11").
2. Domain of definition of the perturbation. According to formula (2.7), we rep-

resent the operator H, in the subspace of n-pairs ?ﬁf: :
H, =A +B, (3.5)
where

(Af,) Kpy-.r o) = ((Hz@1...®r+...+f®f...®H2)f,,)(k1,...,k,,)

(3.6)
(Bf,) Uy K) = %2; ;J;,ﬂw,,kj (SR R
We now estimate the norm of the operator B in %%,
For simplicity, we assume that the potential 1{;,1, ky is separable, i.e.,
Veuky, = VkVky> 3.7

where vy =-v_;, Vg =y, and v is a continuous function with compact support D.

The operator B can be represented as the sum over i=1,...,n of the matrices
with the following elements:

5,5

£
by by 4 Yy

8 ;5 ’ ...8 Fyena
ki Tk hapking " kpaky? T

; £ § ;
Oy i 5kz 5 Ykt Okt Ot g Oy
where all quasimomenta kj, ki, I1=1,...,n, satisfy the conditions k; € D, k; eD.

We regard the operator B as a perturbation of the operator A.
We have

IA

Z Vi T o ) o G K )

< &1y 2
k
v ek

i
fn(klk_lkn) <
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2.2 2
SECRPE Y ke kP = ECRPILE 69

14 gy epyennr Ky

where
1
v=swplh®@l, I = 230
k
1t follows from inequality (3.8) and definition (3.6) of the operator B that

1Bl < L& "{,‘L"” n=D £, (39)

Note that we have used norm (1.11").

This means that we have proved the following statement:

Theorem 2. The perturbation B is a bounded operator in %%, and, according
to (3.9), its norm tends to zero as V —» e for arbitrary fixed n.

3. H, in the space of pairs with norm that depends on V. We introduce the fol-

lowing norm and scalar product equivalent to (1.11) and (1.11°) in the subspace of
pairs:

TAE Vi S | fulyes k)2,
ko k,
(3.10)
(£ &)y = Vi S Fl ) gn ks ns K,
Ky 2k,
o (. 7 2
||fﬂ ||V - nl V khz‘ "[f,;l(kl? kn)l F
(3.10")
(F8ny = -I;Vi P ACERALICS

15l < 15l

Norms (3.10), (3.10") are useful for performing the thermodynamic limit transition. In
the thermodynamic limit, they turn into the norms introduced in [8]. We now recall a
simple fact related to this.

The functions f,(k,..., k,) are defined as the Fourier coefficients of functions

£ (x4,-..» x,,) such that

FoCaraeens ) = V,,,Q Z fn(kl, Syl ikr) e A =1 n,
Namely,

fulkys.. By) = V—LE J;f,,(xl,...,x,‘)e"'(""“*;“""'k"xﬂ)dxl...dxh, kiz%n.
‘We have the equality

N mdf dn sy = 3 |folhy )l =
Aﬂ .e

L]

_end 1
Tt G 2 ot ]

where
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Follayees i) = V2 flheos o).
Passing to the limit as L — o (A — R3, V — ), we finally obtain

sty = s [| i )] .ty
where

Falyen k) = [ £utppenny ) B0 0) gy i,
is the Fourier transform that satisfies the Parseval equality. In what follows, for
simplicity, we use the notation f,(k,..., k,) instead of j_‘,, (kyeees Ky

Remark. We might use only a Hilbert space with the norm and scalar product
(3.11), (3.11") in the entire article. But, in the direct sum of spaces with these scalar
products, the operators of creation and annihilation do not satisfy the conditions of ad-
jointness (a,)" = a; and (@) =a ¢~ The result of the action of the Hamiltonian
H, is again self-adjoint.

Note that we have the same estimates (3.2), (3.4), and (3.9) in the space %L with
norm (3.10).

IV. Spectrum of the Hamiltonian in the subspace of n pairs. 1. Spectrum of
the operator A. It immediately follows from definition (3.6) of the operator A that
its eigenvectors are products of n eigenvectors of the operator H,, and the
corresponding eigenvalues are sums of the eigenvalues of the eigenvectors of the

operator H,. If we denote by fll(kl),” ., fi'(k,) the sequence of eigenvectors of Hj,

and by E, ..., E" the corresponding sequence of their eigenvalues, then the wave
function of n pairs

Fullys ) = = sym (£ Ga)..r £'(Ry) @.1)

is the eigenvector.of the operator A with the eigenvalue
E=E'+..+E" (4.2)
ie.,
Afp ), ) = (E'+...+ E") f,(Rg,e.r K-

Thus, in order to determine the spectrum of the operator A, we must first determine
the spectrum of the operator H,. '
2. Spectrum of the operator H,. Consider the equation for the eigenvectors and

eigenvalues of the operator H:

1l

2m

2
(o)) = [ﬁ-m}flaw ES v, i) = Bk (43)
rP

Denote by D the support of v,. For simplicity, we assume that D is the spherical

2
layer centered at the origin 'QP__ it| < ®, @< . The Hilbert space %2 can be rep-
I

resented as the direct orthogonal sum of the subspace of functions with supports in D
and in its complement.

Denote them by AP and hf~P, respectively, i.e.,
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%l = n ©n P (4.4)

It is obvious that an arbitrary function f(k) C ?ﬁf can be represented as the sum of
two functions

ik = P& + £, (4.5)
where fP(k)e hY and FFP(k)e HEP. '
If an eigenvector f(k) belongsto hP, then equation (4.3) yields

2k _
“L-2u k) + v = Efilk),
H

C'Dkl

c= %zvpﬁ@), filk) = (4.6)
P

Ci
2K youvE
2m T

It is obvious that eigenvectors (4.6) belong to /1.
From (4.6), we derive the following equation for the eigenvalues of eigenvectors

from hf’ 5

= %2——- 4.7)
72 yonip
2m

Note that the summation in (4.7) is carried out over the domain D . Denote by N the

number of quasidiscrete momenta p = (2n/L)n, n=(ny, ny, n3), such that p CD.
Equation (4.7) has N solutions Ey, ..., Ey because it is equivalent to the equation

Py(E) = 0, 4.8)
where Py(E) is a polynomial of the N'th degree with respect to E. The eigenvalues
Ej, ..., Ey are real numbers because the operator H, is symmetric.

For the eigenvectors fj(%) from hf P we have the equation

[iﬁ—Zu]fl(’ﬁ) = Efi(k), 4.9)
m
whence we determine the eigenvectors
hta) = 84, KUE-D, (4.10)
and the corresponding eigenvalues
28
E = E— 2].].

3. Spectrum of the operator H , in 3’6{: . In order to determine the spectrum of

the operator H, in %%, we use representation (3.5) and regard the operator B asa

perturbation of the operator A. The spectrum of the operator A is known and is
determined by (4.2). The norm of the matrix of the operator B is proportional to

V—lld according to (3.9). From the well-known theorem of linear algebra (see, e.g., .
[13—15]), we conclude that the eigenvalues of the operator A +B differ from the

eigenvalues of the operator A (4.2) by values that are proportional to Vl}z'" » Where

m is the multiplicity of an eigenvalue.
We summarize the results obtained above in the following statement:
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Theorem 3. The spectrum of the operator H , in the space of pairs %L is
given by the formula

E =E +..+E, +¢e(1/V),
where Ey, ..., E, are the eigenvalues of the operator Hi and can be determined

exactly. The perturbation € (1/V) tends to zero as 1/VV?™ where m is the
multiplicity of the eigenvalue E.

Note that the operator B differs from zero only on the wave functions with sup-
portsin D. Thus, Ey, ..., E, are determined by formula (4.7). For the wave functions
with supports in E—D, the perturbation B is equal to zero.

V. Convergence of the Hamiltonian H? to the operator A on states of pairs
and excited states. I. The number of quasimomenta in the layer of the Fermi

sphere -@ < gﬂ- — U4 <@. We have proved above that the Hamiltonian H &

converges to the operator A on arbitrary states f with finite number of pairs f = (fj,
0, fo(ky, k), ovn s fulleysov. s k), 0,0,...) (see inequalities (3.9)). We now want to
prove that this assertion is true for states with arbitrary possible number of pairs. To do
this, we use the fact that the potential v, is different from zero in the layer of the
Fermi sphere: v, #0 if —® <k?/2m -1 < @. We assume that all fulkys..., k) have

supports in D", ie., f,(k,...,k,) =0 if some k; does not belong to D.
Denote by N the number of quasimomenta in the layer D of the Fermi sphere.
For N, we have the following estimate:

24 n[2m(p + o)
< 3

8 sz N
= : = 2m(lL+ , — = .
@n)’/ T 7
(5.1)
From N quasimomenta kq,k,, ..., ky we can choose N gifferent states
nl(N —n)!

(quasimomenta) consisting of n different quasimomenta ky # ky # ... # ky (we
identify the states that differ only by permutations). We have the following trivial in-
equality:
N _ NN-1)...(N—-n+1) < gi (5.2)
nl(N —n)! n! n!
We now consider the direct sum of the Hilbert spaces with scalar product and norm
(3.10) and denote itby %%,. The scalar product of two sequences of pairs fe %5

and ge %% is defined as

o= SL 3 Tl kel k) (5.3)

(L
n=0 V" kywky.. sk,

and the corresponding norm || f||’ is defined as

sy = 34 > 1 P =

n=0 F k#.#
N ’
= Ein X ity k)P v (5.4
n=0 V7 ky#k,
Assume that
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sup | £ G b)) 2 8 Fo0 (5.5)

JEREE] n

For example, if f, (&, ..., k) =f1 (k) ... fi(k,), then f= sm;p|f1(k)|.

With the use of (5.1), (5.2), and (5.5), the norm || f ll can be estimated as follows:

N np2n 2
fir II'}} E LA P % < o, (5.6)

n
V nl n=0

It follows from from (5.6) that || f||y, is finite for f<ee.
2. Estimate for the operator H,—A on states of pairs. Consider the expression

N _
(f, (Hy —A)F)y = 0‘},, Z f,,(kl,...,k,,J((HA—A)f,,JckI,...,kn)=

N —_— e —
= 2 R BBk k). 57

In order to estimate expression (5 .7), we use representation (3.6) of the operator B
in the subspace of n pairs ¥~ and estimates (3.9), (5.1), (5.2), and (5.5).
Then we obtain the following estimate:

|, @ -25)y | = BL)y

N n n i
< L 3 EZCREAID YD LA FACRL A
gk

i=1 i=j&i

2 N ng2n 2
< lelv n(n—1 s2n Igiv o f o 18T 244 o (s
% ,ZﬁV” ~& 2 V,Z‘z(n—z)r‘ y o fet. 69

It follows from (5.8) that (f, (Hx —A)f)y =0 as V— co.

‘We now estimate the following expression with ng> V® §>0:

N
> X 2 B B (H ) )

n
H=HQ+1 V

{pr 2 7 k)):[[z"f =20 s

n=ng+1

£ 2 Wl b)) |} <

p#k, Y., p#k,

N ril
1 N" .2n 2
< E — — f“(20n+|glvian) =
n=ng+l V" nl ( )

N np2n
- o' f 2 1 2.4 2\ af?
20+|gh*e| € —a 20 +|glvia)e <
2 il ] < 5o02 14 (20 +1gh%0)

(5.9)

1 2.4 2 2
< = £ 20 +|gh oa)e“f.
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In (5.9), we have used the estimate

-i—zm,,,; < Euz = g

Consider the same expression with the operator A.
‘We have the following estimate:

N
.,=E+1{V" Z f;:(kl )Z(——Zu]fn(ki k) +

+ gza,pmh . = )}

N
& ¥ v 2 f2”(2(ﬂn+|g|v an) < 2 o?f4(20 +|ghPe)e*”. (5.10)
n=ng+1 ky#, Vv

<

Estimates (5.9) and (5.10) obtained above show that, for both operators H”* and A4,
averages (5.9) and (5.11) tend to zero for sufficiently large ny. By analogy with (5.8),
we have the following estimate:

’ 4 N 2
(Hx - AV f, Hy A f)y < g;;’ > o (oD o o

< %ﬁ(w‘*ﬁe%"" +202*+60f5). (5.11)

This implies that ||(H, —A) f ”.:, tends to zero as ¥V — oo,

It follows from (5.8) that the following theorem is true:

Theorem 4. If the states of pairs f= (1,0, fi(ky), 0y .o s fullys ooy ks o)
satisfy the conditions

Ifn(kla""kn)! < fn: f< 9, J’lZi,
uniformly with respect to V, and f,(k,...,k,) have supports in D", then

(f, HA —A)f); and ||(Hy —A)f]];, tend to zero as 'V — o and the estimates
(5.8)—(5.11) hold.

Corollary. If flo(k) is the eigenfunction corresponding to the lowest eigenvalue
Ey;<0 and thereisa gap A=2m+E;<0, |A|> gy > 0, uniform with respect to the
volume V, then the ground state f=(fy, 0, f’(k), O, FIEA R, 5

5 flo(ki) _ﬁo(loz) . ;2(k,), ... ), which corresponds to indefinite (arbitrary) random
number of pairs in the ground state, satisfies the condition of the theorem. Indeed, it
follows from (4.6) that £’(k) is uniformly bounded:

|Rk)| <

| cvg |

zkf

lelo < lep
€p

&,

H

2
+2p.+E0 —2%-+2}L—20)+A
m

0 Ll
1], < b,
In the next section, we show that these conditions are satisfied.
Note that, for the other eigenfunctions of H,, the conditions of Theorem 4 are not
satisfied because the corresponding eigenvalues become continuous spectra in the ther-
modynamic limit.
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VI. Equation for eigenvalues. 1. Existence of e:genvalues In Section 4, we
have derived the equation for eigenvalues

2 ™
= £ 22—, v=1I% p= %n, n = (ny,m,n), mCZ,
P ; +2u+E
(6.1)

where the summation is carried out over the layer of the Fermi sphere 1 p2 [2m — |.L| <
® because v, =0 for 1p2f2m— |.L| > o.

‘We consider attractive interaction, which means that the coupling constant is nega-
tive, ie., g<0.

‘We denote the expression on the right-hand side of (6.1) by f;(E) and investigate
the properties of this function.

It is obvious that the function f; (E) has the poles E = szl(Zm) —2pn. The
lowest pole is —2w. The function

2
1B = £3 —
Vi —L+2;.L+E
is increasing because
’ g Uz
fL(E) = —I—,E v > 0.

" 2
P [—L+2u+EJ
2m

Consider the function f;(E) on the interval (—eo, —2®). On this interval, it is
continuous and increasing and takes values from the interval (0, +e). This implies
that equation (6.1) has a unique solution E¢(L) on the interval (—eo, 2) for arbi-
trary —eo < g< 0 and Ey(L) <—20.

The behavior of the function f;(E) is represented in Fig. 1.

i)

+2m

|
I
I
|
[
I
|
|
I
[
I
|
|
|
I
|
[

Fig. 1
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It is obvious that equation (6.1) f; (E)=1 has unique solutions that correspond to each
2o
2m

E may correspond to different p on the sphere |p|= const.

Consider, for example, the case where vf, depends on |p|. We have v,=-v_,

and, thus, one can assume that v, depends on |p| for pl=20, v, =V, and v, =

point (vector) p from the layer <o If uf, depends on |p|, then the same

=-v_, for pI < 0. Equation (6.1) reduces to the following:

28 v 25 _Up V)
L= v Z]. gpi - ?En 2p* 2 ,
ppP>0FE — == + 2L n E—-v2;+2}.l. pz=2m-({'22ﬂ) (%)

where the summation is carried out over the interval

ZL—KJZm(u—m) <n < ;’—n 2m (L + ),

N(n°) is the number of vectors n = (n', n2,n3) such that n? = (n1)%+ ()% +
+(n3)2=(n°)? and n° are integer numbers from the interval mentioned above.

It is obvious that equation (6.1) has only simple roots, i.e., the eigenvalues are
simple. The eigenvectors

cv
ey = —F—
E—-=—+21
2m
depend on | k| for k' >0 and k' <0, and f(k)=—f(k), k' >0.

Denote by E and E the corresponding eigenvalues of H A and A in %Z. The
eigenvalues of A are simple and we have the following inequality [13—15]:

|E-E| < ||Bll < E’Mn(n—n

VU 2

(see (3.10)).
We now consider the lowest solution of equation (6.1) — the lowest eigenvalue

Eo(L). This eigenvalue is known as the energy of the ground state of one pair. We are
interested in the behavior of Eq(L) as V — s, i.e., in the thermodynamic limit. (For

this purpose, we denote the lowest eigenvalue for given V = & by Eg(L).) Let L
tend to infinity and let L <L; <L, <...<L; be a sequence such that 31_-1?1‘["' =00,

Consider the corresponding sequence
Ey(L), Eo(Ly), Eo(L3), .- Eg(Li), .- (62)

The statement below describes the properties of sequence (6.2).
Theorem 5. Sequence (6.2) is convergent

A Eqg(Ly) = Eq- (6.3)
There exists a nonzero gap A =20 +Eq> 0 (for all —eo < g <0 except, possibly,
one point g = gg).
Progf. Consider the function
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2
T R N .. (6.4)
2P _ou-E

2m

2

and assume that v2 is nonincreasing function of |p |, vf, Svp, if |p|>|p’|. Fora

p
given fixed E <—2®, the function @(p) is decreasing with respect to |p| and is con-
tinuous. This implies that f;(E) is a decreasing function of L because if Ly > L,
then the sums satisfy the following inequality:

2 2
&l VpL) &l VpLy) -
fi(E) = b 2 3 = f1,(E),
V(L) P(L)w_zll_g V(Ll}p(LOM_QM_E '
m 2m
©.5)
where
P = Zn, pLy) = ZEn, = (m,m,m), meZ
L I
2
Indeed, if L{ > L, then the number of points p(Ly) in the layer -5—— p,’ S is
m

greater (at least not less) than the number of points p(L). We can regard both sums in
(6.5) as integral sums of the decreasing function ¢ (p) (6.4) with infinitesimal vol-
umes 1/V(L) and 1/V(L,), respectively. Therefore, inequality (7.4) is obvious (see
Fig. 2).

()

|
I 1 1

711 Ipal el (P@D
(@)

il Il Ipsl (pCL)D
Fig.2

Thus, the integral sums that represent the functions f;(E) are decreasing functions
of L:

fi(B) > £, (E), L<Ly.
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The sequence of sums f;(E), f;, (E), ..., fi, (E), ... is decreasing and bounded from
below, f; (E)> 0. Therefore, there exists a unique limit and it is equal to the integral

dp

m fu,E) = Gis]— J’—+zu+E’ E <-20. (66)
Consider again the sequence of equalities (6.1). We have
2
1 = 3 V) - &l /.0 ,
V(L) PO _ 2p (L) ot Bl 7D p(L)E&z(;i,lm_szEn(L)[
(6.7)
f i Vi) _ _lel VL)

] 2.7 . 32 ’
Vi) P(L:)_z_}’z_(&.)_ + 211+ Eo(L,) VL) p(L;)_zfz(L_t) — 20 +| Eo(Ly)|
m m.

where Eq(L;) are the lowest solutions (the energies of ground states for given L;).

As mentioned above, the sum f;(E) is a decreasing function of L for a given
fixed E. This implies that the function f; (E) is equal to 1 for E = Eq(Ly) > Eo(L).
In the general case, Eq(L;) > Eg(L;) if L; > L;. We have obtained the increasing
sequence

EU(L) < EU(LI) <...< EU(LL) <.y L‘ﬂLi{...{Liﬁ..., (6.8)

which is bounded from above, i.e., Ej(L;) < —2w. This implies that the sequence
Ey(L;) is convergent, i.e., there exists unique E, such that

LPE}MEG (L;) = Ey. (6.9)

Let us show that there is a gap A =2m + Ey < 0. Assume that the gap is equal to zero,
i.e. Eyg=—20 for some g<0. Then

vdp

5| < o, (6.10)
(275) __p__ +2L—20
Equality (6.10) implies that the limiting equation (6.1) has the solution Eg=—2® only
for unique g =gy <0.

It follows from from (6.10) that the gap A may be equal to zero for unique g, de-
termined according to (6.19). Then, for g # g;, the gap A is different from zero.
There exists a theorem [12] according to which the gap A is different from zero for
sufficiently small |g| for a general (not necessarily separable) potential. For a sepa-
rable potential V,, , =v, v, and v§| p| =const, the gap A is calculated explicitly;
it is different from zero for g >—co and has an essential singularity at g=0. We have

20(e/181 +1)
0= T _2Nela

where a is a positive number. The theorem is proved.
VII. Coincidence of the BCS Hamiltonian with the approximating Hamilton-

ian. 1. Operators AI, A*, and A™ on the ground state. We now want to show that
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the BCS Hamiltonian and the approximating Hamiltonian coincide in the thermo-
dynamic limit on the ground state with an arbitrary (random) number of pairs with the
lowest energy E,. Consider the ground state

- Z%;ﬁo(kl)a;; ot ...;ﬁﬂ(k,.)a;; aj,q...kz,qo(k,,)a;" at, 10) =
n=0"- 1 | n

)

= 20 . z’k ) ... Rk, afal, ..agat 10),  (@g)y =1,
=0 k.. ky
7.1)

where f°(k) is the eigenfunction of the operator H, with the lowest energy E, (the

ground eigenfunction of the pair).

Denote by Al the part of the operator A that describes the interaction of two par-
ticles with opposite momenta. According to the definition of the operator A (2.6),
(3.6), we have

Ald, = 2 Ezﬁ (k) ay, aly, ..

i

kE b 2V (P)a aty .. kZﬁ"ck,,)a;; a* 10) =
P n

<o

-3 2

n=1

P [
'ﬁM=

kz fla)af a¥y, .. Zﬁ'k aj a’y . kE flk)ag at 10), (7.2

where
0
= £30,80). (7.3)
p
Consider the operator
AT =¢ ka ag a¥y, (7.4)
k
where the constant ¢ is defined according (7.3).

‘We have

+ + .+
A (I)n =cC %Ukﬂk “—k(bo =

gvk af at; kEﬁ’Uq)aE; &g --.}; Rkyag oty =

0

3
Il

(%]
M
e

jary
X
e

=¢ 2 %ﬁ“(ﬁ)a;atk, Evkaka Fledai, b 10)=

ntl

(n

+

D!

il
—

Ms

WD ; Rk)af oty ... ;'vh af a¥y ... kz R)at aty 10). (7.5)

!
11 =1k

n

Formulas (7.2) and (7.5) imply that the operators A* and A’ coincide on the ground
state @j (7.1):

At®) = A,
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Consider the operator

A =c ; Vea_p g (7.6)

and its action on .
‘We have

40 = e Toando = T uf@I0)+e 313 S Rl .
> v i) .. Y, R(k)af at 10) =
ik &,
ki,

[ E(ﬂ 1}| Zfi (k].)ak] a_ki zfl ( 1Jak 3 __ RH‘I(])E vkﬁ (k)—

n—-l

Zfl (k) ay, aZy ..

R =

Zf knp)ap_ae 10) % v £k =

L) k=ky,....k=k, 4

o g Z%Eﬁo(kﬂaﬁ aly . 3 R Ue)af aly 10)-
n=0"" ky

=Ky geeey "

~e 313 Rty BRGS0 T wf0 -
= gl®Vay—c Z%Z,ﬁn(kﬂaﬁ; ﬂ:rkl—--
n=11 g

5 sz]“(k,,)a;" a% 10y Y wfK =

k=ky, o k=k,
= g1c*Vd, — cB®,, (7.7)

where the operator By is defined by the second term in the last expression (7.7). The

operator B; resembles the operator B (3.6), but the factor 1/V is absent.
Let us show that the operator B; can be neglected in the thermodynamic limit in

the following sense:
consider the averages

l(‘I’o, B ®), = L ii |f1 () ... £k, )| v i),
14 =% byt k=ky,.. ’k n
181 ol
= (Bio, Bi®o)y, < v 2 [ #0) f vefi' ()
n= k= 1:---: =Kp

‘We have the estimates
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N n p2n+l
S L mon s vl 1= sl 06,

(q’os B @) 1 o
(7.8)

TR e P
_(Bl‘-I)n,BfI’o)V s ?2 L— S 77 (Oif +20f7e ],

which imply that averages (7.8) tend to zero as V' — co.
2. Approximating Hamiltonian. We define the following approximating
Hamiltonian:

Happr,A =H,p =
Z,(“"—H]ﬂ'!'ﬂﬁ +eyv,arat, +cyv,a a, - gV, (19
2 P 2

where the constant ¢ is defined in (7.3). (Note that the term g 1%V should be un-
derstood as the operator g~ 1c2yT, where I is the identity operator; we use the nota-

tion g 'c?V accepted in mathematical physics.)
‘We are ready to prove the following theorem about the approximating Hamiltonian.
Theorem 6. The averages

(®o, (Hy —Ha,A)q)U);;

<=

and

%, ((Hp = Ho, A)®os (Hp — H 4) %),

tend to zero in the thermodynamic limit as V — eo.
Progf. Consider the identity

1 4 s 1 !
% (‘Dos (Hy _Ha,A)(I)O)V = = (D, (Hy —A)Dq)y, + v (@0, (A_Ha,A)q)O)V-

(7.10)

1
%

In Section V, we have showed that the first term (P, (H —A)®,) tends to zero
in the thermodynamic limit even without the factor 1/V. The operator Ha, A can be

represented in terms of the operators A* and A~ as follows:
2
Hyop= Y| E—pnlaba; + AY + A =g 12V
a, A % (2 I'L] —&
The operator A can be represented as follows:

2
A= 2[%-p.]a;a§ + Al

P
By using relations (7.3) — (7.7), we represent the second term in (7.10) in the form

7 (@0 B®o)".

(Here, we have used the fact that A’®)=A*®y and A™®, = g1 c>Vdy—cB;Dy.)
Estimate (7.8) implies that this term tends to zero as ¥V — o,

2 (o, (4= H,, A)Do), =
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We also have
1 ’
;"(HA H, 2)P "V = I(HA Ay |, + “(A_Ha,A) @ ”v =

- §|J<HA—A>¢OM; + 1B %ol

According to (5.11) and (7.8), the last two expressions tend to zero as V — eo. The theo-
rem is proved.
Remark. It follows from (7.7) and (7.8) that the average

2 (@0, (47 = 2V) ), = = (@0, cB; o)

tends to zero in the thermodynamic limit.
On the other hand, we have

2 2
s [3(E i ][5
P

P
Then it follows from Theorem 4 that

2 s
(®g, (Hy —A)Bo)y, = [rbu, [HA "[§ [% - u)a; a5 +A*’]<D0D (7.11)
tends to zero in the thermodynamic limit. This implies that the average of the BCS
Hamiltonian H coincides in the thermodynamic limit with the average of the follow-

ing operator:
H';,A = Z[g;-p)a—a— + CZ‘U a P (7.12)

The operator H;, A 1s a quadratic form with respect to the operators of creation and

annihilation as well as the operator f, », but H, ; A is not self-adjoint. We shall use

the self-adjoint operator H,, 4.
Remark. Theorem 6 is also true for arbitrary states

- iﬂ;} T RO, ay - T fk)ah oy o 3 filkn)a, a%, 10)

if the functions f; (k) satisfy the following conditions:
f= sulAE)] < =

For every state of this type, there exists the corresponding Hamiltonian with ¢ =
= £3 9, i@
P

We have not considered the states @ in which certain functions f°(k) that corre-
spond to the lowest eigenvalue E; of the operator H, are replaced by the eigenfunc-
tions fi(k) that correspond to the eigenvalues E; > E;,. These states, excited states,
and the action of the operators H, and H, , on them will be investigated in the sec-

ond part of this work.
Recently, we have received from Professors W. Thirring and N.Ilieva a copy of the
article “A pair potential supporting a mixed mean-field/BCS phase” (to be published in
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Nucl. Phys. B), where a Hamiltonian is considered that becomes equivalent to the ap-
proximating Hamiltonian in the scaling limit. The author expresses his gratitude to
Professors W. Thirring and N. Ilieva for sending him their article before its publication.
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