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TIME-IRREVERSIBILITY AND EXISTENCE AND UNIQUENESS
OF SOLUTIONS OF PROBLEMS IN LINEAR VISCOELASTICITY

HE3BOPOTHICTB YACY TA ICHYBAHHAA I €THHICTH
- PO3B’SI3KIB Y 3ATAYAX JITHIMHOI B’A3KO-IIPYZ2KHOCTI

A problem of linear viscoelasticity for the case where the relation between Cauchy stress and strain
tensors is described by a linear integral relation is studied. Theorems on existerice and uniqueness of a
solution of the problem are proved. )
BupyaeThcsa sajiada Teopil mpy>KHoCTi /714 BHNAAKY, KOJM 3B’fA30K MiX TEH30PAMH HANpyTH Ta

necopmanii Kol onmeyerscs 3a fonomoroso JiniltHoro inTerpaiesoro cuispiggomenns. oseneHo
TEOpeMH IO iCHYBaHHA Ta eMHHICTH PO3B’A3KY BiAmoBimHHX 3amay.

1. The question posed by Fichera in [1] on the principle of fading memory [2] is
related indirectly to the controversial time-reversal hypothesis. On this matter Fichera
formulates significant counterexamples [3, 4] of relaxation functions G(s), s € [0,
+00), for which the quasi-static problem for a linear viscoelastic body fails to have
solutions, or it may have more than one solution.

Here we characterize the behaviour of these functions at infinity, by observing that
both primitives of the Boltzmann function G(s), G(s)—Go and G(s)— G, where
Gg and G., denote respectively the instantaneous and equilibrium elastic moduli, are

summable in R* and that a reversal in the time direction does not change in this case
the behaviour of the relaxation function at infinity.

This property is compatible with the time-reversal assumption and consequently it
must allow the material to be classically elastic, i.e., G(s)=Go=Ge Vse [ 0, +o°),
because in this case the memory effects are negligible. Thus Fichera’s question can be
answered by appropriate regularity assumptions on the relaxation and Boltzmann
functions so that the convolution integral of the constitutive functional of linear
viscoelasticity theory is well defined and materials of linear elastic type can be

considered as classical linear viscoelastic materials.
' The difficulty to answer this question lies in assuming general and physically
admissible hypotheses. We assume that G(s)— G. and G{s) are inverse Fourier
transforms and that the integral

; o(r+2) - 6. ][(Erzz= )]sy

approaches zero when the parameter @, which has the dimension of frequency,
approaches infinity, if both the functions G(s)—G.. and G(s)— G¢ are summable in

R™. This last condition is very interesting from the physical viewpoint, because it
reveals a relation between the macroscopic body behaviour and microscopic quantities.

In our context, the function G(s)— G.. has evolutionary character in the sense that
the Boltzmann function and Gg may rightly be used to describe the effective value of
the Cauchy stress tensor at instant ¢ and that this tensor may be expressed
simultaneously by G(s)— G. - and by the elastic equilibrium module G, i.e., by
imagining to affect the initial elastic properties of the material by the final properties.
This is effectively possible in the elastic case where we have G = G. neglecting
microstructural oscillations of the crystal lattice.

With these ideas we are able not only to explain how to define linear and strongly
viscoelastic material and to resolve the open question on the major symmetry property
of the relaxation function, but also to establish necessary and sufficient uniformly
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elliptic conditions, which are closely connected with the constructed definition of a
linear and strongly viscoelastic material.

By using the last conditions and the Fourier anti-transform method [5, 6], we will
establish an existence and uniqueness theorem for bounded and rapidly solutions of the
quasi-static problem, with assigned boundary data, relating to a linear strongly

viscoelastic material in a particular subclass of functions of Hl’l(R;Hl'Z(Q)) N

N H*(R; H**(Q)), where Q is an open bounded domain of R>.

We conclude by remarking that the considered space of the solutions is a direct
consequence of the assumed hypotheses together with the boundedness of the work of
internal stresses on (—eo, +e0), the cause-effect principle and the conditions of
thermodynamic compability.

2. Let B be a linear viscoelastic and homogeneous material system described by
the following constitutive functional:

o0

T(xt) = Go)EX,2) + [ G/(x,)E/(x,5)ds =
. _
4o
= G.(x)E(x, 1) + I [G(x, 5)— G.(X)]E'(x, 5)ds, ' €))

0
T(x,1) = TT(x,7), (x1)e QX[0,+) = O,
where T(x, t) is the Cauchy stress tensor, G(x, s) and G'(x,s) are respectively the
relaxation and Boltzmann fourth-order Cartesian tensors, Gg(x) and G (x) denote
respectively the instantaneous and equilibrium elastic moduli defined by:

Go(x) = S]j_.l):an(x, s) = G(x,5) - IG’(x, T)dT,
0
+oo

G.x) = SEIEMG(X,S) = Gg(x) — JG’(x, 1)dT,
0

E(x, t) = % [Vu + (Vu)r] is the second-order infinitesimal strain tensor, where u (X, t)
denotes the displacement vector, E’(x, s)=E(x,t—s), se€ [0, +e), for every fixed
te [ 0, +o0), denotes the history of the infinitesimal strain tensor at instant ¢; finally
Q is an open and bounded domain 6f R3 with sufficiently regular boundary 9Q.

For convenience, we extend G(x, :) to (—eo, +o0) as an odd function, G(x, s) =
=—G(x,—s) and G'(x,5)=-G'(x,—s) V s€[ 0, +=), and make the following
hypotheses Vxe Q:

SG’(K, ')E LI (Os +°°):
G'(x,-) = G.(x) = - [ G/(x,t)dre H™(0,+e<) N HY*(0,+), )
5

lim s*[G(x,)-G.(®)] =
$=> oo
If and only if Go(x)= G_(x), then forall t=0.
im J [ [x ” )ﬁ W(X)Mwﬂdy = 0;
a—pteo yz
where y=a(s—t) and a>0.
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The following hypotheses will be used:

1. Itis assumed that G’(x, -) is continuous V xe Q while G”(x, -) is piecewise
continuous; furthermore G’(X, -) verifies Dini condition at every point of discontinuity
and in a neighbourhood of such points G”(x, -) is bounded.

2. The fourth-order symmetric tensors Go(x) and G (x) are positive definite

and continuous in Q; furthermore G(x,-) and G’(x .) are continuous in Q with
respect to every ﬁxed S.

‘We can formulate the following definitions.

Definition 1. A continuous material system defined by the constitutive functional
(1) is called to be strictly viscoelastic if and only if in hypotheses (2) the following
conditions hold:

D) G(x,-)—Go(x)e L1(0,+) VxeQ,

G(x,5)=Gl(x,5)V (x,5)e QX[ 0, +);
II) there exist two constants |y > Wy > 0, such that:
LA:A > A [Gy(X)-G.(X)]A > LA A
VAe Sym(V)/{0} and Vxe Q,
where Sym (V) is the space of second-order Cartesian symmetric tensor of Rs
and symbol : denotes a scalar product of tensors;
IIT) the dynamic viscosity tensor
oo
G (x,w) = I [G(x, 5)— G..(x)] cos ws ds

is: positive deﬁmre and bounded i.e., there exist two constants B; > B, > 0
independent of w, such that: /

B1A:A> A: GC(X WA > [32A A VAe Sym(V)/{0},
VYwe (—e,+0) and Vxe Q,
in particular, ¥ xe £, we have:

BiA:A>A: lim G.(x, WA =
+oo.
= —A: st'(x, s)dsA = A: j [G(x, )= G.(X)]dsA > BrA: A
and wk)ni» Gc(x, w) =0; .
IV) Vxe Q, YAe Sym(V)/{0}, 3vy, vy >0 such that:
A:[Go®+Gix WA = A:[Cu®+WwG,(xW)]A 2 viA:A Vwe R,
w2A: G (x, WA = ~wG’(x w) =2 v,A: A Vw#0, where

+oa +oo

G, (x,w) = J G/(s)coswsds, Gyx,w) = J [G(x, 5)— G..(x)] sin ws ds,
0 : 0

oo

Gi(x,w) = _[ G'(s)sin ws ds,
0
and vq, Vo do not depend on w. In particular for all xe S we have:

A: lim [Go) +Gi(x, w)|A =

= A: lim [G.(®)+wG,(x, WA = A: G.()A2VA: A,
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A: lim [Go®)+G;(x WA =
= A: lim [Gu(®)+wG(x, W)|A = A: Go(x)A>V,A: A.
Definition 2. The body B is linear elastic if and only if G(x, ) — G..(x), G(x,
)= Go(x)e L1(0, +0) VX Q in hypotheses (2), i.e., if
T(x,t) = Gyx)E(X, 1) = Gou(X)E(x,1) Ve [0,T,) where T,<+eo,
In particular the body B is classically linear elastic if and only if
T(x) = Gg(x)E(xX) = G.(X)E(x).
By the Young inequality and the conditions (2), setting E(x, t) = E(x, —s), V (x,
t)e Qx( 0,—e) we have:
HT(X, ) HLP(.R) < |G0(X)H|E(x: ')”LP(R) + “G’(x: -)E(X, )”LP(R) =
< IGO(x)l ”E(X, .)”LPCR) + u G’(x, ')“LI(_R)“E(X: )”LP(R) VxeQ ] (3)
1T lypy < 1GwGOE ey + 1665 )~ Gl )] ., <

= J Gm(x)l || E(X, ) ||LP(R) + ” G(X, ) - G'“(X) [lLl(R} || E(x’ ) ”LF(R)’

provided that E(x, )& H"P (—co, +e0) and G(X, )—G.(x)e H" (0, +) Vxe
€ and p=1.

In order to explain that the value of the convolution integral of the functional (1) in
(%, +o0) does not contradict the cause effect principle, we observe that by setting T =
=t—s and E(x,—1t) V (X,T)€ QX (= , +o0) we can rewrite (1) in the following
manner: ' '

T(x,£) = Gy(E(x, 1) + jG(x 1-H)E(x, 7) dt + j G(x, t—-T)E(x, 1) dT =

—c

0
= G.MEX 1) + [ [G_a(®)-G(x, 1 1)]E(x, 7)d7 +

+ j [G(x, t—1)—G.(X)|E'(t)d=. 4
By Young’s inequality it ;ields:
1T Mgonzea < [Co®IE® Mygnzeg + 166 VE® Mignre <
< 1Go®INE Mpgn g * 166 by B® Magare  YXQ,
1T Mgz < 1G=@IIER- )ﬂ;_xmmﬂ) )

+ 666 )= GBI s oy S
= iGW(x)l EI E(X, .)“LI(R)nLP(R} + u G(X, ) = G(X) ||LP(R} “ E(X, ‘)“LI(R)HLP(R),:

provided that G(X,:)—G.(x)e HP(0, +e) and E (X, )€ H"(—oo, +0)
Vxe Q and p=1.
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Equating (3) with (5) we obtain:

G(x, )~ Gu(x)e H"(0,+e0) N H"P(0, +),
- ; ~ g (6)
E(x,-)e H (=00, +00) N HYP(0,+) VxeQ and p=1.
Moreover the work done by the Cauchy stress
+oo

L(—s0,+00) = | T(x,): B(x, t)dt

—oo

is bounded because the power W(x, t) of the stress tensor T(x, t) verifies, by virtue
of (3) and (5), the following inequality:

W M 4y S 1T, )IILI(_,, Y R
x B, ]

This inequality and the conditions (6) in turn imply that
G(X, )= G (x)e H*(=oo, +00) N HP(—oo, %), p>1, and VxeQ,

0

L (oo, 400) N L7/ (oo, ree)

E(x,-)e H"(—co,+00) N HP(=oo, +00), (8)
E(x_. ')E L”(—oo’ +oo) ﬂL‘PI(‘p_l)(—m: +oo)‘
Interesting cases from the physical viewpoint are those in which in (8) p =2 and
p = ee, ie., respectively

G(x, )= G (x)e H" (=0, +00) N H**(—o0, +0) VxeQ,

; _ ©)
E(x,-)e H"(=oo, +00) N H"*(—oo, +0), E(X,")€ L(—o0, +o0),

G(X, )= Gu(X)€ H¥ (=00, +00) N H" (oo, +) VxXeQ,

' (10)
E(x,-)e H"(—co, +00) N H"™ (=00, +00)".

3. The quasi-static problem for a viscoelastic body expressed by the functional (1)
is formulated by the following Dirichlet problem:

div {Gm (x) grad u(x, £) + JT[G(K, §)— G (x)] grad uf (x, s) ds} + b(x,t) =
0

+oo
= div {Go(x) grad u(x, t) + _[ G'(x, s) grad u' (x, 5) ds} +b(x, 1) =0, (xt)e Q,
0 ;
(11
u(x, t) [ag =0, where wu(x,t)= u(x,t)—u_(x), ;l,ilfmu(x’ 1) = u(x),
b(x,t) = b(x, t)=b (x), Ili}n_;nmb(x, ) = b(x)".

‘We can extend this problem on all of R if we consider the symmetry properties of
the relaxation and Boltzmann function and if we introduce this history of the body
forces b'(x,s) =b(x,t—s), s€ [0, +), respect with every fixed te [ 0, +o°),
setting b(x, £)=b(x,—s) and u(x, t)=u(x,—s) V¢ s5€{0,+ ~) and Vxe Q.

* This case is interesting because of thermodynamic compability conditions.
** We introduce the function u(x, ) in order to discuss also the case grad u(x, — <) #0.
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- The notation b(x, t)= IL?(R ( e ok 1’2(.(2)) 1< p < oo, means that in further function

b(x, t) as a function of t€ R maps R into H“2(Q) for a]l x e Q, is measurable
and its norm is calculated according to the formula ,

-1
P
[|5(x, r)||yp(R S H2(Q) = [Hb(x, r)JH‘Z(Q) ] < oo, 1<p<ee,

If hypotheses 2, (9) and (10) hold, it is possible to prove the following theorem.
Theorem 1. Assume that the body [ is strictly viscoelastic according to
definition 1, that

b(x, t)e L'(R; H-*(Q)) N L*(R; HI’Z(Q)) b(x,-)e S.(R),

and it has compact support in R Then there exists at least one solution with
compact support

u(x, t)e HLl(R;HLZ(Q)) N HI’Z(R;HI'Z(Q)), u(x, e S.(R),
such that

+oo
f {Gm (x) Vux, t) + _[ [G(x, 8) = G..(x)] Vi (%, 5) ds} : VH(x, X/, t)dx’ =
Qf 0

= J' {Go (x) Vu(x, t) + _F G'(x, 5) Vi (x, s) d.s} : VH(x, X/, )dx’ =
Q 0 .
= [ bx,HH(x X, dx’ _ (12)

Qf
VH(x X, f)e L(—o, +oo; HY2(Q) x H(Q)): H(x, X, x)|ag =

where H(x, X, t) is strongly measurable, if X' #x, and S..(R) denotes the class

of C™ functions u(x,t) with respect to t, for which there exist constants Cp,
dependent on u(x,t) and on numbers p and q, such that:

| |#7ofu(x, H|'dx < €2, [ |Po@Vu(x, 9|*ax < 2,
Q o .
Proof. We consider the Fourier transformed problem of (11) in Nl
V-{[G,,(x) + iwG(x, w)]Vﬁ(x, w)} +bx,w) =
= V-{[Go(x) + G W)V, w)} +bxw) =0, (13)

(X, W)€ QX(—oo, +e), A, W) |, = 0,

i

where
G(x,w) = r[G(x, 5)— G.(x)] exp(—iws) ds,
5 :
i(x, 1) = —fﬁ_j:u(x, fexp(iwt)dt, b(x i) = ﬁ__[ob(x, ) exp(—iwf) dt

ISSN 0041-6053. Yip. mam. xypH., 2000, m. 52, N* 7



TIME-IRREVERSIBILITY AND EXISTENCE AND UNIQUENESS OF SOLUTIONS ... 929.

and
+oo

Fxw) = [ G/(x,Hexp(-iws)ds.
0

The first equation in (13) is strongly elliptic [7], as we can verify by part IV of
definition 1; consequently, when b(x, t)=0, u(x, #)=0 is the solution of the problem
(11) [7]. In order to prove the existence of nonzero solutions of problem (11) one must
show that equation (13) is not only strongly elliptic but in fact also uniformly
elliptic [7], that at least one of the following conditions holds: Vx e Q, V A e

€ Sym (V)/{0}, 3v4, Vv, >0, independent on w such that:
A:[Gom) + GL(x, WA = A:[Gu(®) + WG, (x WA = v;A:A VweR,
(14)
w?A:G,(x, WA = —wGi(x,w) = V,A: A Vwe R
As a consequence of the part IV of definition 1 the first condition of (14) holds
while the second condition is verified if w # 0. Furthermore we have
aBWx,w) = Gw)'ax,w) =0 V(x,w)eQxR and h223,  (14)

where h denotes the derivative of order & of u(x, t) with respect to time. This
condition restricts strongly the function class in which solutions of problem (13) may

~ exist: one must seek the solutions of problem (13) in the class of functions u(x,-) -
such that #(x,-) and u(X,-) are null outside a suitable compact interval and rapidly

decreasing.
We consider the following dual problem of (13):

V»{[G,,,(x) + iwG(x, w)]VH(x, X t)} +d(x'—x) =

= V{[6o@ + & W]VEE X, 0} + 5(¢-x) = 0 (15)

V(xx,w) e Qx QX (=0, +), H(x,x’,r)]an =0,

where H(x, X/, 1) is the Green function of problem the (15), 3(x'—x) = & G =xf)e
and (0, ¢) is a fixed reference system of R

Due to strong and uniform ellipticity conditions of equation in (14) and hypotheses
assumed on the Boltzmann and relaxation function there exists at least one solution

H(x, X, ) € L”(~oo,+oo; H-*(Q)x H-*(Q)) of the problem (15) [5, 6], which is
strongly measurable if x"# Xx.

Taking the scalar product of (13) and (5) by H(x,x’,#) and #u(x,w) respectively
and integrating over £’ we obtain

| {[Gw(x) + iwG(x, W) Vu(x, :)}: VH(x, ¥, f) dx’ =
&

= f {[Ga(xj_ + & (x W) Vi, :)}: VH(x, X, ) dx’ = [ b(x, B X, 1) dx’;

folf Q
(16)
f {[G,,(x) + iwG(x W) VE(x, X, r)}; Vii(x, f) dx’ =
& _
= J {[Gu(x) + G'(x, w)]VH(x, X, t)}: Va(x, ) dx’ = i i (x, w).
at % 1
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Because of the major symmetry property of the relaxation and Boltzmann function,
from (16) we find:

i(x,w) = [ b'(x, w)Hy(x, x'w) 8le; dx’. (17)

n}
The properties of boundedness and continuity of H(x,x'w), x’ # x, and of the
coefficients of (13)) even as w — +eo, of compactness of the interval on which

b(x, ) is deimcd and of the continuity of b(x ), are sufficient conditions so that a
solution of the problem (13)

a(x, 1) € HLl(R;I}H(Q)) N HY*(R; H-*(Q))

exists such that #(x,-)e S (R)
As it is easy to verify,

u(x,t) = %Lﬁ(x, w) exp(iwf) dw € H"(R; H**(Q)) N H(R; H*(Q))

and 4(x,-)e S.(R) is a solution of problem (11) verifying (12).
The uniqueness of the solution of problem (11) is stated by the following theorem.
Theorem 2. Under the assumed hypotheses of Theorem 1 there exists one and
_only one solution of the problem (11) that verifies (12).
Proof. If we consider two solutions u; (X, f) and u,(x, ) of the problem (11)
verifying (12), by (13) we have that

V‘{[G,,(x) + iwG W) |V [y (5 W) - (x, w)]} =

= V{[6o0 + F@WIVGEm-BEW]} =0 (8
(x,w)e Qx (=00, +oo), ﬁ(x, w)lan. = Q.

As we have proved before the only solution of the problem (18) is 7 (x, w) —
— Up(x, w) = 0, from which it follows that u; (X, t) = u, (X, t). '
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