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REGULARIZED BROWNIAN MOTION
ON THE SIEGEL DISK OF INFINITE DIMENSION

PEL'YJISSPU30BAHNI BPOYHIBCHKUI PYX
HA HECKIHYEHHOBUMIPHOMY OUCKY CITEJIA

We construct a process of Brownian motion on the Siegel disk of infinite dimension.
INo6ynosano npotec GpoyHIBCLKOTo pyXy I1a HecKinyenuosumipromy aucky Cirena.
The theory of groups of infinite dimension and their homogeneous spaces needs
integration theory fitting to the underlying algebraic structure. In fact sometimes it
exists on the Lie algebra a canonic Hilbertian structure induced by a canonic cocycle.
This Hilbertian structure defines a formal canonic Laplacian. Then a natural question
is to pr0v1de an effective construction of the corresponding heat process. This have
been done in [1] for the diffeomorphism group of the circle. We shall make below a
preliminary study of the case of Siegel disk of infinite dimension,

1. Siegel disk in infinite dimension and its Kihlerian metric.  We consider the

space V of real valued C'-functions defined on the circle with mean value equal to
0. On V we define a bilinear alternate form

L2
w(u,v) = = J uv’de, (1)
0

which is canonic in the sense that it is the unique alternate bilinear form invariant under
the action of orientation preserving diffeomorphism of the circle. As consequence it is
possible to obtain a representation of the diffeomorphism group into the symplectic
group consisting of automorphism of V which preserves the symplectic form ®. We
introduce on V a complex structure defined by the Hilbert transform

7. sin(k©) — cos(kB), cos(kB)r> —sin(k8).

We define on V an Hilbertian metric

Null® = -, Ju);
then
2

Z a, cos(kB) + bksm(kﬁ) = Z k(ap + bf)'-h | ok )
k>0 : k : - i

Then 7 is an orthogonal transformation of V. _
We denote H = V® G; then H can be identified with complex valued functlon !
defined on the circle having mean value 0; on H the operation of conjugation f+~> f
is well defined. The orthogonal transformation 7 can be diagonalized in H; as & =
=—1 only appears the eigenvalues /=1 and —./—1. We denote H * the eigenspace
associated to the eigenvalue ~/—1; then we can identify H * to the vectors of type

(1, 0) thatis the vectors of the form v — +/—1 J(v), v e V. We can dlso identify HY
with the functions having an holomorphic extension inside the unit disk. Then define .

H™ = H™; then H™ can be identified with the functions on the circle which possess
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REGULARIZED BROWNIAN MOTION ON THE SIEGEL DISK ... 1159

an holomorphic extension outside the unit disk which is regular at the point at e of

the complex plane. The bilinear form ® extends to a bilinear form & defined on H
and we have

aw,w) =0 if w,weH" or w, weH.
‘We define a symmetric C-bilinear form on H X H by
(hi, ) = (|ky), then (hy, ko) = (B, Tp). (L)
Then
@, k) = (hf hy) = (A, B3). C )
Given A € End(H) we denote AT the transposed defined by
(Ahi,hz) = (;!ll,ATkz).

Given a e End(H'), then the matrix (3 3) makes possible to identify

End(H*)c End(H); then a’e End(H) is well defined; furthennorc we have
through the duality coupling

(ah®,h7) = (h*,a"h7);
which means that a” € End(H™). The adjoint a’ € End(H™) is defined by
(awy|wy) = (wyla*wy)  Vw,w,e H.

The conjugation operator sends H* +> H™ therefore @ € End(H ™). and we have the
fact that the adjoint is obtained by conjugation followed by transposition

at = @T = ?.
A linear endomorphism U of V extends to an endomorﬁhism U of H.
Denoting ©t¥, m~ the projection of H on HY, H™ we introduce
a:=ntUn*; b:=ntln.
The fact that the endomorphism U commutes with the conjugation it is equivalent
to the fact that the second line of its associated matrix is the conjugate of the first line
that is:
U a b = U i @20)
- 5 a" LA CI, bl » U )
The conservation of the symplectic form (1;) by U, j is equivalent to _
@7 (a+b) - b7 @+5) = nt, (&)Y (a+b)—a’ @+5) = -n",
we remark that the first relation is the conjugate of the second. Therefore we have only
to take care of the second relation which by splitting on the components H*, H™ gives
aa —b'b = n~, andits conjugate ata-bTh =xt, 2 3
a’h — b'a =0, anditsconjugate a'b —bTa = 0. (™))
We define Symplectic Group of infinite order, let Sp (=) as the group of matrlces
U,,, invertible and preserving the symplectic form (1;) and such that

trace (b7 b) := |[B]|2 < . (255
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1160 H. AIRAULT, P. MALLIAVIN

The preservation of the symplectic form is equivalent to the relations (2;), (2;).

In finite dimension the invertibility of U, ; is implied by the relations (2;), (2;).
In infinite dimension this is no more the case and this invertibility is equivalent to the
following relations

gal —bbT =n~, ba' —ab’ =o0. 2iy)

Then Sp (=) can be defined as the matrices U, ), which have theirs coefficients

satisfying (2)— (2,).

Theorem 1. Denote )
Z:={ze LIH ;H); 7' =2, ||zl <} €y
and denote w(H') = {y e Bnd(H"); yqr +y =0}. Then the Lie algebra of the
symplectic group G = u(H")® Z, the product being given by
(32, (2] = () + 28 — 42, Og + 2 —nz—a¥). Gy

Proof. By linearizing the equations (2;), (2;) at the neighbourhood of e = U, ¢
we get
Y +5=0 z-z =0.
By conjugating the first equation becomes yT +y = 0 and the second becomes z =
—z =0, By bilinearity it is sufficient to consider several special cases of (3;;).

" The case z=2z; =0 is trivial as reduce to the unitary group.
The case y; =0, z=0 comes from the computation

[Uy,(h UO.zl] = Uﬂ,uz—zﬁ‘
The case y=y; =0 comes from the computation
[UD,Z’ Uﬂ,zl] = UZE; -z
We define the infinite dimensional Siegel disk
D.:={Ze 2;1-2'Zz> 0}. )

Theorem 2. Considering Z € End (H) through the matrix (g g) the

group Sp (e=) operates on D,, by

Zw> Y= (aZ+b(BZ+a) (43)
Remark 1. In the above formula a, b are identified (8 8), (8 ‘8)
e End (H).
Proof. We have firstly to show that Y e L(H';H*): we have @ € End(H ),
bZ e End(H"); therefore (bZ + @)~' € End (H").
We have secondly to show that YT=v:

YT = (zbT + aY) 1 (za” + b7,

€

ﬂllemforc the identity YT=vY is equivalent to _
0= Zd" +bDYBZ +a) - @b +aYazZ +b) =
= Z2@b-ba)Zz+ 0" -da)z+z@a-b'b)+bTa—ab,
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the first coefficient vanishes accordingly (2;;); by conjugating (2;) we obtain the
vanishing of the fourth coefficient; using (2;) and its conjugation we obtain
=SuRnZ A2t
these two terms are zero according the fac;i‘. that Z is matrix (8 g) ..
We have to check that ¥TY — n~ < 0; denote
Ay:=n"-Y'Y=n -YY, D:=(}Z+a) (4g1)
then
D'AyD = —(Ztat + Y@z + 1)+ @' + )b 2 + @) =
= -Zata-b"0)Z-Z @b -bTa) - b a-ad"D)Z - b -d"a) =
e
equality obtained by using (2;;) and remarking that the first term can be written as
Bk Finally we have proved that
= (YA 50, . v ()
We have '
Naz+B)EZ+a) 7y < 1GZ+a)  |.(IZlly + 15ll,) < oo. e

Finally we have to check that the action is a group homomorphism: we make in (4;;)
the substitution Z > (a4 ¥ + b)(@ + b Y) and we get

(a@Y+b)+b@+bV)@@+buY)+b@Y+b)" =
= (@Y +b)@ + b1
where a, = aa +bb, b, = ab +ba;. o

Proposition 1. The orbit through Sp(oo) of the matrix Zg = Q s the set of
matrices of the form

Z=1b@™". (1)

As (a,0)e Sp (=) iff d e U(H") the unitary group of H, then
the orbit of Zy == Sp(e=)/ U (H™); (5y)
the orbit of Zy contains a neighbourhood of e € Sp (e=). (5y1)

Proof. We consider the map @ : Sp(e) > D(e) defined by (a, b) pa~l

Its derivative ®’((Z,0)): G+ 2 and it can be identified to the projection of G on
its second component it is therefore surjective. The implicit function theorem gives the

conclusion. e
The Kéhler potential on D, is defined as

K(Z) = —logdet(1-2"Z) = —tracelog(1-2"2) = —tracelog A,  (6;)

these equalities being intrinsic can be proved using a basis diagonalizing Zha:

Theorem 3. The Kéhler potential is invariant under the action of U (H™) c
< Sp (e=). We have

K(®a™") = tracelog(l +b1b). 6;)
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Proof. We remark that a'e U(H*) implies @~ = a' =a7; therefore the action
of U(H™) can be described by

ZwaZal and ZZ > cZZct

with ¢= @ . Therefore det(1 - Z) is invariant under the action of U(H™).
‘We have on the orbit of Z,

z=va", z'z= @)z
Therefore
~logdet(1 ~ Z'2) = —logdet (1 - (@) "6 ba") =
= logdet((@") (@@ - b'B)™")
using (2;) we get
= logdet (@a’)

then the conclusion results from (2;,). *

Theorem 4. The mixed Hessian, which is the (1, 1) differential form 90K 5 T8
invariant under the action of symplectic group; at Zy it is equal to the symplectic
form @ ; therefore D (=) becomes an homogeneous infinite dimensional Ké&hler

manifold,
Proof. We remark that (4;;) implies that

K(@Z+bGEZ+a)™") = K©Z) - 2R (tracelog (b Z + @))
the last term is the real part of a holomorphic function in Z and has therefore a
vanishing (1, 1) Hessian: we have obtained the invariance of the Hessian under the
symplectic action. e
We take as tangent plane at Z; the element of the form (0, ez) where ee C.
Then (6;) gives .

K(ez) = trace(EeZz) + o(e?).

2. Regularize:c'l- Brownian motion on the Siegel disk. We shall follow the
methodology of the horizontal Laplacian and of the horizontal diffusion which has

the advantage to realize the Brownian motion on D(e=) on the symplectic group
itself, where the Maurer — Cartan differential form gives a natural coordinate system.

In order to construct an orthonormal C-basis of Z we shall implement a
coordinate system adapted the content of Section (1). We choose a C-basis ¢, of H 3

Then &, := ey isabasis of H. Wedefine v; y& L(H ;H") by

vf.k = €j® e which means vj.k(h_) = (;"1_, ej)ek Yh e H.

In the same way we define

vi, = € ®¢ge LIHHY),
UJ“‘E = €j® BEE L(HH; H—),
vig = §®ge LHH).

Denote ot=j or c.=j and in the same way B denotes either k either k. Then the
following formulas holds true;
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— T
Vap = €a®ep  Tpp = VgEs  Vap = Vpas Vop = VB
We define
1 :
Yp= T @k ), JERES ;=0 (71)

Thenfor 1<j<k the  k constitutes a C-orthonormal basis of Z. We deduce the

following R-basis u e = (- 1)° ujx, where & takes the values 0, 1.
We define the hm izontal Laplacian on G := Sp(ee) as

2
Ao = 33 ¥ 4 oécgexp(su?,k)). (T3)
E=

5 1<j<k g€

Proposition 2. The differential operator Ag is invariant under the left action of G.

It is right invariant under the action of the unitary group U (H™). (74

Proof. The left invariance is obvious. The infinitesimal action of Uexp(eyy,0) OD
Z is computed in (3;;) as A,: z+> yz — zy; then A, is antihermitian for the
Hilbertian metric trace (zz):

trace (FZ — ZY)z + Z(¥z — 23)) = trace (¥ (Z2) — (Z2)y) =
Corollary. Denote A p the Laplace— Beltrami operator on the Kéihlerian
maniforld constituted by the Siegel disk D ; consider the projection p: G+
> G/U(H") = D; then for any smooth functional ¢ defined on D, we have

(Ap@)ep = Ag(@op). (Tiv)

The regularized Brownian motion on Z. To the Hilbert space Z, Irving Segal
construction associates a canonic probability space, let Seg(Z) which carries the
canonic Gaussian cylindrical measure associated to Z. In the same way a canonic
probability space which carries the canonic cylindrical Brownian motion on 2 is
defined. A realization of this probability space can be made by choosing an
orthonormal C-basis u; ; of 2 and by defining

x(t) 1= i uj_kx-‘f'k(r)

1<j<k

where x/'¥(*) are independent C-valued Brownian motions. All the content of the
Segal construction is to decipher the properties of x(*) which do not depend of the
choice of a basis.

We will exponentiate x(*) to G by solving an SDE. To be able to apply the

scheme it is needed to regularize x(*) by introducing as in [1] a regularization
parameter r € ]0, 1[ and considering for r fixed the regulanzed Brownian motion
on Z defined by '

X (1) = z Uj i pITk ik @®. (8;)

l=jsk

The horizontal dlﬁ‘u.ﬂon is defined by the solution of the following Stratonovitch
SDE

ISSN 0041-6053. Ykp. smam. xypu., 2000, m. 52, N¢ 9
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0 edr()
odz, (1) 0

Then t+>p(g,(t)) describes the regularized Brownian motion on D.
We explicit this SDE by writing g,.(t) = Ua,,(r),bx(r) and we get the system:

8x(t) = g, (®) ( ] g:(0)=e. (8;)

day(t) = by(t)edx,(t), db.(t) = a.(t)odx(t);
(851)
a,(0) =1, b, (0)=0.
To get estimates it is necessary, as usual, to work in Itd formalism; we must therefore

compute stochastic contractions.
Proposition 3. The It6 contractions of (8;;) are given by

dx()*dx(f) = A.dt, where 4. = z( 41’) e®e;, (8

1—-r2
dx(®)*dx(t) = AT dr. (8,)

Remark 2. When r — 1 the positive operator 4, converges towards +eo, fact
which shows the necessity of some renormalization.
Proof. We have

rj-l-k
dx = zerU}j+ z ,J_(U +U )dx"k

I<j : 1<j<k
The contraction dx(r) * dx(t) gives rise to three series: the first series
Er‘”v V55 = Zr“-’e @e;;
1<j 1=j
the second series is composed of terms

Uj,kv},]? :0, as j;“—'k;

the third series is obtained by permuting above j and k leaving fixed j and k :

ea

25
rie; Qe;.

. ) 1
Z g2 U (C e}) e Qe + (e, ) e; ®e;) = o,
l=j=k r=1
Theorem 5. The regularized hor ;zontal diffusion on G satisfies the system of
Itd equations

I

da.(t) = b, (t)dx,. () +1 a (H A, dr,
©)

db,(1) = a, (t) dx, (t) + %bx AT dr.
It can be shown that for » fixed (9) has a solution. Using in the next section another

system of coordinates we shall see the persistence of this need for renormalization.
3. Using holomorphic kernels as space of coordinates. The Hilbertian structure

associated to the classical Wiener measure is the space H ! of functions defined on

[0, 1] having their first derivative in L2 We want to interpret the K#hlerian metric on
the Siegel disk in a similar manner.

In our setting we shall consider the space H* of holomorphic functions inside the
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unit disk D (resp. #~ will be the space of antiholomorphic functions on D). In this
setting a = A, 8,) e H ® H* and b = B({;,{,)e H® H.

Theorem 6. The kernels K, associated to z € Z are characterized by the
Jfollowing relations:

2 2
2l = 5 | seae| it <= K@) = Kot a0
D
b(R) = JaC o) S a"‘ L. (10)

Proof. For fe H* we have the identity

1715 = jlf QP = 3 nle, 2, (105) -

n=1
where
) = 3 el
n=1
identity which together (1;;) implies the theorem. e
Reproducing kernels. Given {y € D the linear form Iy : H{ +> C defined by
h— h(Lg) is continuous. Therefore there exists Rc @ € H{ such that

h(Go) = (C) (C)dC 11y
Re, @ = ;lﬂ%tcoi)” = B0 (11;)
where
D(A) = (A-1)log(1-2) + A.
Then
_ I
ac ac R;U (Q) (I)(},) where @(},) S 1—1-' (Ilm)

Brownian motion on 2. The x/'* being defined as in (8;) we define

Xllivla) = D, Aclcz)fx“(m— S Lk + ek az)
i=jJ '\/_ls_;sk ik

Then the stochastic contraction becomes

(dX * dX)(W, M3) = {z %(ﬁl"ﬂz)j +

1<

2 (711712) + = 2 (ﬁﬂh)j]d? = o X P(MMy). (12)

"/—d ls;sk
Again aregularization procedure is needed as in Section 2.

1. Malliavin P. The canonic diffusion above the diffeomorphism group of the circle // C. r, Acad. sci.
—1999. -329. - P. 325-329.
Received 08.06.2000

ISSN 0041-6053. Yxp. mam. xypu., 2000, m. 52, N° 9



	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013

