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THE STOCHASTIC FLOW AND THE NOISE
ASSOCIATED TO TANAKA’S STOCHASTIC
DIFFERENTIAL EQUATION

: CTOXACTI/I‘IHI/I[’I IIOTIK TA IIYM,
ACOIIMOBAHMM I3 CT OXACTHYIHAM
AUOEPEHIIAJIBHAM PIBHAHHAM TAHAKU

We study properties of a noise (in the Tsirelson sense) which is generated by solutions of the well-
known Tanaka equation.

HocimyloTseA BAaCTHBOCTI ymy (B posyminni B. Hlpenhcoﬂa) AKHH MOPOJKYETHCA PO3B’ A3KaMH
Bl,U.DMGI"O plBI]EHIIﬂ Tanaxu,

1. Introduction. Consider the following one-dimensional stochastic differential
equation (SDE) for given s,x€ R:

dX, = sgn(X)dw,, tzs, X;=x, 1)

where sgn(y) = 1pg,)¥) = lcwe,0y(¥), w = (w,) is a one-dimensional Wiener
process and dw, is the stochastic differential in the It sense. This SDE was first
introduced by H. Tanaka [1] as a simplest example of SDE’s having law unique
solutions which, however, can not possess any strong solutions. Indeed, any solution
X = (X)) of(1)is a Wiener process starting from x at time s so that it is unique in
law. On the other hand, we have by Itd — Tanaka formula

Iy t
1%, = |x - lim )" [ 1o (IXu) du = [ sgn(X)dX, = w - we, ()
) e—0 g y

and we have also, by the uniqueness of solutions for the Skorokhod equation (cf. [2],
also [3, p. 122]),

151 = 1l + =, = gl (<] + w, = w) A0) ®

Then it holds that o{|X,|;s<u <t} = o{w,—w,;s< u <t} which is strictly

smaller than 6{X,;s <u <t}. This clearly implies that X can not be a strong
solution to SDE (1).

In Section 2, we show the existence and the uniqueness in law of a family X =

= {X; &)} of solutions to SDE (1) which forms a coalescing stoshastic flow. This

stoshastic flow X naturally generates a noise. The noise is a notion in continuous
time which corresponds to the notion of i.i.d. random sequences in discrete time. This
notion has been introduced and studied deeply by Tsirelson [4—6]. The noise
generated by the flow X of solutions to SDE (1) may be a simplest example of
predictable, non-Gaussian or non-white noises.

Given anoise { % ,} and fe L (5‘(') 1) withthe L%-norm 1, the notion of the
spectral measure for the noise has been introduced by Tsirelson as a probability
measure [y on the space (g ;7 formed of all closed subsets in [0, 1]. In Section 3,

we will determine WL, for the noise generated by the flow X = {X; t(x)} of solutions

to SDE (1) when f = sgn(Xp (0)). This problem has been already studied by
Warren [7]. Our approach is somewhat different; we compute it directly without
relating it to a random walk approximation.
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THE STOCHASTIC FLOW AND THE NOISE ASSOCIATED TO TANAKA’S ... 1177

2. A stoshastic flow made from solutions to SDE (1). For a fixed s R, we
consider a family X®) = {X, ,(x); te [#,)},.x of continuous stochastic
processes in time ¢ defined on a probability space (Q, F, P) endowed with a
filtration F == { % },5; and a one-dimensional F-Wiener process w = (W,),ss,
such that, foreach xe€ R, t€ [s,~) = X, ,(x)e R isan F-adapted solution to

SDE (1). We call such a family X" a family of solutions to SDE (1) starting at time
s. For such a family, we consider the following mutually equivalent conditions:

(A X is monotone in the sense that, for each x,ye R with x<y and t>ys,

P(X, ,(x)<X; ) =1

(Ay) X is monotone in the strict sense that

P(X;,,(x) < X; ,(y) foreach x<y and t2s5) = 1.

\

(Asz) x©) s coalescing in the sense that, for each x,ye R with x=#y, if the
paths € [s,°0) > X ;(x)e R and te€ [s,%) — X, ,(y) € R meet at time 7, for
the first time, then they coinside for all 72 7,.

The equivalence of (A[), (A;) and (A3) is easy to see and its proof is omitted.

Proposition 1. There exists a family X ) = {X, ,x);t€ [s,%)},er o
solutions to SDE (1) satisfying one of the above equivalent conditions (Ay), (Ay)
and (Az). Furthermore, its law is unique.

Proof. First, we construct a family X = {X;,/x);te [s,%°) } e g of solutions
to SDE (1) satisfying the condition (A;). Take a one-dimensional Wiener process
{B(t)};»; with the natural filtration F = { /%, },», and define

X, ;(0) = B(t) - B(s)

and
3
w, = _[ sgn (X, ,(0))dB(u) for t=s.
s

Then (w,);ss is an F-Wiener process with w, =0 and {X; ,0)},5, isan F-
adapted solution to SDE (1) for x=0. For x # 0, let ¢ = min{u>s| |x|+w, =
= 0}. Since |X,,0)| = w,— min_w, by (3), we see easily that X, ;(0) = 0.
, A ;
Now we define {X, ;(0)} s, as follows; if s<t<o, then X, ,(x) = x +w, or
Xy :(x) = x—w, accordingly as x>0 or x<0, andif t=0, then X ,(x) = X, ,(0).
It is easy to verify that X = {X; (x);te [5,°°)} e g so defined is a family of
solutions to SDE (1) satisfying the condition (Aj3).

Next we prove the uniqueness in law. But this is simple; for any family x0) =
= {X, ,(x); te [s,)},er of solutions to SDE (1) satisfying the conditions (Asz),
A X, &)} must be given from {X, ,(0)} and {w,} with w;=0 as in the above
construction and the joint law of {X, ,(0)} and {w,} is obviously unique.

For a,be R and ce {-1,+1} suchthat 6 =20, a + b = 0, define a
transformation fj,:xeR > f;,(x) € R, by
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1178 S. WATANABE

x+a, b < x;
f;(x) = < *(a+b), —-b<x<b;
x—a, x<—b.

Then the above construction of X = {X;.:(x);te [5,°°)} e g can be rephrased as
follows:

X.r.t(x) = f;:b (x) s
4

where a = w,, b = —Slg]dg w,, ¢ =sgn{X; ,0)).

We briefly recall a general definition of stochastic flows [8, 9]; let S be a

topological space and 7 be a class of trasformations on .S containing the identity
- transformation and forming a semigroup under the composition of transformations. .

We assume that a suitable topology is given on 7 so that it is a Polish space as well as
a topological semigroup. Now a Z-valued random variable is well understood with
tespect to the natural Borel structure on 7.

Definition 1. By a T-stochastic flow, we mean a family of T-valued random
variables @ = {@; ,; s<t} having the following properties:

1) (the flow property), @ ,= @, 0 ¢, and @, , =id, forall s<t<u,

2) (the independent increment property), for any sequence ty<t; <...< t,, I-
valued random variables @, . .., k=1,...,n, areindependent,

3) (the stationarity), forany h>0, ¢, ,= q)”;””,
In the following, we consider a particular case of
S=R, and T= {ff,; 20, a+b 20, ce{-1,+1}}
exclusively; 7 forms a semigroup of transformations on R and the composition rule
is given by
fcf':h fab o ﬂ‘:b“= a’ =a+a, b” = b v (b'-a),
(5)
c, b>b-a;
Cﬂ _
¢, b=b—a.
The topology of 7 is defined by the Euclidean topology of the parameter (a, b, ¢).
Theorem 1. There exists a T-stoshastic flow X = {X; ,; s<t} such that, for

each se R, X = {X;,,(x); te [s5,0)} e r defines a family of solutions to SDE
(1) satisfying the condition (A3). Furthermore, the law of such a flow is unique.

Proof. Foragiven s, let X**) = {X, ,(x)} be a family of solutions to SDE (1)
satisfying the condition (A3). We know that, for each t2s, X, , :=[x+> X (x)] is
a Z-valued random variable as given by (4). Denote its probability law by [, , which
is a Borel probability on 7. Itis easy to see that [, , = Lo ,_, and we denote Ly , by
l,. Then we have
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Hrsg =Hs % My 520, 220, pg =3y, ©)

that is {jt,} constitutes a convolution semigroup of probabilities on 7. Here, the
convolution [L*V of two Borel probabilities on 7 is defined, as usual, by

[ fr@up#vde) = [ [ floev)n@p)vdy), fe Cp(D).
T T T

The relation (6) follows from the fact (easily obtained by a standard argument) that, for

sy <sy, if XU = {X, D epey md YO = {7 )}y, . are
mutually independent families of solutions to SDE (1) at time s, and at time s,,

respectively, both satisfying the condition (As3), then Z®? = 1 Ze s 1) B rsinsd

defined by
Xt (%), S| SES8y;
Z‘rlrr(x) =

szr( ST a.z(x)), t2s;,

is a family of solutions to SDE (1) at time s, satisfying the condition (Az). The proof
of the theorem can be completed by applying the following general lemma.

Lemma 1. For given convolution semigroup {|L,},59 on I, there exists a I-
stochastic flow ® = { @, ,; s< t} such that the law of ¢, coinsides with ;.11_3

Furthermore, the law of such a flow is unique.
This lemma can be proved by a standard application of the Kolmogorov extension
theorem and may be well known. For the completeness, however, we present its proof.

Proof of Lemma 1. Let I = {A = (s,¢);s<t} and, for Ay,...,A,€ I, define
a Borel probability @y .. 2, onthe n-fold product 7" of T as follows; let A; = '
= (54, ;) andlet {uy<u; <...< u} be the set ULI {s;, 1;} arranged in_ the order
of elements. Take mutually independent Z-valued random variables &,,...,&; such
that &, is distributed by p, _, ., k=1,...,[. Define Z-valued random variable
Map i=1..,n, by a
when s; =1¢;;

id,
N, =
‘ Eitm®:-O8ks1s  When 5 =1 <...<thyp = 1.

Finally, define O ., tobethelawon 7" of {ny,,..., M3 }.

We can easily verify that the family {0, . ., 1} satisfies the consistency
condition so that, by the Kolmogorov extension theorem, we can construct a family
{@a; A e I} of T-valued random variables such that the law of (@ , ..., Px,)

coincides with Oy, . a.. Then, @, = @, A = (s, ), is what we want.

The uniqueness in law of {@;,  }s< is obvious.

Let X = {X, ,;5<t} be the T-stoshastic flow of Theorem I. We know by 4)
that X, ,(x) has a representation '

X.!‘.I(I) = fafb (x)
with a = w®, b = ~ in w, ¢ = sgn(X; ,0)), where w®) = (W), isa

‘Wiener process with wm = 0. By the composition rule (5) for f;b, we have
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1180 S. WATANABE

w +w® = WO for s<r<u.

W(OJ, t=0,
w(t) =
-wi, <0,

Then, by setting

we have wr(‘) = w(t)—-w(s) forevery s <t. Itis easy to verify that w =
= {W(£)} _ecrce i a Wiener process. Thus, X, (x) has a representation

X:,r(x) = f;,b (x),
Q)

a=w() - w(s), == mm [w(u) - w(s)], ¢ =sgn(X;,00)),

where w = {w(f)} _.c/co is @ Wiener process and X, = X;,:(0) is a solution to
SDE (1) for x=0 with resprect to the Wiener process w.

For a fixed s, the process t€ [s, o)+ X, ,(0) is continuous as a solution to
SDE (1). On the other hand, the process s & (—o°, t] — X, ,(0), for a fixed ¢, is
highly discontinuous. We state, without proof, the following description of this process
which can be obtained from the composition rule (5) of {f;,} combined with the
representation (7).

Theorem 2. For a fixed t, set

Y, = X,_; ,(0), B, =w(t)-w(t-s), s20,

3
where w = (w(t)) is the Wiener process (7). Then |Y,| = Jpax B, and the
13

process (B,),sq defined by

B ¥ B, - B
, = sgn(tp)| max B, - 5,

is a one-dimensional Wiener process.
In other words, take a one-dimensional Wiener process (bg)esq with by = 0

and set ry = | b,|, s20.
Let

max Bu, 520,

5
=-Betle L= Im Q97 g (de = g

be the Lévy —Skorokhod decomposition of the reflecting Brownian motion ( rs)sso,
in which (B;);s0 is a one-dimensional Wiener process with Bo=0. Set, finally

= sgn(b,)L,, s5=20. i

s

Then,

d
(Ys, Be)szo = (¥ss BJ)SZO'

3. The noise generated by the flow associated to SDE (1) . The notion of noises
has been introduced and studied by Tsirelson [4—6]. Before giving a formal
definition, we prepare some general notions and notations. In the following, a

probability space (Q, F, P) is always assumed to be complete and, when we speak of
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THE STOCHASTIC FLOW AND THE NOISE ASSOCIATED TO TANAKA’S ... 1181

a sub- o-field of F, it is assumed to contain all P-null sets, unless otherwise stated.
The trivial o-field, which consists of events with probability 0 or 1, is denoted

simply by {Q,@}. Forasub-c-field G of ¥, we denote by LO(Q ; &), or simply
by LD( G) when Q is well understood, the space of all G-measurable real random
variables (more precisely, the space of all the equivalence classes of (G-measurable
real random variables coinciding each other P-almost surely). L7(Q ; G), 1Sp<es,

is the subspace of LO(Q; G) formed of all p-th integrable random variables.

Definition 2. Let (Q, F, P) and (S, F', P’) be two probability spaces and
let G and G’ be sub-cfields of F and F', respectively. By a morphism
from (&, G) to (', G"), denoted by n: (2, G) = (Q', G'), we mean a
mapping

m.: L2(Q, ¢) - LY, &,
with the following properties:

@) forany Xy, ..., X, L%, G,

[(Xl? Xs) JI.ﬂ] [(TE*(X]) *(Xn))‘P];
(ii) forany X;,...,X, € LU(Q’, G’) and any Borel function f: R"— R,

Tl X X)] = f(Ta (X))o T (X)),

Remark 1. Of course, what we have in mind in the above definition of morphism
is a point transformation 7: Q — Q’ whichis G/ G’-measurable and satisfies P’ =
= Pon~! on G’, sothatitinduces mw, by w,(X) = Xomn, Xe LO(Q’, G").
However, we would not like to mention of a point transformation explicitly.

Definition 3. By a noise, we mean a family { F, ,; —o<s<t<e} of sub-c-
fields of 'F on a probability space (2, F, P) with the following properties:

@) %,={Q, D} forevery te R;
() %.= %,V %, and F; , and F, ,are independent for every s <t < u;

(iii) denoting T .. . = Vi<, ., there exists a one-parameter group {Ty} e r
of morphisms T: (Q, Fou o) = (Q, Fouo) such that (Tp)[L°(F ] =
= Lo(fv_,_h_”h) forevery he R and s<t.

We denote the noise in this definitionas N = [( % )s<» {Th}pe g] or simply as
N = { % ,} when {T},} is well inderstood.

Remark 2. If we define the notion of noise similarly in the case of discrete time
ne Z, then { %, p; mSn} mustbe givenas %, n= 6[Epyrs..., &, where { &}
is an ii.d. random sequence. Hence, the notion of noises in l:he discrete time 15
essentially equivalent to that of i.i.d. random sequences.

Example 1. Let w = (W;)_w<i< be a d-dimensional Wiener process (1 <
Sd<e) and let F,,, s<t, be the c-fields generated by {w,—w,; sSu<v <
<t}. Let Ty, he R, be a morphism Ty: (Q, F...)— (2, F..) umquely
determined by
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1182 S. WATANABE

(Th)* [f(wr"‘w;)} = f(wr+h_ ws+h)!

Jfor any Borel function f: F.22% 3
Then the family { F; ,;s < t} together with the one-paraimeter group of
morphisms {T,} defines a noise N,,. This noise N,, is called a d-dimensional

Gaussian noise or white noise.
Example 2. Let S be a Polish space and n(dx) be a © -finite Borel measure
on §. Let p(dt,dx) be a Poisson random measure on (—oo, o)X S with the

mean measure dt - n(dx). Let ¥, s<t, be the c-field generated by {p((u,v]
XE); s<usv<t, Ee B(S)} and Ty, he R, be a morphism Ty: (Q, F.. .)
- (Q, F.. ) uniquely determined by

(T« [p((s, 11X E)] = p((s+h,t+h]XE), s<t, Ee B(S).

Then the family { ¥, ,; s< t} together with the one-parameter group of morphisms
{T,} defines anoise N,. Thisnoise N, is called a Poissonian noise.

Similarly, we can define a noise from a process with stationary independent
increments which we call an additive noise or a linearizable noise. Gaussian noises
and Poissonian noises are particular examples of additive noises.

Definition 4. Let N = [{ % e {Titrer) and N = [{F boci» ither]
be two noises defined on probability spaces Q and ., respectively. We say that
N’ is homomorphic to N if there exists a morphism m : (Q, F_. )=
- (@, F .. ) suchthat

RIFQ@ B c L@ K Yisy
and

T (T)s = (T)s © e YheR.

If, furthermore, T, {LO (<, ﬁr)] B2 LO(Q, Fe ) for all s <t, then we say that N’
is isomorphic to N.

When N’ is isomorphic to N, noting that 7, is always injective, we see easily
that (TC,.()_.I defines a morphism nl; (<, }'_',,‘,,) - (@, Fw,.) sothat N is
isomorphic to N’. Thus, in this case, we may well say that N and N’ are
_isomorphic. '

Definition 5. Let N = [( 5‘:,:)35:1 {Ththerl and N* = [{ﬂr};sn{ﬂ:}h erl
be two noises defined on a same probability space. We say that N’ is a subnoise of
N if F,c F. foralls <t, and {Ty}. is the restriction of (Ty}« for every
he R.

The following two propositions are easy to prove.

Proposition 2. A noise N’ is homomorphic to a noise N if and only if N’ is
isomorphic to a subnoise of N.

Proposition 3. 1. A subnoise of Gaussian noise is Gaussian. More generally, any
noise homomorphic to a Gaussian noise is also Gaussian.

2. Let N and N’ be two Gaussian noises with dimension d and d’,
respectively. Then N’ is homomorphic to N ifand onlyif d’<d. N’ 1is
isomorphic to N ifand only if d’ = d.
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"HE STOCHASTIC FLOW AND THE NOISE ASSOCIATED TO TANAKA’S ... 1183

Definition 6. For a noise N = [( s {Thlre pls define

Tt ﬂ“:;‘_x, ..S'S t, and f‘h =T, heR.

»

I

Then, obviously, N [{ j:.‘t}a.s';, {f"}*heR] is a noise and we call it the reversed

noise of N.

The reversed noise of a Gaussian noise is a Gaussian noise isomorphic to it, more
generally, the reversed noise of an additive noise is an additive noise isomorphic to it.

Given a noise N = { % ,};¢, the filration F = { % ,},50 is called the
filtration associated to the noise N.

Definition 7. A noise N = { ¥, ,},< Is called predictable if, for the filtration F
associated to N, it holds that M(F) = M°(F), where M(F) is the space of
locally square-integrable F -martingales M = (M,) with My =0 and M°(F)

its subspace formed of all continuous martingales.
" Gaussian noises are predictable. Poissonian noises are not predictable and, more

- generally, an additive noise is predictable if and only if it is Gaussian. In the following,
we consider predictable noises only, unless otherwise stated.

Definition 8. Let N = [( % <> {Th}nerl be a predictable noise. By a
linear representation of a noise, we mean a two-parameter family R = {R; ,; s< t}

of real .. ..-measurable random variables R, , such that
(i) Ry, is %, measurable forany s<t,
(i) Ry +R, ,= Ry  forany s<t=<u,
(i) (Tp)« [Rs )= Ryypqpforany s<t and he R.

The totality R. of linear representation of a noise N forms a Gaussian system and
each R = { R, ,}e R is given by R;, =w,—w; from a Wiener process
(W) eaci<on:

Then, setting

lin .
oy = Ry ssusvst Re XY,

a subnoise N'"™ = [{Fy o, {T}her] of N is defined, which is obviously
Gaussian.

It is a maximal Gaussian subnoise of N ; N is Gaussian if and only if N = N
so that it is non-Gaussian or non-white if N'™ # N. Tsirelson called a nontrivial
predictable noise for which N s trivial, i.e. };{i,“ = {Q,d} for any (= for some)
s <t, ablack noise.

Let X = {X,,; s<t} be the T-stoshastic flow of Theorem 1 defined on
a probabilily space Q. Lel 5[;.‘, =0[X,p; sSusv<t] for s<t. For he R,
a morphism T,: (£, ,'}'__,,‘,,) - (Q, T_W‘W) is uniquely determined by
(TW)s [ X, ;)] = Xoppan(x) forevery s<t and he R, and {7;; he R} forms
a onc-parameler group of morphisms. It is easy to deduce properties (i), (ii) and (iii) in
Definition 3 [rom the properties 1), 2, and 3) in Definition 1 so that N = [( % )<
{Th}ser] defincs anoise. Let w = (W(f))_we <o be the Wiener process in the

representation (7) of the flow X. Itis casy to see that (Tp)s [w(t) — w(s)] = w(t+
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1184 S. WATANABE

+h)—w(s+h) sothat {w(t)—w(s)} defines a linear representation of the noise
N. Set %% =oc[w@)-w(u); s<u <v<t], s <t. Then N":=
{ A < {T ner] is, obviously, a Gaussian subnoise of N.

Theorem 3. N = [{ % ,};<i» {Th}ner] is a predictable non-Gaussian noise and
N = NV,

Proof. First, we establish a martingale representation theorem for the filtration
F = { %y )0 associated to the noise N.

Lemma 2. Every M = (M,)e M (F) can be represented as a stoshastic
integral of a F-predictable process ® = (®;) as

4
M, = [ @,dw(s), 20,
0

where w = (w (£)) is the Wiener process in (7).
Proof. We have

t
X;, () = x = [ sgn (X, (0))dw(s), te[s,),

for fixed s =20 and xe R and hence, for 5p = 0<s; <...< 5, <o, X|,...,x,€ R
and &y, ..., 8,€ R,

n t
Z‘] EE'(XJ,-_hx; at(xp) = xi)'l[.r;_|¢r] = J W (s)dw(s)
i= 0

for some bounded F-predictable process W = (W(s)) such that | W(s)|* = | &,
for s e [s;_1,5), i=1,...,n. Set

3 t
N(#) = exp {j P (5) dw(s) — %j [ (5)[? a’.s'j].
0 0
Since |¥(s)|? is deterministic, we obtain easily by the It6 formula,

Yoz exp[zn: S (A (x‘-)} = EN(s)= C{l + f N(s) ¥ (s) dw(s):l,
]

i=1

where C = exp[z; E x; + -;-_[;" [P ()| ds) is a positive constant. Then

Y=EX)+ f‘i”(s)dw(s)
0

with ¥’ (s) = CN(s)¥(s).

Linear combinations of random variables in the form of Y are dense in LZ( Fo.)
and, by a standard approximation argument, we see that, for every F e Lz( Ho:ad
E(F| % ,)—E(F) is a stoshastic integral by dw. '

We return to the proof of Theorem. From the lemma, N is obviously predictable.
To prove that N is not Gaussian, suppose on the contrary, that N is a d-dimensional

Gaussian noise. Then the filtration F = { % ,},5¢ associated to the noise N isa
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THE STOCHASTIC FLOW AND THE NOISE ASSOCIATED TO TANAKA'S ... 1185

d-dimensional Brownian filtration. By the lemma, we must have d = 1. This means
that N is a one-dimensional Gaussian noise. As we saw above, for the Wiener process

w = (w(t)) in (7), N" is a Gaussian subnoise of N and, by the comparison of the
dimension, we must have N = N. But this contradicts to the fact that 7} is strictly

smaller than %, , which was already explained in the introduction.
In [5], Tsirelson discussed the spectral decomposition for a family of projection

operators on Lz—spaces associated to a noise; in particular, he defined the notion of
spectral measures associated to a noise. To introduce this, we need the following
notions and notations: Let Cpp ;5 be the space of all closed subsets in [0, 1]

endowed with the Hausdorff distance. Let C [%'?liﬁe ={Ee Cro, 1']} #(E) < }. Each
Ee C[%[‘ﬁe can be expressedas E = {#1,.... 4}, 04 <...<1,<1, forsome n =
=0,1,...; n=0 meansthat £E =3,

By an elementary set E, we mean a finite disjoint union E = U;;l [ v;], 0=
Sup <V <y <vy <...<u<v, <1, of closed intervals. Set Fe = Fayooy vV
V BV v B s

Definition 9. Given a noise N = [(F sz {Tp}rer] and fe Lz(ﬂ{],l)
such that Hf”i; = E(f?) = 1, there exists a unique Borel probability By oon

Cro,1y with the property that, for every elementary set E,
2 * . ..
Ri{Fe Cy,1; F<E}) = E(E(f| F£)°)- €))
Wy is called the spectral measure of the noise N with respectto fe L3¢ Fo.1)-

Example 3. Let N, = { .\-‘,’:}.rSr be a d -dimensional Gaussian noise
generated by a d-dimensional Wiener process w = (W(1))_wctcew . By the
Wiener—Ité expansion rheorem for Wiener functionals, we have, for every f € .
€ LZ(T ) with E(fz} , the following expansion in the sense of iterated Itd
'srqshastzc mtegmls o '

Iy ] ' )
f=h+Y ] {I -{J J;,(ri,rz,..-.,rn_l,rn'mw(rl)} . dw( _1)} dw(ty) .
n=1p 0 : ¥
where fo= E(f) and fon=12.., are L 2functio'ns defined on the
= {(t, s t)] 0<ty <...< t,< 1} with values in the nfold tensc
® R“r of.R The condition E(f') 1 implies that

-

n I

s : '
i+ _[ |k (rl,‘..,t,,_l,r,,)lzdrl oo dty_ydt, = 1.

n=1

In this case, fhe spectral measure p.Lf is given as follows: [Lp (C[énhle |

Lmder_- e E={t, ... 5}, 05;1 b <1, is distributed by -

[;:I(rl, r)I dt .. drn, n=-d,l_,.,...
In particular, ].Lf({@})— 2 = E(f)
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1186 : S. WATANABE

Tsirelson [5] showed that a predictable noise is Gaussian if and only if
uf(C[%f‘He =1 forevery fe Lz('}allj with E(f) = 1.

Now we return to the noise N associated to the flow X of Theorem 1. In the
following, we compute the spectral measure Ws in the case f = sgn (Xo.1(0)).

Let w = (W(f)_w<;<. be the 1-dimensional Wiener process in the
representation (7) for X and N" be the Gaussian noise generated by w. We know
that N is a proper subnoise of N.

For fixed 0 <t<1 and x>0, let of = min{u>¢[x+w(u)-w() = 0}.
Then

1

=1
[of>1 =[x+ min (w(w-w()> 0]

is 7| -measurable and let

n=l

w 1 I
lgrsy = folufl + > ! {{J: f,,[x,r](rl,...,x,,)dw(:l)} }dw(r,,) )

be its Wiener — It6 expansion by itereted stochastic integrals. By the method of Vere-
tennikov —Krylov [10], folx, ¢t] and f,[x, 11, ..., ty), t<?; <...<t;<1, canbe
explicitly given as follows. First, introduce some notations: let

+ s gl (x=p? (x+p?
= gigloo- 5520 ol 527

x20, y=20, t>0,

and defines the Markovian semigroup.s {T*} and {T,;"} on C,([0, <)) by
TEf) = [ prex ) fO)dy, >0, fe Cy(10,)).
e By @ 0 .

{Z;*} and {7,”} are semigroups corresponding to reflecting Brownian motion and
absorbing Brownian motion on [0, =), respectively. Introduce, further, operators

9T,* and 9T,” by

o

Y : v + g . H
[R5 1) = §a~TFf(x) = jaaL@,x,y)fqy)dy, t>0, xe[0,).
X 0 X .
Then,
= T o2 [ a0} ' 1
Tolz = T5,100 JEE(T—T)J e dy (10)
and ) .
e, .. t) = 2,07, (., D)@, -
' 12 f <iagity<l
Let
1, (x) = ﬁe—xz”zf}, x>0, t>0. (12)
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Then

JH; Mp (s y.x)dy =), t,s>0, x>0,

’ (13)
I 1

{ d = ==

‘([ W, () dy i

that is, W,(y)dy is an entrance law for the absorbing semigroup 7,”.
From (9), we have

folx 11 + Zjd: J'drn L ‘[drl Lol A, 1) =

n=1y
= E[l[ﬁ_fb'l]] = ?1:!.1(2.‘)

and so, for O<r<t<l,

n=17%

)
qfl—rj' W, (%) [fo[x, i + Z _[ dt, I dty_y ... | drl-fn[x,t](rl,...,rn)2:|cz;x -
t

= JT=7 [ by, T2, 1@ dx = JT=7 [y, (¥)dx = 1. (14)
0 0

We denote by Cq 5, 0Sa<b<1, thesubspace of Cpy ;7 formed of all closed
subsets in [a, b]. By C[E?;,'f , we denote the subclass formed of all finite subsets in

[a,b]. Foreach 0<r<t<1, we define a Borel probability m,, on Cp, ; as

follows: m,(CEL®) = 1 and, under m,.,, E ={t;,....t,}, t<t; <...<1,<1, is .
distributed by
A1 -rlij () Fi T E] Qs vevs r,,)?‘ dx] dty...dt,, n_': 1 [ (15)

By (14), this is well defined. In particula;,

e ({BY) = JT=7 [ pep (0 folx 117 dx =
0

= VT=7 [ ey (0 (T2, 1(0)) dix .
0 -

For 0<s<t<1, define the projection operator 7, ,: Cp, 17 = Cpy bY
EJ!I(E) = Eﬂ[f, 1]6 C.'[‘ 1]; Ee C[_!. l'I _
Lemma 3 [7]. For a fixed 0<r <1, the family ofBorel probabzime.s' m,, on-

Cie1pp 1> t> 1, is consistent in the sense that

my.  ° :ﬂ:;i =m,, forevery r<s<t.

Then, by a standard application of the Kolmogorov extension theorem, we obtain
the next corollary.
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Corollary 1[7]. For a fixed 0<r <1, there exists a unique Borel probability
m, on Cy. 1y Such that

m., = mrU:rc:‘i Sforevery r<t<l.

Proof of Lemma 3. It is enough to show that, forevery 0<r<s<t<1 and t <
<t <a<itg<ly n=12,000,

kz,o be—r ()| [ ... | TP 1 S (S eres Spo B £y) dSy o dsy | dx =

S8 LS <t

oY— §

= [ Wy O £2 00 1100 o0 1) (16)
1]

By comparing the Wiener —It& expansion of both sides in the following equation:

i, - >0]

1 : 1 ; 2
[x+ssm:ﬂr(w(u)—n(.r)) > 0] [x«l-(w(r)-—w(s)) + FE}QL (w()=w(t)) > O}
we obtain, for s<s; <...< § <1< <. <1, <1,

fH'l'k [I, .5'1(.5']_, vers Spy fl, iery fﬂ) = gk.?! [x, 51 fl, eny r"] (Sl, veay Sk) B

where the functions g, , are determined as kernels of the following Wiener -1t
expansion:

fu [x + (W(f) - W(S)) s f](q,..., I")l1[,\:+Srsn$ré;(w(n)-—-w(.r)} S 0] =

= 8o.n [x 51, Tlsoes i‘,,] T

+ z J I X sty 10y S ) dw(sy) ... dw(sy).
k=1 <8 << <t
Then,

- 2
z J... -[ f;a_k[x,s](.fl,...,Sk,fl,...,f‘,!)d&';’...dsk =
k=0 528 <S8y <t :
o 2

=2 j .[ e L6 S bty e 1] (515 ey S ) sy oo dlsye =
k=0 S$<8 <<y <1

= E ‘if;? [x + (W{I) - W(S)) ? r](rl' e ty): 1[,\'+ min_ (w(u) —w(s)) > 0]:| = (?;:“' R,

where h(y) = £2[» 5]t ..., 1,) . From this, we have

2

ot— 3

].L:_,.(x)|i-[ | ﬁ,ik[x,s](si,.‘.,sk,rl,...,tn)dsl...dsk}dx -

§<H << <t
= [ hyer DT dx = [ By, () () d,
0 0

which is exactly (16).
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It is obvious from the definition of m, that,
mA{Ee Cp, yl#(EN[t,1]) <o foreach z>r} = 1.

However, we have the following,.
Theorem 4.

mA{Ee Cpp | #(E) =} = 1.
Proof. Forafixed 0<t<1, we denote the path {w(u)—w(t); t<u<1} by

Wi, 13- We may consider wy, ;) as a generic element of a Wiener space: Every 7] -
measurable random variable is a Wiener functional of w(, ;;. We denote, in particular,

1 [ok>1]
Wiener space, then, from (9), we have

(T\Fp ) (Wi 1)) =

= Fr;, (Wi, 13). I (TQ)aso is the Omnstein — Uhlenbeck semigroup on the

= folxf]+ Z}e"‘” [ | Lol 1t s ) dW(Ey) ... dW ().

< <<ty <l

Hence, for a fixed A, and every t>r,

[ e HEND By = T=7 [ wy, (DIB, By 3 dx,
Ciry 0

where || ||, is the L,-norm on the Wiener space. By the hypercontractivity of T3 [3,
p' 367]:
2 2 . -—
”T?.. PEI,J.‘]“Z s ”F[r,x]Hp with p=1+e a8 <2

and || Fpy gll, = EQx, )"? = [[;Z,1()]"/?. Hence, by (10),

[oF>1]
I, R allz < [GZ,10]%7 = 0(x%P)
as x4 0 and ¢t r. Then,

[ e HEND m (dE) < const. [ -, (x) x*/P dx =
Crryy - 0

xl+2fp

_ =x2 {201} 4. -
= const._[ ( 573 € dxi=
0

t—r)
= const. (t=r)ZPY2P) 5 0 a5 ¢l
Thus,
I e"ME y (dE) = 0,
Ciry

that is, #(E) = o for m,-a.a. E€ Cp, 13-
It is easy to deduce the following from the scaling property of Brownian motion:
Proposition 4. Let S be a Cpy, jy-valued random set with the law my. Then,

forevery 0sr<1, the Cp, j-valued random set defined Dy
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1190 S. WATANABE

r+(1-nS={r+(1-rtlte S},
has the law m,.
Theorem 5 [7]. For f = sgn(Xp 1(0)), the spectral measure [y of the noise
N isthe law of a Cig,iy-valued random set given by
{e+(1-8)5} U{g-g5} =
={g+(1-g)t|te 5} U{g(1-0|te 5}

Here, S|, S, and g are mutually independent random elements such that §

and S, are copies of the random set S in the above proposition and g is an arc-
sine distributed random variable with values in [0, 1]: that is,

1 1 :
P dt] = = ————, !
[g € di] e =D O<r<1

Proof. First, we introduce, for a fixed 0 <r < 1, a Borel probability m, on
Cro, 7 as follows.

Lemmad4. For 0<u<1 and x>0, define the kernel gp[x, ul(uy,...,u,), 0
<up <...<u,<u, n=0,1,..., bythe following Wiener—1Ité expansion:
o U Uy
Iray<y = &olxul + Z _[ {{I &n X, ul (g, ...y L&n)dw(ul)}... }dw(un),
n=10 0
an

where r(u) = [w(w)—w(0)] - ngljgu[w(vj-—w(())]. Then, there exists a unique
Borel probability m, on Cpg , such that, for every 0 <u<r,
ﬁr{EEC[O.r]! #(Eﬂ[O, u]) < C""} =1

and, under m,, E ([0, u] = {u, ..., u,}, 0<u; <...< u,<u, is distributed by

JT “ Wy () 8216 Ul (ttys oo s ) dx} duy ...du, . (18)
0

Furthermore, i, is the law of the random set r —r S = {r(1—1t); te S} where

S is the random set in the above proposition,
Proof. The probability sm, can be obtained from the probability m;_, on

Cii—r,1y by the time reversal: Indeed, by considering the time-reversed Wiener
process w(s) = w(l—s5)—w(1), weeasily see for 0<u; <...<u,<u<]1 that

gnlx, ul(uy, .oyt = fulx, 1—ul(1—uy, ..., 1—uy). (19)
Thus, 7, is obtained as the image mesure of m;_, on Cpj_, ; by the map
Ee C[l—r,l] = E = {1‘—f| te E} =] C[U,r]'

On the other hand, kernels g,[x, u] are given explicitly by the Veretennikov —

Krylov formula in terms of the reflecting semigroup 7,* and the duality relation (19)
is analytically equivalent to the following relation: for ¢>0, #;>0 and x>0,

L7100 = T o),
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T Q17 (..QT D)) = TXETL’ (.7 1[0,,:])))(0)‘
Now returning to the proof of the theorem, let §,,, m = 1, 2, ;.. , 'be the family of

elementary sets expressible, as a finite union of dyadic intervals [ (k=1)27" k27",
k=1,...,2™ Itis enough to establish (8) for E € B,,. Let:w = (W(£)) o c,ce bE
the Wiener process in the eitpression (7) of the flow X for which we may assume
w(0) = O without loss ofgenerahty Recall that

|Xx (0] = |x] + w(t) = W(S) -
- Emn [(Jx| + ww) = w() A0], s<t, -xeR.
Denoting by 1! the last exit time from the ori gin of the Brownian path
te [0,1) — XO‘I(O'), ' (20)
we have

f = sgn(X,,(0) =

zﬂl ,
= kgl 1[(k-|)2""<£]<k2_”‘] sgn(X(k—l)?.‘”‘,kz“"' ) =

2“‘] : ‘.
= gl 1Gﬂl.k m!. sgn (XUC nz—-m k2—m (O)) . . (21)
where, by setting
r(t) = w() — min w(u),
0ssst
E= - min [w(u) - W(fk—l)Z_m)]

(k-1)2"" 2u<k2™

and
n= w(k2™™) — w((k - 1)2*-“) . min [w(u) o= w((k 1)2~—m)3

(h=1)2"" Su<k2™"

events G,, ; and F,, , are defined by

G = [r((k=1)27")<&]

and

Foe = ["‘I +  min [w@) - wk2™™] > 0]_

k2" <usl
The event G,, ; indicates that the Brownian path (20) has at least one zero dﬁring thc i
interval [(k—1)27", k2™"] while, F,, ; that the Brownian path (20) does nbt have
any zero during the interval [k27",1]. On Gy, , the path (20) and the path. ¢ +>.
> X(-1y2-m,(0) commdcs for t=k2™™ because of the coalcscence. of paths Set,_"
for x>0 and y>0, .
G ilx] = [r((k=1)2"") < x]

and

ISSN 0041-6053. ¥Yxp. mam. xypn., 2000, m. 52, N2 9



1192 S. WATANABE

Fo dy] = [J’ + min [w@-w2™")]> 0]-

k2™ <usl

Note that G,, [x]e %(k 2= o E. ] € };62_,,,.1 and { &, 1,
sgn (Xg-1)2-m ro-» (0)) } is (k 2" kg -measurable so that they are mutually
independent. We fix my and E € %, My In computing the conditional expectation
E(f| &) by the expression (21) for m 2 my, it is easy to see that the k-th summand

in (21) has the zero conditional expectation unless [(k—1)27", k2] < E. Hence,
setting

AE) = {k| 12k<2™, [(k-1)27",k27™] c E},
we have, by (9) and (17),

E(fls) = 3, E(q,,| Fgno ponzmy) 580 Kyyyym gomm () X
keA(E)
X E(IFJ::J’. n[k?._"' I])

[ an 6 k=027 s ooy ) AW () ... dw(un)J x
0

. 1 ty
x[z j_ j FEM 2™y, ) dw(ty) ... dw(r;)]x

f=0 k2 m k2--m
X Sgn (X(k__l)z—ﬂl‘kz‘-‘m (0)) E
where .
2 [, E=D27™1 (4, vee s thy) =

= g [x, (e=1)27"T gy e s tty)  1gX oo X 1g (ug, con s W)

and ' _
CfEDE2T™MI, 0 ty) = A E27I(, s 1) X X L (ty, e, 1),
We have
(Sgn( (k 1)'7-“' k?.'”' (0)) Sgl'l( (J 1)2—-01 Jz—m (D)) | T—l:m‘m) — Sk’j,

k:j = 1, e 32’1!

and hence,

E(E(fl F))= HP(&edxnedy)x
keA(E)0 0O

"'ill

- (k-1)2 '
X { Z J‘ I {gn [x, (k— 1)2‘”‘} (s envr )Y duy ... du.n] X
0 - :
]

0 »

. 2

[Z J‘ J' {£ [y,kz""](rl,...,rg)}2 d ... dt;]'
=0 -m : 2—?11
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The joint distribution of § and m is well-known (cf. [11], Section 1.7): Also, by the
well-known convolution property for one-sided stable laws with exponent 1/2, the
joint density p(x, y) of & and 1 is given by

k 2“‘ m

2 1
p(x,y) = \/; BG4 = = [ Wpm OV, e (R
(k=1)2="

Then, by recalling the definitions of 7, and m, (cf. (18) and (15)),

kz“"l

EEU RN =L T | e

keA(E) (k-1)2~™

x 1, (F € Cpo,ys FN[O, (k=1)27"] < E) m,(F e Cpy s FN[k27™,1] < E) du,

which clearly converges to

my, (FeCy,,; FCEYm,(FeCy,;; FC E)du,

1 I
Ell;q/u(l—u)

as m — . This established the relation (8) for L given in the theorem.
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