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A PROBABILISTIC REPRESENTATION FOR THE SOLUTION
TO ONE PROBLEM OF MATHEMATICAL PHYSICS

AMOBIPHICHE 30BPAZKEHHSA PO3B’SA3KY OMHIEL 3ATAYI
MATEMATHYHOI ®I3UKHA

We consider a multidimensional Wiener process with a semipermeable membrane situated on a given
hyperplane, The paths of this process are the solutions to a stochastic differential equation which can be
regarded as a generalization of the well-known Skorokhod equation for diffusion process in a bounded
domain with boundary conditions on the boundary. We change randomly the time in this process by
using an additive functional of local time type. As a result, we obtain a probabilistic representation for
solutions to some problem to mathematical physics.

PosrnapaeTses GaraToruMipusit Binlepie nponec 3 nanisnposopolo mMem6paliolo, 0 po3TAIOBara Ha
sapaniit rimepronpni. TpaexTopil HBOro npolecy € po3s’ A3KAMH CTOXACTHYIIOr0 AudepeHLialsHoro
PIBHAHHA, AKE € JeAKUM Y3arasiblieHiaM sioMoro pieusnus Cxopoxona ans audyaittioro npouecy B
o6MerxeHitt 06s1acTi 3 FPAHHYHHMY YMOBAMH 1ia MeXXi. 3 mornomorolo aguTHeHOro QyHKUIOHANA Bif
npolecy, 10 Ma€e XapaKTep JIOKAJLHOro yacy, 3pofJielo BUIIAZIKOBY 3aMily yacy B I[bOMY mpomeci i, Ax
pesynsTaT, OTpHMano HMoBipiciie s06paxertis poas’ a3kiB opuiel sapavi MaTemMaTH4HOI (hisuxn,

1. Introduction. Let a unit vector v in a d-dimensional Euclidean space RY be
given and denote by S the hyperplane in B that is orthogonal to v. We put Dy =

={x eR?: (x,v)>0} and D_={x e RY: (x,v) < 0}. Two continuous functions
g(x) and r(x) on S with their values in [-1,1] and [0, +oo) respectively are
assumed to be given. Denote by B the Banach space of all bounded measurable real-

valued functions on ]R“r with the norm || @|| = sup |@(x)] and by C the

xeR?
subspace of B con51st1ug of all continuous functions.

The goal of this paper is to give a probabilistic representation for the solution to the
following problem of mathematical physics.
For an arbitrary ¢ € C, we seek a function u(?, x, ¢) of the arguments t >0 and

x € RY such that: _
1) it satisfies the heat equation

ou 1
28 = A
dt 2 =

in theregion >0 and x& S (A is the Laplace operator);’
2) it satisfies the initial condition

im (s, %, 9) = 0(x)
tlo

at every point x € RY;
3) it satisfies the condition

u(t, x4 @) = u(t,x—, @)
forall t>0 and x € S, where u(t, x+ ¢) (respectively u(f, x—, @) stands for the
limit of the function u(t, y, @), as y—>x and y € 9, (respectively & _); this
common value is denoted by u(t,x, @) for t>0 and xe€ S;
4) for t>0 and x € §, the condition

. (x)au(r, % Q) _ 1+g(x)ult, x+ @) 1-g(x) du(t, x— ¢)
ot 2 v 2 -9V
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is held, where 9/dv means the derivative in the direction v and a—@
v
; du(t, x—
(respectively -L’a);’—q})) stands for the limit of the function ai(g-’it-p-)-, as y—
v

—> x € § along an arbitrary non-tangent curve situated in @, (respectively in & _).
As it is shown below, the solution to this problem can be obtained by some simple

transformation of a Wiener process in R? with a semipermeable membrane situated on
the hyperplane . This is the name for a (generalized) diffusion process (x(¢), Jt,,
P,.) in R? (the notation and terminology by E. B. Dynkin [1] will be used) with an
identity operator as its diffusion operator and the function a(x)=vg(x)8g(x) as its
drift vector, where 85 is a generalized function on RY that is determined by the

relation

(85,0) = [ o(x)do )
S

valid for an arbitrary test function @ on RY with a surface integral on the ri ght hand

side of (1). The existence of this process was proved in [2, 3] (see also [4]). Moreover,
it is shown there that for ¢ € C there exists an additive homogeneous continuous

functional 7 ,(¢) of the process that can be written in the form

M,0) = [ o), (x(v)ds, 20, @
V]

Itis clear that this functional does not depend on the values of the function ¢ at the
points of %, J%_. Therefore, for the function »(x) defined on S only (see above),

we can construct the functional 1,(r) of the process (x(z), {L,, P,) as a continuous
homogeneous non-negative additive functional. A brief description of the process
(x(t), My, P,) and a functional of the type (2) will be given below in Section 2.

For t>0, wenowput {,=inf{s 20:s+m,(r) 21}, £ =x({,) and M, =
i JM,;I . Then the process ( £(z), ﬁr, P,) is a continuous Markov process in RY ([13,
Chapter 10, §5). Our main result is as follows: for a given ¢ € C, the function

ut,x, 9) = E. o(%®), 20, xeR%

is a solution to the problem 1)—4). The proof of this statement is given below in
Section 4. More precisely, in Section 4 we prove that the Laplace transform of the
function u in the argument ¢ is a solution to the problem 1)—4) transformed
respectively. It means that if we set

ea

Un(x, @) = [e™Mu(t, x, ¢)dt 3)
0

for A>0 and xe R% then this function has the properties:
a)for A>0 and x & S the equality

; 1
AUL(x, 9)—@(x) = EAU;L(x, )
is held;
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1274 N. 1. PORTENKO

b)for A>0 and x e S the relation
' ' Upr(x+ @) = Ur(x— @)
is true; we denote this common value by Uy (x, 9);
c)for A>0 and xe S the equality
1+g(x) Uy (x4, 9) _ 1-g(x)3Uy (3 ¢)
2 av 2 oV

r(x) [AUy(x, @)~ @ (x)] =

is fulfiled.
Our approach to the problem consists in direct calculating the function (3) (like that
given in [5], Chapter I, §6) and making use of an integral equation for the function

i (t, %, @) = E,p(x(t)) exp {-An, ()}, )
where A>0, >0, xe R @ € C. This equation is an analogy to the Feynman—Kac

formula for the process (x'(t), M., P,). Some results of this type are given in

Section 3.

Some analytical approaches to the problem 1)—4) (and a more general one) were
proposed in [6]. As a martingale problem, it was solved in [7]. Diffusion processes in
a bounded region with general Wentzel’s boundary conditions were constructed by
many authors (see, for example, [8—11]).

To conclude this section, we note that the paths of the process (x(z), Jt,, P,)
satisfy the following stochastic differential equation (see Section 2) '

dx(t) = vg(x(#))ds(x(t))dt + dw(t), (5)

where w(z) is a standard Wiéner process in R This equation can be considered as a

generalization of well-known Skorokhod’s equation for a diffusion process in a
bounded region with some boundary conditions. The simplest version of this
generalization can be formulated as follows. '

A continuous strong Markov-process (x(¢), Jt,, P,) in R! is looking for, such
that for it: . :
o) there exists a continuous additive homogeneous non-negative functional m, that

increases at the instants of the set {# =0: x(t) = 0} only, and the Lebesgue measure
of thigset is equal to zero;
) there exists a continuous additive homogeneous functional w, that is a square

integrable martingale with respect to (Jl,, P,) (for any x e R 1y with the -
characteristic {(w),=1;

) the relation

x(t) = x(0) + M, +w,

is held forall t=0 on a set of elementary events of full measure P, for every x e
e R, !

Under the additional assumption that x(¢)=0 for all =0, this problem is well-
known as Skorokhod’s problem. There exists only one solution to this problem and it

is a Wiener process on [0, +o) with the instantaneous reflection at the point x=0.
If we do not assume any additional condition, then there exist many solutions to this

problem. Namely, for any g € (0, 1], a continuous Markov process (x(t), Jt,, P,)
with the function

_ 1 _(y—x)2 ; '_(Iy!+|x])2
G(t,x,y) = m[exp{ = }«l—qmgnycxp{ ez }:| 6)
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as its transition probability density (with respect to the Lebesgue measure on R!)
solves this problem. Itis not hard to show that each solution to this problem coincides
with that given by (6) for some ¢ e (0, 1]. In particular, Skorokhod’s solution
corresponds to the case of g=1. :

If the word “increases” in o) is replaced with the word “decreases”, then the
solution of the problem is the same, but this time we have g e [~1, 0). All these
processes have a commonn name: they are called skew Brownian motion. From various
points of view they were described in [10, 12-15]. In particular, it is proved in [13]
that the paths of a skew Brownian motion are the solutions to the following stochastic
differential equation (¢ € [—1, 1] is a given parameter)

dx(t) = gd(x(e)dt + dw(s), o %

where w(t) is a standard Wiener process in R! and 8(x) is Dirac’s 8-function. It is

evident, that the equation (5) is a multidimensional analogy to the equation (7).
2. A Wiener process with a semipermeable membrane on S. Denote by

g(tx,y) for t>0, xe R? and y € R? transition probability density of a Wiener

process in RY

2
gt,x,y) = (Qnr)”d‘rzexp {_'_J’;:I }

and put

(t—7,2,¥)

¢ :
G(t,xy)= g(t,xy + Jd‘tIg(T, x, z)ag 3v q(z) do, (8)
0 N

Zz
ag(t -T, Z, }’)
av,
direction v of the function g(f—7, z y) as a function of the argument z

gt-1%y) _ 0-zV)
v, t—1

for t>0, xe RY and yE R“', where stands for the derivative in the

g(t-' Tz, y) ; (9)

and the inner integral in (8) is a surface integral of the integrand as a function of the
argument z. If y ¢ S, the integrals in (8) are well defined because of the boundedness
of the function (9) as a function of z (for each fixed y ¢ S). If y e S, it is reasonable

toput G(t,x,y)= g(t,x,y) because of the equality Qﬂ%m =0 wvalid for all
VZ

ze § and ye S according to (9). But, as it follows from well-known theorem on the
jump of the normal derivative of a single-layer potential (see, for example, [4]), for

t>0, xe R? and y € S, the relation

G(t,xyt) = (1+q() et xy) - (10)

holds true, where G(t, x, y+) and G (t, x, y—) are defined in a way similar to that
given in Section 1.
It is known that there exists a continuous homogeneous Markov process (x(z), .,

P,) in RY such thatforall 20, xe RY and ¢ e B the relation

E.o(x(t) = [Gtxnomdy an
g Rn’ =

is held (see [4], Chapter III, §3). In other words, this process has the function G (1, x,y)
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1276 : : N. L. PORTENKO

as its transition probability density with respect to the Lebesgue measure in RY Ttis

not a difficult problem to verify that the process (x(t), M, P,) is a generalized
diffusion process with the identity operator as its diffusion operator and the function
a(x) = vg(x)8g(x) as its drift vector. Namely (see [4], .Chapter III, §3), for an
arbitrary compactly supported function ¢ € C, the relations

lim [ (> E,(x(0)-x(0),0)dx = (v,0)] a(x)¢(x) do,
.!'-LU Rd t ) s

im [ ()} E,(x(t)-x(0),0dx = [0]* [ o(x) dx (12)
tlo ]R,; t Rn’

are true for any 6 € R%

The function g(x) can be thought of as a permeability coefficient: if g(x)= +1,
then the part of the process (x(¢), M,, P,) in @, US coincides with a Wiener
process in this region with an instantaneous reflection along the normal vector at the
points of the hyperplane § (the membrane is impenetrable for getting into @ _ from
D.); if g(x)=-1, the reflection is in the opposite direction. In the case of ¢ (x)= 0,
there is no membrane on S, in the rest of cases a semipermeable membrane is situated

on .
For >0 and xe R? we now put

¢ 2 t
b CAY) dt
o) = _[exp{ =g }ﬁ = {d'l:_s[g('l:, X, y)do‘y‘

0
This function can be written in the form

( |
fi&) = [dt [G(r x 85004y, (13)
0 R.‘.‘

if we accept the following rule for the function 8¢ to act on a function ¢ having the
limits @(y+) and @(y-) atany point y € S:

(85 0) = % [ oG +o(-)]do (14)
N

(under the assumption that the function @ (y+) + @(y—) is integrable over S, of
course). The relation (14) coincides with (1) in the case of a continuous function .
Taking into account (13), one can easily verify the validity of the relation

[ £0G @ % 9)dy = frus0) £ )
Rd‘

for 20, 520 and x e RY. Besides, we have

sup fi(x) — 0,

xeR
as r4 0. Hence (see [1], Chapter 6), there exists an additive homogeneous continuous
and non-negative functional 7, of the process (x(t), My, P,) such that En, =f&x)
forall £>0 and xe RY Moreover, this functional can be constructed as a limit of
some additive functionals of integral type, namely ([1], Chapter 6)
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s :
n, = l.i.m._l.h_lﬁl(x(t))dt ok {183
nlo 0
Since lim, | , h"lﬁ, (x) = d¢(x), we can write the functional 1, in the form

j Ss(x(t)dT. - (16)

The paths of thc functional m, are non-decreasing continuous functions and one
can easily observe that they do increase at those instants #=> 0 only, for which x(f) e
e S. .
- For ¢ € C, we put

, .

n,(9) = [ @Gx(xhdn., 120, (17)

0
where the integral is understood as a Riemann-—Stieltjes integral. The functional
M,(¢) is an additive homogeneous continuous functional of the process (x(z), {,,
P.), it can be written in the form (2) if we take into account (16).

If a continuous bounded function  is defined on S, we can extend it to a function
¥ € C and construct the functional 1,(y) by the formula (17). It is clear, that this
functional does not depend on the values of the function W at the points of the set
D_UD.,. So, we denote this functional by 1, (y).

In particular, the functional m,(g) is well defined. The following assertion is
proved in [4] (Chapter 1T, §4). If we put w(t)=x(t)—x(0)—vn,(g) for t=0, then
this process is a square integrable martingale with respectto (Jt,, P,) for any x & R4
and its characteristic is equal to tI, where I is the identity operator in R? In other
words, the paths of the process (x(t), JM.;, P,) are the solution to, stochastic

differential equation (5).
3. The Feynman-Xac formula. Let a continuous bounded function r(x) on §

with non-negative values be given. For A >0, >0, xe R and ¢ € C, we define
the function i, (¢, x, ¢) by the formula (4). As shown in [16], this function can be
given as follows :
(% 9) =[0G x ydy, (18)
- Rtf
where G, (¢, x, y) is the solution to each one of the following pair of equations

t
Gi(t,x y) = G(t,x,y) — A [ dt [ g(t, x,2)Gy(t -7, 2, Y)r(2)do,

0o s
(19)

!
Gulbxy) = Gt xy) = M [ dt [ Gy (%%, )Gt~ 2, ) r(2)do,.
0 §
Besides, there is no more than one solution to each equa.tlon in (19) satisfying the
inequality
Gp(t,x y) < 2g(t, %, y) _ - (20)

forall A20, t=0, xemf" and y e R%
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1278 N. I. PORTENKO

The function Gy (¢, x y) is a fundamental solution to the following problem
(see [16]).

For a given @ € C, a function #&, (¢, x,¢) of the arguments =0 and x € RY
(A 20 is a fixed parameter) is looking for, such that it satisfies the conditions 1) —3) of
Section 1 and the condition:

4a) for t>0 and xe S the relation

1+ g(x) 9k (t, x+, @) _ 1—g(x) 0@ (¢, x—, ¢)
2 av 2 av

= Ar(x)i (t x, 9)

is fulfiled.
This problem is an analogy to the third boundary-value problem in the theory of
partial differential equations, and formula (4) is a version of the Feynman—Kac formula

for the process (x(t), M;, P,) and the functional m,(r) (see [16], a similar result is
given in [17]).
4. A random change of time. A given continuous bounded function r(x) on §

with non-negative values is fixed. We define a continuous Markov process ( £(2), Jt,,
P.) and a function u(t, x, ¢) as in Section 1. Our purpose is to show that the function
U, (x, @) defined by (3) for A>0, x e R? and ¢ € C is'a solution to the problem
a)—c). We have -

Ur(x @) = E, [ e™Mo(x(¢))dr = UP(x, ¢) + UP(x, ¢),
]
where

U0 = [ e EJow@e™]ar,
0

UP(x; 9) = E, [ N o(x(0)) dn ().
0

The function Uin can be written in the form

e

UL @)= [ et x @) dt,
0
where #, is given by (18) or (4). Taking into account the fact that the function #,

solves the problem 1)-3), 4a), we arrive at the conclusion that the function USJ
satisfies the conditions a), b) and the following one:
cy) for A>0 and x € S the relation

14+¢(x) UL (e, ¢)  1-g(x) 9U (3, @)

- o)
2 v 2 v MR Ee)

holds.

To calculate U;,(Lz)(x, ©), we make use of the following assertion proved in [18].
Denote by #(y) an arbitrary extension of the function r(y) defined on S to a
continuous bounded non-negative function on ]Rd, for example, one can set F(y) =

=r(Ily) for ye R? where ITy is the orthogonal projection of y on S. For an
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arbitrary real-valued measurable function (<, y) dn [0, =) x RY and for he (0,
hol (ho> 0 is afixed constant), t>0, x e R% we put

it
Q6% ¥) = [ dt [ G- %)V @ NFO () dy.
: 0 Rn‘

Lemma 1. Forall given s >0, T>0 and L >0 there exists 8> 0 such that
the inequality

[Qh(r, X, W)"‘Q}.(ff: I}, W)l < E
holds for all h e (0, hyl, te [0,T], t’e [0,T], xe R% x’e R? and vy
satisfying the conditions

sup lW(t,y)| <L and |t—t|+|x-x] < 8.
(t,y) el0, TIx R
As a consequence from this statement, we have the followmg property of the
functional 1,(r):

4
n,0) = Lim, [ F@@EDR filx(wdds. @D
hlo .
Indeed, according to (10), we have

lim _[d'l: IG(‘C X NFOR KO dy =
hlo 0 rd

= [dt] % G (%, x, yH) + G(z, x, y)]r(y) doy =
0 kY

= j dt [ g(x, x ) r() doy = Emn()
0 s :

and the convergence here is uniform in the argument x & R? and locally uniform in

t=0, as it follows from Lemma 1. Therefore, the relation '

lim sup  sup [En()-Em, )| =0
hd0,er0,7) xeR?

is true for an arbitrary T < +eo, where we denote by 'r]ﬁ' (r) the integrél on the right-
hand side of (21). The Theorem 6.4 from [1], Chapter 6 now implies the relation (21).
Using (21), we can write

UP(x, ¢) = lim [ e xoFhT ) de (22)
for A>0 and x € R% The formula (18) and the first equation, in (19) imply the
following integral equation for the function ﬁz}_(t, X chk"l ﬁl):

(65 oFh7'f) = [ GE % NeMFORT G dy ~
Rn‘

t
~ Afdt [ g % DB (1.7 OF RS, )r(2)do,. (23)
0 5
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For a fixed h> 0 this equation has no more than one bounded solution.
Lemma 2. Forall A>0, t20 and x € R? the relation

Lim % (t, x, 97 h7'fy) = @ (t, x, pr85)
rlo
is fulfiled, where @, (t, x, prdg) is the unique solution of the equation

B (1, x,9785) = [ gt x y)eX)rk)do, —

s
t
- R.Jdtfg(ﬂ:, x, 2)i (t—1, 2, prdg) r(z)do, (24)
o s .
satisfying the inequality
|8 (8, %, r85)| < Kpt™? sup |o(x)] (25)

xes§

on each domain of the form (t,x)e (0, T1x RY with some constant K<+ for

T < +oo,
Proof. The unique bounded solution to the equation (23) can be obtained by the
method of successive approximations. Namely, put

i (tx 977 f) = [ G X »)eMFOIE£,() dy
rRY :
and for k=0,1,2,...

5
B (1 x 0Fh7f) = A dv [ gt x )i (2 -7, 2, 0F K7 fy) r(2)do,.
g 0 S

Making use of representation (13), we have the estimate
~0 ~7-1 o o
(e = 0757'5)] < l@llF | @rey™/2

By induction on k we now arrive at the inequalities

55 075715)] < Hopt (L) 220 6
ﬁ}, t‘x>(PF 2z b < ] [_J TN (2)
t ﬁ I,(k+1)
2
valid for A>0, t=0, xe R and k = 0, 1, 2, ... . These estimates show that the

unique bounded solution to the equation (23) can be represented by the series
5 e | — ke R
ux(r, x,@Fh ﬁ,) = E ul(r, X, @Fh Ifh)
k=0

that is convergent uniformly in & € (0, hy]. Hence, we can pass to the limits, as
k10, in each term of this series. Since

lim @(, %, 97h7'f;) = [ ¢(%. % )0 ()10 o,
' s

we arrive at the conclusion that liin ﬁ{(t, x, (p?h”l _ﬁl) exists forall k=0, 1,....
hi0

Denote it by #@h(z, x, r8g). So, we have the equality
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t
u;{H (I, X, (P?'as) el lfdtjg(T’ X, Z)ﬁf(r'—'l:; Z, (P?‘Ss)?"(Z)dG'Z
0 N

valid for 20, A >0, xe R? and k=0, 1,2,..., where

i o . . .
i (t.x, 0r8s) = [t x »)e(»)r(y)ds,.

; 4 .

From the bthgr hand, the estimates (26) are held for functions ﬁ{(r, :;, ¢ords), k=
=0, 1, .... Therefore, the series o

oo

i (t x, @rdg) = Zﬁ;f(t, x, @rdg)

is convergent and it gives the solution to the equation (24). The inequality (25) and the
uniqueness of a solution satisfying this inequality are simple consequences from the
estimates (26). The lemma has been proved.

This lemma and the relation (22) imply the following cquanon for the functlon

U (x, 9): | ,
UP(x, 0) = [ (%3 do, - A3 U (y, ¢ do, (7
(X &%) r(y)do, &.(x VU (s @)r(v)dey, (27
S 3
valid for x e }R“’, A >0, where

Bz y) = j e’“g(r; x,y)dt, A>0, xe RY, . ye RY,
0 .

From this equation we first arrive at the conslusion that the function Uf) (x, ©)
satisfies the conditions a)—b) of Section 1. Secondly, using the theorem on the jump of
the normal derivative of a single-layer potential (mentioned above), from (27) we
obtain the relations :
QUL (xt, )
av

valid for A >0 and x € S. These relations imply the equa]ity

= Fr()eW) = M(x)U‘Z)(x, ®)

' 14+g(x) AU (v, 9)  1-g(x) QU (x~, @)
2 . av . 2 v

= r@AUP(x, 0)-9()] (28)

that is satisfied by, the function U;E?‘) at each point x e S for A > 0. 'Now, the fact
that the function U (x, ¢) satisfies the condition ¢) of Section 1 is a consequence of
the equality (28) and the equality ¢;) above. We have thus proved the following, -

statement.
Theorem. The ﬁ.mcrzon U (x, 9) deﬁned by 3)is a solution to the problem

a)—c).
Denote by S;." the set of those points x € S for which r(x)>0 and by 1Ir(x) the

: indicator function of aset I' C RY If the set S+ is non-empty, then U, (x, s*“) =
m(x, s") >0 forall xe RY and A >0, as it follows from the equation (28).
Therefore, the inequality
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o t
0 < R."lUl(x,IS:) = E, [ jls:,(;?(»:))d»c dt
0 0

holds true for all xe R and A >0 and this means that the Lebesgue measure of the
set {r=0: %(t)eS;} ispositive with a positive probability P, for any x € R% In

other words, for the process (3(z), Jﬁ,,, P,) the points of the set S have the
property of delaying or, one can say, these points are sticky for this process. On the
contrary, the points of the set S\ S; have no property of delaying because of the
equality

I
E, [ 150 (B(m)d7 = 0
0

valid for all #>0 and xe RY
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