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MULTIVARIATE SOBEL-UPPULURI-GALAMBOS-TYPE
BOUNDS

IIPO BATATOBHMIPHI TPAHHALX
SOBEL-UPPULURI-GALAMBOS

We improve the known upper and lower bounds for the probability of the fact that exactly k; events
should occur in a group consisting of n; events simultaneously forall i=1,2,...,d

YrounoloThCA BigoMi BEpXII TA IMKIN ouilKK i #mMosipnocTeif Toro, wo BigbyneTscs pisno k;
rojLi B rpyni 3 n; moik oguovacno npu seix i=1,2,...,d

The upper and lower bounds in a recent multivariate generalization (Galambos and Xu)
(1] of the univariate Sobel—Uppuluri—Galambos inequalities [2, 3] are shown in the
following to be weighted averages of individual multivariate bounds, and hence can be
sharpened by optimizing over these individual bounds. Examples are used to illustrate
the improvement and to illustrate the difference between bounds of this kind, and the
kind of multivariate bounds appearing in Chen and Seneta [4] and Galambos and Lee
[5]. We consider only bounds for the probability of the intersection of exactly k;
events occuring, from the ith event group of »; events, i=1, ... ,d.

1. Introduction and main results. Suppose A ... A, are arbitrary events in an
arbitrary probability space (£, B,P) and v, be the number of events which occur at a
given sample point. For any positive integers u and r, Sobel—Uppuluri bounds refer

to
2u+l
2u+2(2u+tr
z el ( ]Skw + : [ JS2u+r+2 <SP =r) =
n—r r
2u k+r 2u+1{2u+r+1
Z D [ )Sw —— [ . JSMH, m
where '

V) ,
SE,_:E[‘] for 1=<i<n,
4

(see, for example, Galambos [6] or Recsei and Seneta [7]). :

A bound (upper or lower) is called “a degree s bound” if max ;¢ /i=s, where I is
the index set of all S; used in the bound. A higher degree bound usually provides
more accurate evaluation at the cost of more complicated computation in calculating
S;’s, since higher dimensional joint probabilities are involved. The application of (1)
is extensive; details can be found in sources such as the book by Galambos and

Simonelli [8].
In multivariate setting, d sets of events are considered, A, i=1,..,n; for j=

=1,...,d respectively. Let v = (vy,...,vq4)" and r = (ry,..., rg)’. Bounds
extending (1) are sought for P(v=r) using ' ' T

s (1) - ()

where k= (ky, ..., kq)" is a vector of non- negatwe integers.

* Work of this author done at the University of Sydney with support of an ARC Small Grant to.
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1284 E. SENETA, JOHN T. CHEN

Galambos and Lee [5] proposed bounds extending (1) to a bivariate setting (d = 2),
which were then uniformly improved by Chen and Seneta [4] as follows, where i
and u, are non-negative-integers: :

2uy+1 20y +1 ki + 1 k?‘_l_?.
D DD '*2( )[ ]Sk,w..m +A+4; A3 <

k=0 k=0 d ”2

< P(Ul =J"|,U2=?’3) <

2y 2up P +k ka +r
2 E = 1) e - Sk|+.i‘|.k2+r1 - Hl - H?. + H’.’n (2)
n 2 .

k=0 k=0
where

for ny=r;

0

1 +2u1 +1 it i Bty

T +2-’J| i S (—I)J Sr|+2¢r1 +2, ra+y : for n>r,
n—n y=0 N 5

for ny =n;

E (_I)x Sr[ X, 420 +2

.r'} +2H'j +1 ?- +2u‘2+2"t—q }'1+x
e for ny >,

m - 1

x=0

for ny=n or ny=n;
:I+2u1+l 2y + 1 1+ 20 +2 1y 420, 42
r:_;_ 2u|+2 2-’.&_}_"‘2

Y42 2, m 42 +2

for ny>r and " ny>n,

(— l)"Sr 2+, Y for ny >,
n—r \E‘U 1A " 2“’,_,

for ny =n;

J'q +2H') .,-,) +2H1 +1 2y . 2££| X .
Z =D's, " XL 200 for ny >,

fla — Ty 21.{[

for ny=nr or ny,=n;

:, +2u1 1+ 2y 20+ Ly 20, + 1
S.-'l +20 41 +20 +]

s =1 Ny — 5

0
for ny =n;
"! +2”I i +2u +1 iy (EHZ +y

for my>n and 5y >n,
The nature of this exlension is Lo use the quantity

ol I i+ J+h
£ 3 ()

as the gencric term for inclusion and exclusion, with upper bounds (lower bounds)
being oblained by setting ¢ and b both odd (cven), and then (o bound the dilference
from P(v| =ry, vy=ry). The central idea is the application of Meyer’s identity

S = 1:[( ’: ](”“ D g' % (”' )(”” )P(ul =i, vy =),
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MULTIVARIATE SOBEL-UPPULURI-GALAMBOS-TYPE BOUNDS 1285

in conjunction with lemmas on combinatorial coefficients via the method of indicators.
This direction of generalization in theory separately involves all the degrees for event

sets {Aqq, ... ’A"li} and {A13, ... ,A,,zg} from 0 to a+r; and O to b+r,
respectively.

This involvement of individual bivariate degrees differs from that in multivariate
inequalities where degree p is that figuring in the quantity .

e

[k|=p

with [k| = Y7 ki, k=(ky, ..., k0)’ and

kY 4 (k
()-HG) s s

in the sense that p-dimensional joint probabilities are calculated. For example, the
multivariate identity stated in Meyer [9] reads

|n| k :
Piv=r)= Y Y [r)sk 3)

i=[x]  |k|=i

and its inverse form

[n] '
=Y ¥ (ilp(vw), @

p=k]| [s]=p

and so (3) is of degree |n|. Thus, bounds generalizing (1) by using multivariate
degree p quantities d, is a perhaps more natural way of extension, although each
direction of generalization has its own advantage under different circumstances. We
shall illustrate by constructing numerical examples in Section 3.

The manner of generalizing univariate inequalities using d s first appeared in [9]
where univariate Bonferroni bounds were extended to multivariate. Recently, by using -
the method of polynomials, Galambos and Xu [1] put forward the bounds:

24l ; k+r
S L T

=0 [k|=i

2t+2 k+r
Ry < P(v=r) =
!J‘I[—|}“i |kE‘2r( r ) k+r (V 1')

24 - K+r : | k+r * -
< Y 2( . ]Sk+r L > ( ' ]S.m, < {5
i=0 J . g

[k]=i |n|‘|r]|k|=2:+l r

aiming at extension of univariate Sobel-Uppuluri-Galambos bounds. They assert that
their result is analogous to the way Galambos [6] extended Bonferroni’s classical
univariate bounds; but that univariate extension in fact did not come from the method
of polynomials. The dissonance between the method used by Galambos and Xu (1]
and the result achieved prompted our investigation, and we obtained by extending

ISSN 0041-6053. Y&p. mam. xypit., 2000, m. 52, Nt 9



1286 . E. SENETA, JOHN T. CHEN

Galambos’ [6] original methodology, the following two theorems.
Theorem 1. For any integert=0 with 2t+1<|n|—-|x|,

2“2“ (.—1) Z [ JSRH + max 4;(2t+1) < P(v=r) <
i=0 |k|=i L ; '
< Ea(—n z [ Jsm - max 409, (6)
i= =
where
Ailx) = [klz;lx Sky+13, .. kf+q+1...kd+rd(k1;}iJ"'[ki +?f+1)---[kd;rd]$j;=

i=1,...,d. Notethat A;(x) has degree |r|+x+1.
Theorem 2. Inequality (5) can be written

21+1
Z+,(—1) Z( ]Sk+r+z ! ‘ L@+ S P(=r) S
i=0 |k|=i
4 —-h
E(-D 2[ ]k+r~2 L A1),
i=0 k|=i | ]_I |

so (6) is sharper than (5).

Remark. Theorem 2 shows that Galambos and Xu’s ([1], Theorem 1) can be
improved uniformly. The nature of improvement, from averaging to optimization, is
similar in sense to the way in which Hunter’s inequality improves certain univariate
inequalities [10].

2. Proof of theorems.

Lemma 1. For any integer T=0 and non-negative integers X, ... , X4,

L aeG) g (DR o

Since all (x;,.k;), i=1,...,d, are mtarchangeable on the left, the right hand side can
be rewritten in d ways. :

Proof of Lemma 1. We use proof by induction.

When T=0, left=1=right.

When T =1, the left becomes 1 —x|—x3 —...— x4 while the right equals
(=1)(x1—1+x2+ ... + x4) which is the same as the left.

Supposing that (5) is true for any integer T2 0, in the case of T+ 1 we have

T+l X
-1 —
Z{J [E-‘( )(*’ﬁ} [kdj
52006 B0
{=0 |K[=i k ky k|=T+1\ K
x =1\ x, x4
T s
( )]ki=T( ky ][kz) [@]Jr( ):_ |k|zr+1 kl
x =1\ x X
-ari- 2 0 a)-e) (2)}-
o { IkI=T[ K ky ky +[k|§;'"+1 k)
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MULTIVARIATE SOBEL-UPPULURI-GALAMBOS-TYPE BOUNDS 1287
x; Xy Xg x =1V x Xy
(g (D 2T
|k%?" ki+1 )\ ky kq jk[z;"r ki )\ ky kg
X\ *2 Xd
+ 3 =
[ka;'"ﬂ(O)(sz [ ]}
X -1\ x d
-om 2 o)) () 2 G0)-G
|k|Z—'T ki+1 )\ ky kg |k[=T+1 kq
by putting the first two summation together and using
( X J (xr1 =il
k+1) ] [k1+1]
T+l -1
%)) o B 00 N0 3)
=0 |K[=i ki ky k[=T+1\ K ky

Z o)) 2. G)E)-(e)-
-GG

Proof of Theorem 1. Let a be any non-negative integer and write P(s) =P (v =
=s)=P(v;=sy,...,94=54). Then

a ; k+r k+r) | s )

- [ JS r (SH [ ] [ ]P(S),
% !kz[“‘—‘f k ke 2('} |l§‘-x k p=§|r| |s[z=:p k+r

by (4), nothing that | k|=i. Thus

Z -1 2[ :r]SM - 3 3 w0y > D (Hr][kir]

K[=i p=lxlsl=p =0 K[=i T

~ since

where

p=lr] [s] i=0

i -0

Ea‘, Dy [k:r]sk+r=P(;~)+ [En‘i | Y P(s)(sli 2 [S;rjz

i=0 Ik|=i p=[x|+l |s|=p

In] : S{—n— Sy—1 -
e 3 BB (T

_ p=Irl#l [s|]=p lk|=J
by Lemma 1. Then :

In]| g (s=r\ -
J = min (g |n|-|r]) = Z, (J Y, ;k|_-(“1)l (S_kr}

this is because
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1288 E. SENETA, JOHN T. CHEN

a k+
Z = Di [ r}s‘kﬂ: o
[k|=i

i=0 k

f
P(r) + s)( J( 1% x
p= irI+I ISI P

s =1 =18 —r -
D ( S J : 2] [ ‘IJ for a<|n|-|r|;
[K[=a ky kq

[n]

P(r) + (-D)* Y, E X

|k|=a p=|r|+1

=] _ _
s P(s)( J[ = ]( er...(Sd rd) otherwise.
Isl=p k?, 'kd .

a . k+r
PN VDY ( . JSk+r = P@) + (~1)°By(a), ©)

=0 [k[=i

Thus we have

where

[n] s1==1\(s—n Sq =74
Bi(a) = P(s) :
I |k[zap srz|ia+1 ISIZF { J( ky ][ ky J { kd‘]‘

since only when p=|r|+a+1 can we obtain

(51"‘"1—1]{52—-?‘1 {Sd—?‘d]
' # 0.
ki ky kq

With.(9), we are ready to prove Theorem 1. To show the upper bounds of the
theorem, we set a = 2¢, which makes (9) become : . ;

2t . k+r
PRGN Sear = P(O) + B(20).
i=0 k=il k
‘We shall first show A1(2¢)<B(2t), which can be seen by recalling that
ki+n+1\(ky+1, kg +1y K+l
Al(zr) = [ izl Sk|-|-q+],k2-l~.r2....'.k,;+r,, 5 . : o =
k|=2¢

1 5} I L S

|n M ) ] 4
= 5 >, P(s) _ X
[k[=2¢ p=[Kk[+[x|+] |s|=p ky+n+l J\ky+r ky+1

y ki+n+1\(kp+n kg +ry .k1+1‘
.1 ) Ak

This is because by (4)
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MULTIVARIATE SOBEL-UPPULURI-GALAMBOS-TYPE BOUNDS 1289

In]| 5 5q Sq
Sk;-:-r,-:-l,kz-l-rz.m.k{;-i-rd = Z Z P(s) .
p=|k|+x]+1 [s]=p ki+n+1 )\ ik +n ky+1y
On the other hand,
B (21) =

[n]| 51 s N(S1—-n—-1\ (s -1 Sy—1y
= Y > Y. P(s) .
|k|=2t p=|x[+2t+1 |s]=p n U k. ky k,

Comparing

s ky+n+1 {5 s —-n-1
1 1+1 v R ! R
kg7 +1 i L7 ky ky +1

will find by expanding the left-hand expression that

Si kl+?1+1 _ .S'I Sl'—'?i"']
<4zh . (10)
k1+?j. +1 i k1+1 b1 kl

Further, as in (8):

5 ki+r S\ (si—n
= for i=2;...5d. (1)
ki +1; T T k;

. Thus, for each P(s) in A (2¢) and B (2f), we can compare pairs of associated
coefficients in A ;(2¢) and B(2t) individually, by (10) and (11), and the immediate
conclusion is that A;(2¢)< B1(2t). Noting that x; can be replaced by any one of

Xo, ..., Xq establishes the upper bounds in Theorem 1, for 2¢<|n|—|r].
Taking a=2¢+1 in (9) yields
2t+1 : k+r
> Y [ JSW = P(r) — B2t +1).
i=0 [k[=i\ k

To establish the lower bounds we need first to show

21+l K+r) - - % ! :
2 Y [ ]Skﬂ, < P@) - Al(2r+1).
=0 [k[=i\ k
This can be achieved if Aj(2t+1) < By(2t+1), which follows from applymg (10) and
(11) to the comparison between A;(2t+1)- and Bj(2t+1) term by pairwise term.
Considering the fact that x; can be replaced by any one of x, ..., x4 completes the
proof of Theorem 1. :
The following well-known result is nccessary to establish Theorem 2.
Lemma 2. For positive numbers ay, ..., aq with positive weights ci; ..., ¢,

respectively, such that Z?—lc" =1,

max a; < ca -l'-...+'ca,"
1<i<n i 11 n“n

and equality can be attained only when a;=const forall i=1,...,n.

Proof of Theorem 2. For notational convenience, we state the proof of Theorem 2
in the bivariate setting. The proof for the multivariate sefting follows analogously

In the bivariate case, Theorem 1 yields
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2t+1 3 k+r
>y ¥ [ ]Skﬂ + A2t+1) < P(v=r) <
i=0 kb=t
z . k+r
< 3 DY [ ]SKH - A20), (12
i=0 kytkymit F
and
21+l i k+r
PG [ ]Skﬂ + A, (2t+1) < P(v=r) <
i=0 ktkg=is T
2t ; k+r
< Y Y [ Js,m — A, (20), (13
i=0 htkymis T
where
: kl+?'1+1 k2+?‘2 k+]
A(21) = Sky+n+1,k r( )( ——
k;+§l B AP y 2 gl
and
k1+?i k2+?'2+1 +1
Jeythy =2t 5 nR—n
* Multiplying (12) by ['nll = (13) by 5 |_| | respectively and adding them yields
n r
21+l . k+r . s X _
> «n Y [ ]Sk+r+Al(2t+1) Lt MW RN Bt B
i=0 ktkp=is T In|~|r| “In|=|r|
2 : k+r - .
<SPv=r)< Y ) ¥ ( ]Skﬂ, = AN . 4 onlaTl,
i=0 ktky=is ¥ In|—|r| [n|—|x|
(14,

Comparing (14) with (5), if we prove

n —n - - 2t+1 k+r
ACHATE 4 4 onl2T2 - [ JS g 05
A PYE  FYSTY |n1—1r|,k|=22,+1 “

we can then claim that the upper bound given in (5) is a weighted average of d upper
bounds in Theorem 1, by Lemma 2, we can have the upper bounds of Theorem 2. The
proof for the sharperness of lower bounds in Theorem 2 follows similarily, thus the key
here is to prove equation (15). To see (15), note that

A2n L
[n |-| | | I—i i
k1 +1\(ky+r
= 5 'Sk1+n+l.k2+a[ 1+4 )[ 2 z) kijilj"'
Ky ke =21 i n Jn|-|r
+n\(k+n+1\ K, +1
"> S“f*’w“ﬁ“[ N J[ n o Jinl-lrl

k| +k2 =3t

ZLV':IS [k1+r1+1J[2rmk1+r2) k; +1
kg +1 +1, 26—k +1
P 1+l 2.‘“2 i [n|—|r|

5
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MULTIVARIATE SOBEL-UPPULURI-GALAMBOS-TYPE BOUNDS 1291

n+20+1, i |n[_rr| s 20415 +1 r !n[_lr[
2t ky+n\ (2t =k +r +1
# D Sk1+-"|.2r—k|+l'z+1[ ][ - ) =
k=1 A % =i
Setting k +1 = in the first summations yields
n —n Ny —1
Aj(2t) ——L + A (21) = =
[n|-|r| |n|—|r|
2 JHn\(2t—j+n+1 J
= 2 Sj+q,2t—j+rz+1 *
j=1 it 2 |m]~[x]
s [2t+1]+1} 241 2t+n+1) 2141
+2t+l 7 ]nl_lrl n, 24+l r Inl—ll‘[
2t ki +nr\(2t=k +r+1 2t—k +1
+ Z Skl+n_2f—k|+.='2+l n 7 [n|—fr| -
k|=l i 5
S 241 +1) 2641 2t+rm +1Y 2141
_ ——
n+2t+l " In|—|r| 2+ +1 " [n|-|x|

+ 2 Sty 1, 20—k +ry +1

[k, +J]J[2t—kl +7 +1J 2t 41
k=1

7 ) In|-|r|

2t+1 (kﬂ‘)
R Sk .
EEERR

3. Numerical examples. In this Section, we shall plesent two examples “Example
1 shows that in some cases (5) does not give a-useful result while (6) can still be very
effective. Example 2, in conjunction with Example 1, clarities the relationship between -
the two directions of generalization as mentioned in Section 1. We see from the
examples that in some cases, bounds (2) based on the direction of Galambos and Lee: .
[5] and then Chen and Seneta [4] work betlel while i m sorne othel cascs, the bounds- L

from (6) are sharper.
Example 1. Consider A, A3, A3, A4 and B I's Bg, Bg 84 w1th n0n~2310 -
probabilities of elementary conjunctions assigned as follows . e

P(A, Ay AS Ay Bf BSBS B = 0, 18; P(AI Ay AS B1 3233 34) ;',0','12_;
P(A; Ay Ay Ay B, B, By Bf) = 031; - - OP(AA ,_43-'.;14_3] BS By "34«')- = 0;19;
P(A Ay A3 A{ B B, ByB,) = 0,015 P(AfASAS A;‘-B{-*-'Bgsg Bf) = 0,19.

Hence we have the corresponding 1 non-zmo plobabﬂltl es of the numbcr of exactly Als
B’s which occur as - : . . : :

P(vA:-S,uB'=lI)='0,3;' P(vA—B ”3—4)—001
P(vy=4,vp=3) = 0,50; P(UA--O UB—U)—O]S'
and then the associated Bonferroni summatmns . S - .
| S31 = 634; S3 = 6,06; 833 = 20.4> o 0,01;
Sq1 = 1,5_;I'_ Sap = ll,l_S, _343 _—_0,5, S4q 0.

ISSN 0041-6053. Ykp. mam. #ypi., EOOD.I'm. 52, Neg-




1292 : . E. SENETA, JOHN T. CHEN

Example 2. Consider A|,A;,A3,A4 and B, B3, B3, B4 with non-zero
probabilities of elementary conjunctions specified as follows

P(A Ay Ay A B B BS BS) = 0,1;  P(Af A, Ay Ay Bf BS B3 By) = 0,1;
P(A A5 Ay Ay Bf B, By BS) = 0,1;  P(A A, A§ Ay B, B, BS BY)
P(A Ay AS Ay By BS BS BS) = 0,2;  P(Af A AS A Bf BS BS B§) = 0,1;

0,1;

P (A Ay Ay A{ Bf BS BS B;) = 0,3.
Such an assignment gives the'cor;esponding non-zero probabilities of the number of
exactly A’s B’s which occur as
P(vg=3,05=2) = 04; P(vy=3,v3=1) =05 P(vy=0,03=0) = 0,1;
and then corresponding Bonferroni summations can be calculated as
S31=13; S;2=04 S33 =0 S3u=0;
Sq1 =0; Sa2=0; Sg3=0; Sgq =0

We first compare the upper bounds in (5) and (6).

In Example 1, d =2, ny=n; =4 andsetting r{ =3, r,=1 and =1 in
Theorem 1 yields as the upper bounds entering into (6), using A;(-) at each of
and 2 respectively:

P(vy=3,vp=1) < S3; — (2533 +4S41) + (3533 +8S43) — 12543 = 0,34

.
Il
—

and
P(uvy=3,vp=1) < S31 — (2832+454]) + (3533 +8S42) — (4534 + 8543) = 2,3.
Thus, the upper bound from Theorem 1 reads
| P(vy=3,03=1) < min(0,34;2,3) = 0,34
while the upper bound of (5) reads
P(vA._= 3,v§: 1) < S31 — (2532 +4841) + (3533 +8S542) — (3534 +9543) =1,81.

Thus (5) gives a trivial upper bohnd (greater than 1). The actual value is P (vy = 3,
vp=1)=0,30. (15)in this example reads:

034 x— =3 _423x
4+4-3-1

Both (5) and (6) give the lower bound 0,3.

Next we shall use Example 1 to thow that (2) can be sharper than (6), and then use
Example 2 to show that (6) can be sharper than (2).

In Example 1, we know that (6) gives a upper bound of 0,34 which is very effective
in estimating the exact value of 0,3. However, (2) does even better. Letting uj =1,
u2=0, ny=ny=4, rj =3, rp=1 the upper bound in (2) yields

P o SRS )
ApA gl

2 2 Ck+3\(t+1
P(vg=3,03=1)< > 2(-1)“‘L . )( 4 JS,‘H,,H - H, <
k=0 t=0 ;

2
S S5 — 454 - 5(532 —443).
Applying the values of S;;’s in Example 1 yields
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MULTIVARIATE SOBEL-UPPULURI-GALAMBOS-TYPE BOUNDS 1293

P(vy=3,05=1) < 03

which exactly hits the value to be evaluated. However, the upper bound in (2) is not
always better than (6) as demonstrated by Example 2, where (2) gives the bound

P(vg=3,vp=1) < 1,3—§><0,4 = 1,03

which is a trivial upper bound. On the other hand, (6) provides an upper bound
Plvy=3,vp=1) < 1,3 - (2x0,4+4x0) = 0,5

which is the exact value to be estimated. Both (2) and (6) give the lower bound 0,5.

Commemorative note. As a graduate student at the Australian National
University, Canberra, in 1966 I (E.S.) received as a gift from David Vere—Jones a copy
of A.V. Skorokhod’s (1964) Cayuaiinsie npoyecco! ¢ HE3a8UCUMBIMIL NPUP QUEHUAMIL,
and soon after received from my wife’s parents as a gift for my 25th birthday Gikhman
and Skorokhod’s (1965) Bsedenue ¢ meopuro cayuaiinsix npoyeccos. I was pleased
and proud to see in these books references in my first language, Ukrainian, since A.
V.’s name was becoming very well known through the Skorokhod topology.
Eventually I was able to acquire his Ukrainian-language textbooks of 1975 and 1990
and was able to use the former: Enemenmu meopii iiMosiprocmeti ma eunadkoeux
npoyecie to help in the construction of my own lectures. I hope the preceding paper in
a small sub-area of probability reflects my admiration, and that of my former student
John Chen, for A. V’s contributions to this field and to Ukrainian mathematics.
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