S. Csörgö* (Bolyai Institute, Szeged Univ. Hungary), W. B. Wu (Univ. Michigan, Ann Arbor, USA)

ON SUMS OF OVERLAPPING PRODUCTS OF INDEPENDENT BERNOULLI RANDOM VARIABLES

ПРО СУМИ ДОБУТКІВ ПОСЛІДОВНИХ ПАР ВЕЛИЧИН, ВИБРАНИХ З ПОСЛІДОВНОСТІ НЕЗАЛЕЖНИХ БЕРНУЛЛІЄВИХ ВЕЛИЧИН

We find the exact distribution of an arbitrary remainder of infinite sum of overlapping products of a sequence of independent Bernoulli random variables.

Знайдено точний розподіл довільного залишку нескінченної суми добутків послідовних пар величин, вибраних з даної послідовності незалежних бернуллієвих випадкових величин.

Results and discussion. Let X_1, X_2, \dots be independent random variables with distribution

$$P\{X_n = 1\} = \frac{1}{\mu + n - 1} = 1 - P\{X_n = 0\}, \quad n \in \mathbb{N} := \{1, 2, \dots\},$$
 (1)

where $\mu \ge 1$ is a fixed real-valued parameter, and introduce the random variable $N := := N_1 = \sum_{n=1}^{\infty} X_n X_{n+1}$ along with the remainders

$$N_l := \sum_{n=l}^{\infty} X_n X_{n+1}, \quad l \in \mathbf{N},$$

of the infinite sum. The random non-negative integer N is well defined; in fact by the monotone convergence theorem

$$E(N_l) = \sum_{n=l}^{\infty} \frac{1}{(\mu + n - 1)(\mu + n)} < \infty$$

and so $E(N_l) = 1/l$ in the particular case $\mu = 1$, for every $l \in \mathbf{N}$. The aim of this note is to determine the distribution of N_l for all $l \in \mathbf{N}$.

The problem of computing the distribution of $N=N_1$ was originally posed for the case $\mu=1$ to the second-named author by Y. S. Chow. Having obtained the solution by the method of generating functions, which states that if $\mu=1$ then N is a Poisson random variable with mean 1, P. Diaconis [1] kindly informed him that the result was known: Diaconis's own proof for this result was included in unpublished notes of Michel Emery in Strasbourg and in an unpublished dissertation by Lars-Ola Hahlin in Uppsala, and it also follows as the special case $\lambda=1$ for the first coordinate of an infinite-dimensional convergence theorem in Section 3 of a paper by Arratia, Barbour and Tavare [2]. Considering the distributions

$$P\{X_n = 1\} = \frac{\lambda}{\lambda + n - 1} = 1 - P\{X_n = 0\}, \quad n \in \mathbb{N},$$
(2)

for some constant $\lambda > 0$ instead of (1), the method in [2] is purely combinatorial, it identifies the Poisson distribution of N with mean λ as the limiting distribution of the number of cycles of size 1 in a random permutation under the Ewens sampling formula. This method does not appear to produce the distribution of N_l for l > 1, even for $\lambda = 1$. Our direct proof here does this for all $l \in \mathbb{N}$ for all $\mu \ge 1$ for the distributions in (1), and in this case it is of independent interest even for $N = N_1$ when $\mu = 1$.

^{*} Research supported in part by the Hungarian National Foundation for Scientific Research, Grant T 032025.

Throughout, all empty sums are understood as zero and all empty products are understood as one.

Theorem 1. Let $X_1, X_2, ...$ be independent random variables with the distributions in (1) for some $\mu \ge 1$. Then for any $l, n \in \mathbb{N}$ such that $n \ge 1$,

$$P\{X_{l}X_{l+1} + \dots + X_{n}X_{n+1} + X_{n+1} = k\} = \sum_{j=l+k-2}^{n} \frac{(-1)^{j+k+l}}{\prod_{r=l}^{j+1} (\mu + r - 1)} {j+2-l \choose k}$$
(3)

and hence for all $l \in \mathbb{N}$,

$$P\{N_l = k\} = \sum_{j=l+k-2}^{\infty} \frac{(-1)^{j+k+l}}{\prod_{r=l}^{j+1} (\mu + r - 1)} {j+2-l \choose k}$$
(4)

for every non-negative integer k, and the generating function of N_1 is

$$E(s^{N_l}) = \sum_{j=l-2}^{\infty} \frac{(s-1)^{j+2-l}}{\prod_{r=l}^{j+1} (\mu+r-1)} = 1 + \frac{s-1}{\mu+l-1} + \frac{(s-1)^2}{(\mu+l-1)(\mu+l)} + \dots$$
 (5)

for all $s \in [0, 1]$

Note that the first statement in (3) and formula (6) in the proof below also give the exact distribution of any section $X_lX_{l+1} + ... + X_nX_{n+1}$ of the series defining N.

In the special case $\mu = 1$, the formulae (3), (4) and (5) take the forms

$$P\{X_{l}X_{l+1} + \ldots + X_{n}X_{n+1} + X_{n+1} = k\} = (l-1)! \sum_{j=l+k-2}^{n} \frac{(-1)^{j+k+l}}{(j+1)!} {j+2-l \choose k},$$

$$P\{N_l = k\} = (l-1)! \sum_{j=l+k-2}^{\infty} \frac{(-1)^{j+k+l}}{(j+1)!} {j+2-l \choose k}$$
(4₁)

for every non-negative integer k and

$$E(s^{N_l}) = 1 + \frac{s-1}{l} + \frac{(s-1)^2}{l(l+1)} + \frac{(s-1)^3}{l(l+1)(l+2)} + \dots = \frac{(l-1)!}{(s-1)^{l-1}} \sum_{j=l-1}^{\infty} \frac{(s-1)^j}{j!}$$
 (5₁)

for all $s \in [0, 1]$. For l = 1 it follows from (4_1) in this particular case that

$$P\{N=k\} = \sum_{j=k-1}^{\infty} \frac{(-1)^{j+1+k}}{(j+1)!} {j+1 \choose k} = \frac{1}{k!} \sum_{j+1-k=0}^{\infty} \frac{(-1)^{j+1-k}}{(j+1-k)!} = \frac{1}{k!} e^{-1}$$

for all $k=1, 2, \ldots$, or, equivalently from (5_1) , $E(s^N)=e^{s-1}$, $0 \le s \le 1$, the generating function of the Poisson distribution with mean 1. Notice the interesting fact in this connection that the multiplying factor $\sum_{j=l-1}^{\infty} (s-1)^j / j!$ of the second formula in (5_1) is the remainder of the polynomial approximation of degree l-2 of e^{s-1} . All in all, the distributions equivalently given by (4) or (5) may be looked upon as a parametric family $(\mu \ge 1, l \in N)$ extending the Poisson distribution with mean 1.

In the converse direction we conjecture the following: If X_1, X_2, \ldots are independent Bernoulli random variables such that $P\{X_1X_2=1\} > 0$ and the distribution of $N = N_1 = \sum_{n=1}^{\infty} X_n X_{n+1}$ is given by (4) with l=1, for some $\mu=1$, then $E(X_n) = 1/(\mu+n-1)$ for the same μ , for each $n \in \mathbb{N}$. As a special case for $\mu=1$, this would give a joint characterization of the standard (mean 1) Poisson and the Bernoulli distributions in (1) with $\mu=1$. The following result confirms the conjecture under the extra condition that an extended "scaled" version of the full conclusion of Theorem 1 holds.

Theorem 2. Let X_1, X_2, \ldots be independent random variables with distribution given by $P\{X_n=1\}=p_n=1-P\{X_n=0\}$ for some $p_n\in(0,1)$, $n\in\mathbb{N}$, such that the generating function of $N_l=\sum_{n=1}^\infty X_nX_{n+1}$ is

$$\begin{split} f_{l,\lambda}(s) \; := \; & E \Big(s^{N_l} \Big) \; = \\ & = \; 1 + \frac{\lambda(s-1)}{\mu + l - 1} + \frac{\left[\lambda(s-1) \right]^2}{(\mu + l - 1)(\mu + l)} \; + \; \frac{\left[\lambda(s-1) \right]^3}{(\mu + l - 1)(\mu + l)(\mu + l + 1)} \; + \; \dots, \end{split}$$

 $0 \le s \le 1$, for all $l \in \mathbf{N}$ for some $\lambda > 0$ and $\mu \ge 1$. Then, necessarily, $\lambda = 1$ and $p_n = 1/(\mu + n - 1)$ for every $n \in \mathbf{N}$.

The function $f_{l,\lambda}(\cdot)$ here is a seemingly natural generalization of the generating function in Theorem 1 since for the pair $(\lambda,\mu)=(1,1)$ it reduces to $f_{l,\lambda}(s)=e^{\lambda(s-l)},\ 0\leq s\leq 1$, the generating function of the Poisson distribution with mean λ . However, Theorem 2 excludes this parameterization by asserting that the only possible λ is 1. The result in [2], stated above, suggests that version of the conjecture above that if X_1,X_2,\ldots are independent Bernoulli random variables such that $P\{X_1X_2=1\}>0$ and the distribution of $N=N_1=\sum_{n=1}^\infty X_nX_{n+1}$ is Poisson with mean $\lambda>0$, then $E(X_n)=\lambda/(\lambda+n-1)$ for each $n\in \mathbb{N}$. To prove the corresponding weaker version, an analogue of Theorem 2, would require the presently unavailable knowledge of the generating functions of N_l for all $l\in \mathbb{N}$ under the distributions in (2), i.e. the corresponding version of Theorem 1. A remark on this and related problems is placed after the proof of Theorem I below.

Finally, we mention another problem that arises naturally and is open even for our present sequence of independent variables X_1, X_2, \ldots satisfying (1) with $\mu = 1$. For a number $k \in \mathbb{N}$, what is the distribution of $S_k := \sum_{n=1}^{\infty} \prod_{j=n}^{n+k} X_j$? Here $S_1 = N$ of course, and so Theorem 1 answers the question for k = 1, but, while various systems of recursive equations may be derived as in the proof of Theorem 1 below, we were unable to identify in any explicit sense the distribution of even the next case, the distribution of $S_2 = \sum_{n=1}^{\infty} X_n X_{n+1} X_{n+2}$.

Proof of Theorem 1. For all admissible values of the integers l, n and k, introduce

$$p_{l,n}(k) := P\{X_l X_{l+1} + \dots + X_n X_{n+1} + X_{n+1} = k\},$$

$$p_{l,n}^*(k) = \sum_{i=l+k-2}^n \frac{(-1)^{j+k+l}}{\prod_{r=l}^{j+1} (\mu + r - 1)} {j+2-l \choose k}.$$

and

$$q_{l,n}(k) := P\{X_l X_{l+1} + ... + X_n X_{n+1} = k\},\$$

and let us agree to understand $p_{l,n}(k)$, $p_{l,n}^*(k)$ and $q_{l,n}(k)$ as zero if k is negative. Conditioning on X_{n+2} , we obtain

$$p_{l,\,n+1}(k) \,=\, \frac{\mu+n}{\mu+n+1} q_{l,\,n}(k) \,+\, \frac{1}{\mu+n+1} p_{l,\,n}(k-1)$$

and

$$q_{l,n+1}(k) = \frac{\mu+n}{\mu+n+1}q_{l,n}(k) + \frac{1}{\mu+n+1}p_{l,n}(k).$$

From the first of these two equations

$$q_{l,n}(k) = \frac{\mu + n + 1}{\mu + n} p_{l,n+1}(k) - \frac{1}{\mu + n} p_{l,n}(k-1), \tag{6}$$

by which the second becomes

$$\frac{\mu + n + 2}{\mu + n + 1} p_{l, n+2}(k) - \frac{p_{l, n+1}(k-1)}{\mu + n + 1} = \frac{p_{l, n}(k)}{\mu + n + 1} + p_{l, n+1}(k) - \frac{p_{l, n}(k-1)}{\mu + n + 1},$$
univalently.

or, equivalently,

$$p_{l,\,n+2}(k) \ = \ p_{l,\,n+1}(k) \ + \ \frac{\left[\ p_{l,\,n+1}(k-1) - p_{l,\,n}(k-1) \ \right] - \left[\ p_{l,\,n+1}(k) - p_{l,\,n}(k) \ \right]}{\mu + n + 2}.$$

The crux of the argument is to come up with a reasonable conjecture from the recursion in (7) for the form of $p_{l,n}(k)$, which is given by $p_{l,n}^*(k)$ above. Having this, we now proceed to prove the desired identity $p_{l,n}(\cdot) \equiv p_{l,n}^*(\cdot)$ by induction, which for each $m \ge l$ produces $p_{l,m+2}(k)$ from $p_{l,m+1}(\cdot)$ and $p_{l,m}^*(\cdot)$ for all nonnegative integers k.

First, for all k = 0, 1, 2, ..., we must consider

$$p_{l,l}(k) = P\{X_l X_{l+1} + X_{l+1} = k\}$$

and

$$p_{l, l+1}(k) = P\{X_l X_{l+1} + X_{l+1} X_{l+2} + X_{l+2} = k\}$$

in a direct fashion. Clearly, $p_{l,l}(k) = 0 = p_{l,l}^*(k)$ for all k > 2 and $p_{l,l+1}(k) = 0 = p_{l,l+1}^*(k)$ for all k > 3. Also,

$$p_{l,l}(0) = P\{X_{l+1} = 0\} =$$

$$= \frac{\mu + l - 1}{\mu + l} = 1 - \frac{1}{\mu + l - 1} + \frac{1}{(\mu + l - 1)(\mu + l)} = p_{l,l}^*(0),$$

$$p_{l,l}(1) = P\{X_l = 0, X_{l+1} = 1\} =$$

$$= \frac{\mu + l - 2}{\mu + l - 1} \frac{1}{\mu + l} = \frac{1}{\mu + l - 1} - \frac{2}{(\mu + l - 1)(\mu + l)} = p_{l,l}^*(1)$$

and

$$p_{l,l}(2) = P\{X_l = 1, X_{l+1} = 1\} = \frac{1}{\mu + l - 1} \frac{1}{\mu + l} = p_{l,l}^*(2)$$

by the formula for the right-hand sides, and one can check similarly that the expressions for

$$\begin{split} p_{l,\,l+1}(0) &= \, \mathbb{P}\big\{X_{l+1} = 0, \; X_{l+2} = 0\big\} \; + \; \mathbb{P}\big\{X_l = 0, \; X_{l+2} = 0\big\}, \\ p_{l,\,l+1}(1) &= \, \mathbb{P}\big\{X_{l+1} = 0, \; X_{l+2} = 1\big\} \; + \; \mathbb{P}\big\{X_l = 1, \; X_{l+1} = 1, \; X_{l+2} = 0\big\}, \\ p_{l,\,l+1}(2) &= \, \mathbb{P}\big\{X_l = 0, \; X_{l+1} = 1, \; X_{l+2} = 1\big\}, \end{split}$$

and

$$p_{l,l+1}(3) = P\{X_l = 1, X_{l+1} = 1, X_{l+2} = 1\}$$

also agree with $p_{l, l+1}^*(0)$, $p_{l, l+1}^*(1)$, $p_{l, l+1}^*(2)$, and $p_{l, l+1}^*(3)$, respectively. Thus we have $p_{l, n}(\cdot) = p_{l, n}^*(\cdot)$ for n = l, l+1.

Now we suppose that $p_{l,m}(k) = p_{l,m}^*(k)$ and $p_{l,m+1}(k) = p_{l,m+1}^*(k)$ for all k = 0, 1, 2, ... for some integer $m \ge l$. Then by (7) and this induction hypothesis,

$$p_{l,m+2}(k) = p_{l,m+1}^{*}(k) + \frac{\left[p_{l,m+1}^{*}(k-1) - p_{l,m}^{*}(k-1)\right] - \left[p_{l,m+1}^{*}(k) - p_{l,m}^{*}(k)\right]}{\mu + m + 2} = p_{l,m+1}^{*}(k) + \frac{1}{\mu + m + 2} \frac{(-1)^{m+k+l}}{\prod_{r=l}^{m+2} (\mu + r - 1)} \left[\binom{m+3-l}{k-1} + \binom{m+3-l}{k}\right] = p_{l,m+1}^{*}(k) + \frac{1}{\mu + m + 2} \frac{(-1)^{m+k+l}}{\prod_{r=l}^{m+2} (\mu + r - 1)} \left[\binom{m+3-l}{k-1} + \binom{m+3-l}{k}\right] = p_{l,m+1}^{*}(k) + \frac{1}{\mu + m + 2} \frac{(-1)^{m+k+l}}{\prod_{r=l}^{m+2} (\mu + r - 1)} \left[\binom{m+3-l}{k-1} + \binom{m+3-l}{k}\right] = p_{l,m+1}^{*}(k) + \frac{1}{\mu + m + 2} \frac{(-1)^{m+k+l}}{\prod_{r=l}^{m+2} (\mu + r - 1)} \left[\binom{m+3-l}{k-1} + \binom{m+3-l}{k}\right] = p_{l,m+1}^{*}(k) + \frac{1}{\mu + m + 2} \frac{(-1)^{m+k+l}}{\prod_{r=l}^{m+2} (\mu + r - 1)} \left[\binom{m+3-l}{k-1} + \binom{m+3-l}{k}\right] = p_{l,m+1}^{*}(k) + \frac{1}{\mu + m + 2} \frac{(-1)^{m+k+l}}{\prod_{r=l}^{m+2} (\mu + r - 1)} \left[\binom{m+3-l}{k-1} + \binom{m+3-l}{k}\right] = p_{l,m+1}^{*}(k) + \frac{1}{\mu + m + 2} \frac{(-1)^{m+k+l}}{\prod_{r=l}^{m+2} (\mu + r - 1)} \left[\binom{m+3-l}{k-1} + \binom{m+3-l}{k}\right] = p_{l,m+1}^{*}(k) + \frac{1}{\mu + m + 2} \frac{(-1)^{m+k+l}}{\prod_{r=l}^{m+2} (\mu + r - 1)} \left[\binom{m+3-l}{k-1} + \binom{m+3-l}{k}\right] = p_{l,m+1}^{*}(k) + \frac{1}{\mu + m + 2} \frac{(-1)^{m+k+l}}{\prod_{r=l}^{m+2} (\mu + r - 1)} \left[\binom{m+3-l}{k-1} + \binom{m+3-l}{k}\right] = p_{l,m+1}^{*}(k) + \frac{1}{\mu + m + 2} \frac{(-1)^{m+k+l}}{\prod_{r=l}^{m+2} (\mu + r - 1)} \left[\binom{m+3-l}{k-1} + \binom{m+3-l}{k}\right] = p_{l,m+1}^{*}(k) + \frac{1}{\mu + m + 2} \frac{(-1)^{m+k+l}}{\prod_{r=l}^{m+2} (\mu + r - 1)} \left[\binom{m+3-l}{k-1} + \binom{m+3-l}{k-1}\right] = p_{l,m+1}^{*}(k) + \frac{1}{\mu + m + 2} \frac{(-1)^{m+k+l}}{\prod_{r=l}^{m+2} (\mu + r - 1)} \left[\binom{m+3-l}{k-1} + \binom{m+3-l}{k-1}\right] = p_{l,m+1}^{*}(k) + \frac{1}{\mu + m + 2} \frac{(-1)^{m+k+l}}{\prod_{r=l}^{m+2} (\mu + r - 1)} \left[\binom{m+3-l}{k-1} + \binom{m+3-l}{k-1}\right] = p_{l,m+1}^{*}(k) + \frac{1}{\mu + m + 2} \frac{(-1)^{m+k+l}}{\prod_{r=l}^{m+2} (\mu + r - 1)} \left[\binom{m+3-l}{k-1} + \binom{m+3-l}{k-1}\right] = p_{l,m+1}^{*}(k) + \frac{1}{\mu + m + 2} \frac{(-1)^{m+k+l}}{\prod_{r=l}^{m+2} (\mu + r - 1)} \left[\binom{m+3-l}{k-1} + \binom{m+3-l}{k-1}\right] = p_{l,m+1}^{*}(k) + \frac{1}{\mu + m + 2} \frac{(-1)^{m+k+l}}{\prod_{r=l}^{m+2} (\mu + m + 2)} = p_{l,m+1}^{*}(k) + \frac{1}{\mu + m + 2} \frac{(-1)^{m+k+l}}{\prod_{r=l}^{m+2} (\mu + m + 2)} = p_{l,m+1}^{*}(k) + \frac{1}{\mu + m + 2} \frac{(-1)^{m+k+l}}{\prod_{r=l}^{m+$$

$$= p_{l,m+1}^{*}(k) + \frac{(-1)^{m+2+k+l}}{\prod_{r=l}^{m+3} (\mu+r-1)} {m+4-l \choose k} =$$

$$= \sum_{i=l+k-2}^{m+2} \frac{(-1)^{j+k+l}}{\prod_{r=l}^{j+1} (\mu+r-1)} {j+2-l \choose k} = p_{l,m+2}^{*}(k)$$

for all k = 0, 1, 2, ... This proves the first statement in (3).

Since X_{n+1} converges in probability to zero as $n \to \infty$, the second statement in (4) follows directly from the first. Finally, from (4),

$$\begin{split} E\left(S^{N_l}\right) &= \sum_{k=0}^{\infty} s^k \mathrm{P}\left\{N_l = k\right\} \\ &= \sum_{k=0}^{\infty} s^k \sum_{j=l+k-2}^{\infty} \frac{(-1)^{j+k+l}}{\prod_{r=l}^{j+1} (\mu + r - 1)} \binom{j+2-l}{k} = \\ &= \sum_{j=l-2}^{\infty} \sum_{k=0}^{j+2-l} s^k \frac{(-1)^{j+k+l}}{\prod_{r=l}^{j+1} (\mu + r - 1)} \binom{j+2-l}{k} = \\ &= \sum_{j=l-2}^{\infty} \frac{(-1)^{j+l}}{\prod_{r=l}^{j+1} (\mu + r - 1)} \sum_{k=0}^{j+2-l} \binom{j+2-l}{k} (-s)^k = \\ &= \sum_{j=l-2}^{\infty} \frac{(-1)^{j+2-l}}{\prod_{r=l}^{j+1} (\mu + r - 1)} (1-s)^{j+2-l} = \sum_{j=l-2}^{\infty} \frac{1}{\prod_{r=l}^{j+1} (\mu + r - 1)} (s-1)^{j+2-l} \end{split}$$

for all $s \in [0, 1)$, which proves the third statement in (5).

Remark. For any probabilities

$$p_n = P\{X_n = 1\} = 1 - P\{X_n = 0\} \in [0, 1], \quad n \in \mathbb{N},$$

the first part of the proof gives the general recursion

$$\begin{array}{lll} p_{l,\,n+2}(k) & = & p_{l,\,n+1}(k) & + & \left[p_{n+3}p_{l,\,n+1}(k-1) - p_{n+2}(1-p_{n+3})p_{l,\,n+1}(k-1)\right] & - & \\ & & - & \left[p_{n+3}p_{l,\,n+1}(k) - p_{n+2}(1-p_{n+3})p_{l,\,n+1}(k)\right] \end{array}$$

for all $n \ge l$ and $k = 0, 1, 2, \ldots$, an as extension of (7). So, we see that Theorem 1 is about an "easy" case when the common value $p_{n+3} = p_{n+2} (1-p_{n+3})$ can be factored out from the two differences, which happens if and only if $p_{n+3} = p_{n+2} / (1+p_{n+2})$ for every $n \ge l$ and the starting values of p_l and p_{l+1} make it possible to piece the induction together. It would be of interest to know whether in a "difficult" case, when $p_{n+3} \ne p_{n+2} / (1+p_{n+2})$ for some or all $n \ge l$, it is still possible to derive a closed solution of the recursive formula. The most prominent concrete example of this would be when $p_n = \lambda / (\mu + n - 1)^{\alpha}$, $n \in \mathbb{N}$, for some parameters $\alpha, \lambda > 0$ and $\mu \ge \lambda^{1/\alpha}$, when

$$\begin{split} p_{l,\,n+2}(k) \; &= \; p_{l,\,n+1}(k) \; + \; \frac{\lambda}{(\mu+n+2)^{\alpha}} \Bigg[\; p_{l,\,n+1}(k-1) - \frac{(\mu+n+2)^{\alpha}-\lambda}{(\mu+n+1)^{\alpha}} \, p_{l,\,n}(k-1) \, \Bigg] \; - \\ & - \; \frac{\lambda}{(\mu+n+2)^{\alpha}} \Bigg[\; p_{l,\,n+1}(k) - \frac{(\mu+n+2)^{\alpha}-\lambda}{(\mu+n+1)^{\alpha}} \, p_{l,\,n}(k) \, \Bigg] \end{split}$$

for $n \ge l$ and k = 0, 1, 2, ..., as a special generalization of (7). This recursion is what one ought to solve in order to obtain an extension of (3). Even for $\alpha = 1$ the ensuing results would generalize those in Theorem 1, i.e. the case $\alpha = 1 = \lambda$, of for a class of distributions containing the family in (2) for $\mu = \lambda$.

Proof of Theorem 2. For integers $m \ge l \ge 1$, set $N_{l,m} := \sum_{n=l}^m X_n X_{n+1} \ge 0$. Since $N_{l,m} \uparrow N_l$ almost surely as $m \to \infty$, by the monotone convergence theorem we

have $E(N_l) = \lim_{m \to \infty} E(N_{l,m})$ and $E(N_l^2) = \lim_{m \to \infty} E(N_{l,m}^2)$. Since, with prime denoting left-hand-side derivative,

$$E(N_l) = f'_{l,\lambda}(1) = \frac{\lambda}{1 + l - 1}$$

and

$$E(N_l^2) \ = \ f_{l,\,\lambda}^{\prime\prime}(1) \ + \ f_{l,\,\lambda}^{\prime}(1) \ = \ \frac{2\lambda^2}{(\mu + l - 1)(\mu + l)} \ + \ \frac{\lambda}{\mu + l - 1}$$

for all $l \in \mathbb{N}$, the equations

$$\frac{\lambda}{u+l-1} = E(N_l) = \lim_{m \to \infty} E(N_{l,m}) = \sum_{n=l}^{\infty} p_n p_{n+1}$$

and

$$E(N_l^2) = \lim_{m \to \infty} E(N_{l,m}^2) = E\left(\left[\sum_{n=l}^{\infty} X_n X_{n+1}\right]^2\right) =$$

$$= \sum_{n=l}^{\infty} E(X_n^2 X_{n+1}^2) + 2\sum_{n=l}^{\infty} E(X_n X_{n+1}^2 X_{n+2}) + 2\sum_{n=l}^{\infty} \sum_{j=n+2}^{\infty} E(X_n X_{n+1} X_j X_{j+1}) =$$

$$= \sum_{n=l}^{\infty} p_n p_{n+1} + 2\sum_{n=l}^{\infty} p_n p_{n+1} p_{n+2} + 2\sum_{n=l}^{\infty} \sum_{j=n+2}^{\infty} p_n p_{n+1} p_j p_{j+1}$$

imply

$$p_l p_{l+1} = \sum_{n=l}^{\infty} p_n p_{n+1} - \sum_{n=l+1}^{\infty} p_n p_{n+1} = \frac{\lambda}{\mu + l - 1} - \frac{\lambda}{\mu + l} = \frac{\lambda}{(\mu + l - 1)(\mu + l)}$$

and

$$2\sum_{n=l}^{\infty} p_n p_{n+1} p_{n+2} + 2\sum_{n=l}^{\infty} p_n p_{n+1} \frac{\lambda}{\mu + n + 1} = \frac{2\lambda^2}{(\mu + l - 1)(\mu + l)}$$

for every $l \in \mathbf{N}$. The latter equations in turn imply

$$\begin{split} p_l p_{l+1} p_{l+2} \, + \, p_l p_{l+1} \frac{\lambda}{\mu + l - 1} \, &= \, \frac{\lambda^2}{(\mu + l - 1)(\mu + l)} \, - \, \frac{\lambda^2}{(\mu + l + 1)(\mu + l)} \, = \\ &= \, \frac{2\lambda^2}{(\mu + l - 1)(\mu + l)(\mu + l + 1)}, \end{split}$$

which, combined with the former equations, yield

$$p_{l} = \frac{1}{p_{l+1}p_{l+2}} \left[\frac{2\lambda^{2}}{(\mu+l-1)(\mu+l)(\mu+l+1)} - p_{l}p_{l+1} \frac{\lambda}{\mu+l+1} \right] = \frac{(\mu+l)(\mu+l+1)}{\lambda} \frac{\lambda^{2}}{(\mu+l-1)(\mu+l)(\mu+l+1)} = \frac{\lambda}{\mu+l-1}$$

for all $l \in \mathbb{N}$. Finally, confronting this with the first set of equations, we get $\lambda^2 = (\mu + l - 1)(\mu + l)p_l p_{l+1} = \lambda$. Hence $\lambda = 1$ necessarily, and so $p_l = 1/(\mu + l - 1)$ for all $l \in \mathbb{N}$.

Acknowledgements. W. B. Wu thanks Professor Y. S. Chow for posing the original problem and Professor P. Diaconis for his letter.

- 1. Diaconis P. Personal communication: Letter to W. B. Wu in May, 1997
- Arratia R., Barbour A. D., Tavaré S. Poisson process approximations for the Ewens sampling formula // Ann. Appl. Probab. − 1992. −2, № 3. −P. 519−535.

Received 04.05.2000