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ON SUMS OF OVERLAPPING PRODUCTS
OF INDEPENDENT BERNOULLI RANDOM VARIABLES

ITPO CYMH TOBYTKIB IIOCJIJJOBHHUX ITAP BEJITYIIH,
BHUBPAHHX 3 ITIOCIIOOBHOCTI
HESAJIE2KHUX BEPHY JIJIIEBUX BEJIMIHMH

‘We find the exact distribution of an arbitrary remainder of infinite sum of overlapping products of a
sequence of independent Bernoulli random variables.

3naligeHo TOUHHK PO3MOMIM JOBINLIOro 3aJMIIKY HecKinyennol cyMu MOGYTKIB NOCTiMOBHUX map
BEJIMYHH, BUGPAIIHX 3 [JA0I IOC/IiIOBIIOCT] IIe3aeXuX GepIly I/IieBHX BUITaKOBHX BEJIHIHI,

Results and discussion. Let X B X,, ... be independent random variables with
distribution .
P{X, =1} W S 1-P{X,=0}, neN:={1,2..}, (D)
w+n-—1

where [L=1 is a fixed real-valued parameter, and introduce the random variable N :=
=N, = Z:;I X, X,+1 along with ic remainders

Ny =Y XX, leN,
n=l

of the infinite sum. The random non-negative integer N is well defined; in fact by the
- monotone convergence theorem

S 1
M) = 2 =D
andso E(N,)=1/! in the particular case WL =.1, for every [ e N. The aim of this
note is to determine the distribution.of N, forall /€ N.

The problem of computing the distribution of N=N, was originally posed for the
case (L=1 to the second-named author by Y. S. Chow. Having obtained the solution
by the method of generating functions, which states thatif L=1 then N is a Poisson
random variable with mean 1, P: Diaconis [1] kindly informed him that the result was
known: Diaconis's own proof for this result was included in unpublished notes of
Michel Emery in Strasbourg and in an unpublished dissertation by Lars-Ola Hahlin in
Uppsala, and it also follows as the special case A =1 for the first coordinate of an
infinite-dimensional convergence theorem in Section 3 of a paper by Arratia, Barbour
and Tavare [2]. Considering the distributions

A

P{X =1} = ———=1-P{X, =0}, neN, - 2
{X,=1} = —2— = 1-P{X, =0} , @
. for some constant A > 0 instead of (1), the method in [2] is purely combinatorial, it
identifies the Poisson distribution of N with mean A as the limiting distribution of the
number of cycles of size 1 in a random permutation under the Ewens sampling formula.
This method does not appear to produce the distribution of N, for /> 1, evenfor A =

= 1. Our direct proof here does this forall /e N forall u=1 for the distributions in
(1), and in this case it is of independent interest even for N = N; when p = 1.
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Throughout, all empty sums are understood as zero and all empty products are
understood as one.
Theorem 1. Let X, X,,... be independent random variables with the

distributions in (1) for some (W=1. Thenforany l,ne N such that n>1,
i )kl (j4+2—-1
i35S RIS & S L“[ J 3
{ 1+ nn+l n+l } —g}:--znr_i (}.H-?‘ l) k €))
and hence for all 1€ N, '
' - 2 (=it (j+2-1
P{N,=k} = JJ——[ ] )
J= sz—znr_i | (utr-1) k :
for every non-neéaﬁ\ge integer k, and the generating function of N, is

AN ST (el ) ot s—1 (s —1)*
E(S) _:Z_z JH (w+r=1) 1+p.+l—.1+(|.L+l—1)(l.L+l)+“' ()

forall s e [0 1]. :
Note that the first statement in (3) and formula (6) in the proof below alsa give the

exact distribution of any section XXy + ... + XpXn41 of the series defining N.
“In thc special case L= 1, the formulae (3), (4) and (5) take the forms

Lo (=DitRH(j+2—1
P{XfXH-l+“‘+XﬂXﬂ+l+Xu+1=k} _ ({_1)! Z Q___’_[ ],

j=lti—2 (G+D)! k
£5 (_Dj+k+£[j+2_-g)
P{N,=k -! A 4
{ =k} = e %ﬁg G\ )
for every non-negative integer k and
-1 (=12 (s-1° _ G- (s —1)"

E(sM) =1+1=+ + +. = G)
(=) I+ 0+D0+2) (-1 _25_ )

forall s € [0, 1]. For I=1 it follows from (41) in this particular case that
1)k (41 = _1yj+l—k
PIN=k} = Z(l) [J ]_1 3 £D e
‘1 (G+D! k1j+1_k=0(]+1—k)! k!
forall k=1, 2, ..., or, equivalently from (5;), E(SN) =ef-1 0<s5s<1, the
generating function of the Poisson distribution with mean 1. Notice the interesting fact
in this connection that the multiplying factor E;;I_l(s—l)-’. / j! of the second

formula in (5)) is the remainder of the polynomial approximation of degree [ —2 of
e¥—1, Allin all, the distributions equivalently given by (4) or (5) may be looked upon
as a parametric family (=1, /e N) extending the Poisson distribution with mean 1.

In the converse direction we conjecture the following: If X,, X,,... are

independent Bernoulli random variables such that P{X;X, =1} > 0 and the
distribution of N=N, = E;anX,,H is given by (4) with [ =1, for some [ =1,
then E(X,)=1/(p+n—1) for the same [, for each ne N. As a special case for

w=1, this would give a joint characterization of the standard (mean 1) Poisson and the
Bernoulli distributions in (1) with = 1. The following result confirms the conjecture
under the extra condition that an extended ,,scaled" version of the full conclusion of
Theorem 1 holds.

Theorem 2. Let X, X,, ... be independent random variables with distribution

given by P{X,=1}=p,=1- P{X,=0} forsome p,e (0,1), ne N, such
that the generating functlon of N;= z: XXy Is
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fiae) = E(sM) =

_1\2 R
o4 Ms=D) | [Ms=DF [As —D] + o
Wl=1 " (Hl-D+]) | -+ DE+I+)
0<s<l, forall le N for some A >0 and |\ = 1. Then, necessarily, A =1
and p,=1/(L+n—1) forevery ne N.

The function f; 5 (-) here is a seemingly natural generalization of the generating
function in Theorem 1 since for the pair (A, ) = (1, 1) it reduces to f; 5 (s) =
=MD 0<s5<l, the generating function of the Poisson distribution with mean A .
However, Theorem 2 excludes this parameterization by asserting that the only possible

A is 1. The result in [2], stated above, suggests that version of the conjecture above
that if X ,, X,,... are independent Bernoulli random variables such that

P{X;X,=1}>0 and the distribution of N=N, = :=1 X,X,,, is Poisson with
mean A >0, then E(X,)=A/(A + n — 1) for each ne N. To prove the
corresponding weaker version, an analogue of Theorem 2, would require the presently

unavailable knowledge of the generating functions of N, for all /e N under the

distributions in (2), i.e. the corresponding version of Theorem 1. A remark on this and
related problems is placed after the proof of Theorem I below.

Finally, we mention another problem that arises naturally and is open even for our
present sequence of independent variables X, X,, ... satisfying (1) with p=1. Fora

number ke N, what is the distribution of S, := :;1 :::: Xj ? Here §; =N of

course, and so Theorem 1 answers the question for k = 1, but, while various systems
of recursive equations may be derived as in the proof of Theorem 1 below, we were
unable to identify in any explicit sense the distribution of even the next case, the

distribution of S, = 3"~ X, X,41X,45 -
Proof of Theorem 1. For all admissible values of the integers [, n and k,
introduce

Pink) == P{X X+ .+ X, Xy + Xy =k},

* z (—1) k! (j+2~lj
pLatk) = ey

" j=£§;:—-2 T4 (utr-1) k
and

@, (k) = P{X Xy +.. 4+ X, Xpp =k},

and let us agree to understand p; ,(k), p}f n(k) and g ,(k) as zero if k is negative.
Conditioning on X, _ ,, we obtain '

+n 1
P & wbilon fhvap e tocony fpad
Pi, ns1(k) |.L+n+1q!’”( ) |.L+n+1pi'“( )
and
+n 1
: k) = £ g () + ———p; k).
| 41, n+1(K) u+n+1¢ﬂ,n( ) p.+n+1p"‘"( )
From the first of these two equations
+n+1 1
2a® = EEEE P ® = e ale=D), ©)

by which the second becomes
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k-1 k k-1
Btnt2 g Poainik—D - pat) g oS Piak—D)
pL+n+1"" p+n+l p+n+l ' p+n+l

or, equivalently,

[ P i1k =1 = py oy k=D = [ Py 1B — Py o () ]

' k) = k) +
pi.n+2( ) P.f,u+1( ) Ltn+2

: Q)

The crux of the argument is to come up with a reasonable conjecture from the
recursion in (7) for the form of p, ,(k), which is given by pz,,(k) above. Having
this, we now proceed to prove the desired identity p; ,(-) = p; ,(-) by induction,
which for each m 2 [ produces p; ,,42(k) from py pe(-) and pf*l m(-) for all non-

negative integers k.
First, for all k=0, 1,2, ..., we must consider

P (k) = P{X, X1+ Xy =k}
~ and
P (R) = P{X\ X4 + X1 Xy + Xy =k }
in a direct fashion. Clearly, p;;(k)=0= p; (k) forall k>2 and p; (k) =0=
= p} (k) forall k>3. Also, '
pi0) = P{X;; =0} =

IJ.+E—1 1 1
= = - =1-= + o
h+l hti=1 " @+i-nE+p L@,
pi) = P{X;=0, X, =1} =

_ I'L+£_2 1 — 1 _ 2 _

and
1 1 *
P2 = P{X =1 X,y =1} T nti-lp+l PLi@)

by the formula for the right-hand sides, and one can check similarly that the
expressions for

P10 = P{Xjy =0, X;; =0} + P{X;=0, X};, =0},
P = P{X1 =0, X =1} + P{X, =1, X, =1, X}y, =0},
P2 = P{X;=0, Xy, =1, Xpyp =1},
and
PLn@ = P{X; =1 Xy =1 Xjyp =1}
also agree with pj 11(0), P} 111, Pr1(2), and pj q(3), respectively. Thus we
have p; ,(-) = pia(:) for n=141+1.

Now we suppose that p; ,,(k) = p;, [m() and p; (k) = pp m+1(k) forall k=0,
1,2, ... for some integer m = I. Then by (7) and this induction hypothesis,

[Pr: (e =1 = ik =1)] = [ Pl ()= pm(k)]
L+m+2

. 7 1 i 1)m+k+£ [[m+3—§)+[m+3—-fj:’
= PLmn(k) + L+m+2 Hm-l-Z (L+r—1) k-1 k -
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N - (= 1):n+2+k+l m4—4~f

= plma1(k) + T el & =
4 ILS™ (utr=1)
m+2 (—1)J e+ (j +2-1

jfi22 T D\ &

. forall k=0, 1,2,.... This proves the first statement in (3).
Since X, converges in probabﬂlty to zero as n —» oo, -the second statement in

(4) follows directly from the first. Finally, from (4),

N, (=D [f”-f]_
5 Z”{Nf = E“‘ _sz_zn,_;(uw = S A

i J+2-1 k (___ )j+k+f [J'l +2—f]
. ..” =
=]

& 5 THH (uar-1) k

oo et Jr2~l 72 T
5 B

] ey

AR T (utr-1) (0 \ K
o (=it ( aH-l Z N 1 j+2-1
- o T W o o
2 TIE] (utr=1) FZ I} (ptr=1)

for all s e. [0, 1), which proves the third statement in (5).
Remark. For any probabilities
n = P{X,=1} = 1-P{X,=0}€ [0,1), neN,.
the first part of the proof gives the general recursion '
by, n+2(k) = PlLn+l (k) + [P.-:-!-BPL :H-l(k o pi:+2(1 = pn+3)p!, !H'l(k = D] =

= [PusaPrns1 () = Prsa (1= Praa)ps, s ()]
forall n>1 and k=0, 1,2,..., an as extension of (7). So, we see that Theorem 1 is
about an ,,easy" case when the common value p, 3=p,,,(1-p,, 5) canbe factored
out from the two differences, which happens if and only if p,, 3=p,, ., /(1 +p,,,)
for every n21 and the starting values of p, and p,,, make it possible to piece the
induction together. It would be of interest to know whether in a ,,difficult" case, when
Ppy3ZEPnpya [ (1+p, . ,) forsomeorall n =1/ itis still possible to derive a closed
solution of the recursive formula. The most prominent concrete example of this would
be when p,= A/ (L+n—-1)%, ne N, for some palamcters o, A>0 and p=Ale,

when
. ‘ A (L +n+2)% —

k) = k e P - ~
Pf.n+2() Pe,n+1( ) + (u+n+2)a[m,u+l( - —(FH' +1)a !.n(k 1)]
A _(pnt2P - o }

(w+n+2)% lip‘;‘,m(k) (I-L+n+1)0,‘. Bt

for n21/ and k=0, 1,2,..., as aspecial generalization of (7). This recursion is what -
one ought to solve in order to obtain an extension of (3). Even for o = 1 the ensuing
results would generalize those in Theorem 1, i.e. the case o= 1 = A, of for a class of
distributions containing the family in (2) for p=A.

Proof of Theorem 2. For integers m>=1[> 1, set Nip:i= Zn_ X1 20,

Since N, T N, almost surely as m — o, by the monotone convergence thcorcm we

ISSN 0041-6053. Ykp. mam. xyp., 2000, m. 52, N¢ 9



have E(N,) = lim,,_,.. (N, ) and E(N}) = limy e E(N?,,). Since, with prime
denoting left-hand-side derivative,

EWN) = fiah) = —>

p+i-1

and
r, 5 pelt
(wW+I-D@+0D) u+i-1

E(NT) = f50 + £20 =
for all [ e N, the equations

A
nL+I-1

= E(NI) = _,;i‘_nﬁmE(Ni,m) = !Z?pﬂpﬂ"'l
and

B(v7) = i 206E0) = [ S0t ] | -

n=I[

- iE(X,%X,%,,,) + 2i3(x,,x§,,lx,,+2) +2Y Y B(XiXpaX;Xpe) =
o =

n=l j=n+2

B anpm + 2Z,pnpn+1pn+z + 22 2 PnPu+1PjPj41

n=l j=n+2

imply

S rupw = Sparwt = oy = 2 = o
PPl = PnPn+1 n_+P::P;:+1 T T L+I-1D(p+10)

and

A 202
2 + 2 =
Z}Pnpnﬂpmz Zpﬂpﬂ“ p+n+l  (+I-D@+)

for every [ € N. The latter equations in turn imply
A 1% ! A _
A41-1 H+HI=DR+D)  @+HI+D)R+D)
222

- T @HleDEr)@Eriry’
which, combined with the former equations, yield

PiP1+1Pi+2 T PiPi41

A
PraiPraa L +HI=D @+ +1+1) P~+1+1]
D E+I+)) i _ A
- A MAHI-D@+DE+I+1)  p+i-1.
forall [ e N. Finally, confronting this with the first set of equations, we get A2 = (L +
+ f-; D(+ 1) ppry; =A. Hence A =1 necessarily, andso p;=1/(n+ 1~ 1) for all
le N.
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