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ON SOME DISJOINTNESS CLASSES OF EXTENSIONS OF
MINIMAL TOPOLOGICAL TRANSFORMATION SEMIGROUPS

PO NEJKI KJJACH HECYMICHOCTI
PO3IIUPEHb MIHIMAJIBHHUX
TOIIOJIOITYHHUX HAIIIBI'PYII HIEPETBOPEHD

We study disjointness classes of extensions of minimal topological transformation semigroups.

BHBYAIOTHLCA KJIACH 1IECYMICIIOCTI PO3LIHPENh MilliMaJIBITMX TOMOJIOTIYIIMX HATIBIPYIT [IEPETBOPEHb.

Basic definitions and auxiliary propositions. We use terminology and denotations
generally accepted at present in theory of topological transformation groups. We give
only necessary, in our view, definitions of concepts and facts; for more detailed
discussions, the reader is referred to [1 —9].

A topological transformation semigroup (abbreviation: TTS) is a triple (X, S, 1),
where X is a nonempty compact Hausdorff topological space with unique uniformity
U[X] (phase space), S 1is a topological semigroup with unit element e (phase
semigroup), and 7m: X XS — X is a continuous mapping satisfying the following
conditions:

1) Vxe X: (x,e)n=ux

2) Vxe X, Vs, te S: ((x, )7, 1)n=(x, st)T.

‘We shall refer to the TTS (X, S) rather than (X, S, «t).

Let (X,S, ) beaTTS, s€ S, A ¢ X. Usually we shall write n® for the map
X — X definedby xn*=(x,s)n (x€ X); xs=x7n" and xS={xs|se S} (xe X).
A is called minimal if A #@ and xS =A forevery xe A. ATTS (X,S) is
minimal if X is minimal. If for x€ X xS is minimal, x is called an almost periodic
point. AJ is called the set of all almost periodic points from A.

The closure in the topology direct product X* of the set { n°|s e S} will be
denoted by E(X, S, ®) (or simply E(X,S)). E(X, S, ) is the compact subsemigroup
of the semigroup X - (by composition o) and it is called Ellis enveloping semigroup of
(X, S). The TTS (E(X, S, ®), S, n*) where T: E(X,S,7) xS — E(X, S, ) with
(p,s)T=pon’ is defined too. '

The class of minimal TTSs with fixed phase semigroup § will be denoted by
K(S). :

: Pzn extension (a homomorphism) ¢: (X, S, ‘m') - (Y, S,p) of TTSs is a continuous
surjection @: X =Y such that xn*@=x¢p’ Vxe X, Vse S.

Let (¥,S) e K(S) beafixed TTS and K(Y,S)={¢: (X, S)—= (V.| (X, S)e
e E(S)}, M(Y,S) c K(Y,S), @: (X,8) = (Y, 8), y:(Z S)— (¥, S) e K(Y, S).
Define:

AX) = {(xx)]xeX}; Roy={x|(x2)eXXZAxp = zy},
PRoo) = [ U{x»Ixy)eRp A (xs, ys)ea},

aelUlX]reS :

Q U {(x, N ye Ry A (xs, ys)ea}_

X]resS

Q(Rye)
An extension ¢ is called distal (proximal, regionally distal), if P(Ry4) =A(X)
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1336 . A. 1. GERKO

(P(Rog) =Rypr Q(Rq) =A(X)).

The class of all distal extensions from K (Y, S) will be denoted by D (Y, S).

The class of all regionally distal extensions from K(Y,S) will be denoted by
RD(Y,S).

The class of all proximal extensions from K(Y, S) will be denoted by P(Y, S).

An extension y: (Z, ) — (Y, S) is called factor of the extension ¢: (X, S)—
(Y, S), if there exists an extension 1: (X, S)— (Z, S) such that @ =1 o .

A factor y of ¢ is called M-factor, if Wy e M(Y, S).

A M-factor y of ¢ is called maximal, if every M-factor of ¢ is the factor of
too.

An extension ¢ € K(Y,S) is called M-prime, if every its M-factor y, y # ¢, is
an isomorphism. The class of all M-prime extensions from K(¥, S) will be denoted
by MP(Y,S).

An extension ¢ is called universal for M (Y, §), if every extension from M (Y, )
is the factor of .

" In our research, we will use some algebraic technique and the t-topology [5, 6].
Developing them [6], we will follow the idea of the article [5]. But the way of
realization of this idea will not be thé same. The constructions in [5] are based on
Stone — Cech compactification of phase (discrete) group. We are starting from the Ellis
enveloping semigroup of universal minimal topological transformation semigroup for

the class K(S).

Henceforth it is assumed that (U, S, ¢) is the universal minimal TTS for K(S),
E=E(U, S, o) is the Ellis enveloping semigroup of (U, S, ¢), I is a fixed minimal
right ideal of E; u € I is a fixed idempotent. Itis known that (I, S) € K(S). For (X,
S) e K(S), there exists a commutative diagram

U,s) <— (E, S)
ol el

X,5) & (B(X,S),S),
where E(X, S) is the Ellis enveloping semigroup of (X, S), ® is a homomorphism
taken from the definition of universality of (U, S), © is a homomorphism induced by
®, ppy, =xop (pe E(X,S)), xg€ X isa fixed point, T is a map defined
analogously to p, . E acts naturally on X: xp =xy(p@®) (x€ X, pe E).

Let (X, S, m)e K(S) and 2% be the collection of nonempty closed subsets of X
endowed with the Vietoris topology. ‘Then (2%, S, 7*) defined by (A, s)n* =An*
also TTS (A€ 2X,5€ S) and Eactson 2X too. Let pe E and lim;c" =p for
any net {5;} < S. For Ae 2X, define A Op = lim; Ac” = 1im,-{ac“’*'| aeA},
where the limit is understood in the Vietoris topology. If A < X is a not necessarily
closed nonempty subset of X, we define A Op = A O p. For A =@, we define
AOp=3.

The operation c: c(A)=A Qu () Xu (A € Xu) defines a closure operator on Xu.
The topology associated with closure operator c¢ is called a t-topology.

Let G=1Iu. Then (G,t) isa T, compact semitopological group (with unit

element u).
Let C bea t-closed subset of G, ue C, N(C) be the neighbourhoods filter for

the t-topology on C at u, H(C) = ﬂv’e N(C) cls;V. We now define inductively the

set H*(C) for all ordinals o:
1) H°(C) = C;
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2) let H*(C) be defined for every ordinal o, o <B; if B = o + 1, then we
consider Hﬁ(C) = H(H“(C)); if B is a limit ordinal, then we consider HB(C) =

= ﬂwtﬁ H*(C).

If C is t-closed subgroup of G, A and B are t-closed subgroups of C, then for
every ordinal o, H *(C) is a t-closed normal subgroup of G. Moreover, C =
=ABH(C) implies C=ABH*(C) [6].

For (X, S)e K(S) and xp€ Xu, we define the Ellis group of (X, S): G(X, xy) =
=GX)={p| peGAaxgp=xy}. G(X) isthe 1-closed subgroup of G.

For D(Y,S), there exists an universal extension (W;,S)— (¥, S). The Ellis
group D, = G(W,) of (W;,S) is an invariant subgroup of the Ellis group G(Y).
Analogously, for RD(Y, §), there exists an universal extension (W, S)— (¥, S).
The Ellis group D, = G(W,) of (W,, S) is an invariant subgroup of the Ellis group
G(Y), moreover, D, =D H(G(Y)) [7].

Henceforth it is assumed that D (D,) is the Ellis group of (W; ,.S) (W, ),
where (W), S)— (Y, S) ((W,,S)— (¥, 5)) is the universal extension for D(Y, S)
(RD(Y, S)).

For every extension ¢: (X, S)— (Y, §) € K(Y, S), there exists its maximal D-
factor y,: (Z,5) = (¥, S). Analogously, for every extension ¢: (X, S)— (¥, S) e
€ K(Y,S), there exists its maximal RD-factor y,: (Z,,5) — (Y, ). Moreover, the
following lemma is proved in [7]:

Lemma 1. G(Z;) = G(X)D| and G (Z,) = G(X)D, = G(X)D,H(G(Y)).
Consequently, ¢: (X,8)— (¥,S)e DP(Y,S) iff GX)D, = G(Y) and ¢: (X,
S)— (Y, S)e RDP(Y,S) iff G(X)D,= G(X)D,H(G(Y))= G(Y).

In [9], the following two propositions are proved:
Lemma 2. Let {(X;,S)| ieL} cK(S), x;e X;u (ie L), x = (x;);.,; and

X= {(x,-s) el 5€8 }, where the closure is understood in the topology direct product
X~ Then TTS (X, §) is defined which is the subTTS of direct product II; ;(X;,S)
of TTSs (X;,§) (€ L). In addition, (X,S)e K(S) and G(X,x) =
=(Nier G x)- '

Lemma 3. Assume that ¢: (X,S)—=> (Y, S), v:(Z,S)—> (¥,S8)e K(Y,S);

xo€ Xu, yo Yu, zo€ Zu with xq@ =zo¥ =y GX,xq) and G(Z,zy) are
the Ellis groups of (X, S) and (Z, S) correspondently. The distal extension y is

afactor of ¢ iff G(X,x0) < G(Z, 2).
Let 6 be some limit ordinal, {¢q| <0} = {@q: (Xy $)—(¥,8)| <6} bea

transfinite sequence of extensions of TTSs; x3 € Xqu, Y° = x3¢, (o < 0); and let
{(pg: (Xp,: S) = (X, S asP< 9} be a family of extensions of TTSs with

ob =33, ohooy =5  ohoof = ¢f, 6))
©% is the identity map, o < B < y < 6.
Now let xJ e H(HB X, with Pr Xu.rg = xg (ot < 0). There exist the TTS

(%85, 5) which is a subTTS of direct product (HM Bxa,s) of TTSs (X, S) (o<
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1338 A.I. GERKO

< 8), and the extension @g: (;EE, S) — (¥, §) defined by xgp(p9= yop (pe I
We denote:

0o o) = 1 B\® I B\®

(IQS: S) = 1’;1_'“ ((Xu- S), (Pa)o’ Pg = IEI((PG.! ‘Pa]o-b
Let p be an ordinal, {¢q: (X, S)—> (Y, S)| a<p} < K(Y,S) be a family of

extensions of TTSs, and let { EL| asPf< ].I.} be a family of its morphisms satisfying
condition (1). Assume also that, for each limit ordinal 6, 6 <, we have

: 6 ¢ ]
90 = m(pe, 98) .  (Xo.8) = 1lim((Xe. S). 06),-
Then the system {(pa, (pg };l is cailed a projective system of extensions.
An extension ¢ iscalled F-extension (PRD-extension, correspondently), if there
exists a projective system {(pa: (Xe, S) = (Y, ), q}g: {Xa,S)—%(Xa,S) }z such
that:

1) Xo = Y ‘
2) @u=p o ¢ for some proximal homomorphism p: (X}, S) — (X, S) € K(X, S);
3) @%*! is a regionally distal extension (@%*' is a composition proximal

extension and regionally distal extension, correspondently) (ct < L).

If the above-mentioned proximal homomorphism p is an isomorphism, then ¢ is
called strictly F-extension or strictly PRD-extension, correspondently. -

The class of all F-extensions from K(Y, §) will be denoted by F(Y, S).

The class of all PRD-extensions from K(Y,S) will be denoted by PRD(Y, S).

Henceforth it is assumed that (¥, S) € K(S), yge Yu, C= G(Y, yq) is the Ellis
group of (Y, S), A c C is a t-closed subgroup of C and M(Y, S) < K(Y, S).

The class of all extensions @: (X,S)— (¥, S) € K(Y,S) with A < G(X, xq)
(xg€ Xu, xo0 =yo) will be denoted by PS4(Y, S).

The class of all extensions ¢: (X,S8)—=(Y,S) € K(Y, S) with (p'i(yop) =
= xpA O p for some point xg€ Xu, xo¢ =y and Vp e I, will be denoted by
RIC4(Y, S).

An extension ¢ is called RIC-extension, if ¢ € RICc(Y, S).

The class of all RIC-extensions from K(Y, S) will be denoted by RIC(Y, S).

Lemmad. PRD(Y,S)= PSH“(C)(Y’ S) for some ordinal o.

Proof. There exists an ordinal o such that H*(C) = H*(C) for each p 2 a.

Then the inclusion PRD(Y, §) < PSH“(C)(Y’ §) follows from definition of the

PRD(Y, S§) by principle of transfinite induction. Let ¢: (X,8)—(¥,S)
e PSH., ( c)(Y, S). For the extension ¢, by theorem 4 [9], there exists the commutative

diagram

X8 == (X9

ol o*d

.8 < (¥'.s),
where p e P(X,S), ¢* e RIC(Y",S) N RDP(Y",S) and g is a strictly PRD-
extension. Since ¢* e RIC(Y*, SN RDP(Y*, S) and pe P(X,S), we have
Gy = GXHH(GY™)), hence, G(Y') =G (XHH*(G(Y")). The relations
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H*(C) c G(X) < G(X*) and H*(G(Y")) < H*(C) imply G(¥') = GX").
Therefore, the extension ¢ is proximal, hence, isomorphism. By definition, the

extension ¢ is PRD-extension and the inclusion PSH“(C)(Y’ Sy ¢« PRD(Y,S) is
proved. :
In [9], the following two propositions are proved:

Lemma 5. Let A be a t-closed subgroup of G and [Al= {AOp| pel}.
Then the set [A] is a minimal subset of (2',8,w*), in addition, G([A], A Ou) =
=A and the RIC-extension - (I, S) = ([A), S) with py =A Op (pe I) is
defined too. If (X,S)e K(S), xoe Xu, and A = G(X, xq) is the Ellis group of
(X, S), then the extension @: ([A], S) = (X, S) with (A Op)e=xqp (peI) is
defined; in addition, @ is the universal extension for P(X, S).

Lemma 6. Let (Z,S) — (Y, S) be a maximal RD-factor of the RIC-extension
©0: (X,8)—> (Y, S). Then G (Z) = G(X)H(C). Consequently, the extension
@: (X, S)— (Y,8) e RIC(Y,S) N RDP(Y,S) iff C= GX)H(C).

The class of all extensions @: (X, S)— (Y, S) e K(Y,S) with C = G(X, xp)A
(xg€ Xu, xo@=yq) wedenote also by K,4(¥, S).

We recall that two extensions ¢ and Y from K(Y,S) are called disjoint (and
denote ¢ L), if Ry, is minimal.

The collection of all extensions from K (Y, S) which are disjoint with every
member of M(Y, S) is denoted by M(Y, S)J'. M(Y, ::i‘)l is called the disjointness
class.

MY, ) = MY, HH™
In [8], the following proposition is proved:
Lemma7. If 9: (X,S)—> (Y, S), ¥v:(Z,8)—= (¥,S)e K(¥, S), then ¢ Ly

ff Ryyt =Ry and C=G(X) g(Z)I.
Results.
Theorem 1.

1. D(Y,S)* = Kp(¥,8) = DP(Y,S5).
2. RD(Y,8)* = Kp, (Y.S) = RDP(Y,5).

3. F(Y,8)' = RD(Y, 5)™

Proof. 1. Let @:(X,S)— (Y,8)e D(Y,S)". Then ¢ and the universal
extension for D(Y, S) are disjoint, hence, by Lemma 7, C = G(X)D; and
D(Y, )" < Kp, (¥, 5). Suppose that ¢: (X, $)—> (¥, S)e Kp (¥,S), y: (Z,5) =
—(¥,8)e D(Y,S) and @ =m oy for some extension 1 : (X, S)— (Z, S). Since
C=GX)D,, Dy c G(Z) and G(X) c G(Z), we have C = G(X)D, < G(2).
Hence, C= G(Z) and the extension  is proximal. At this point, ¥ is isomorphism.
Therefore, @ € D P(Y, ), KD| (Y,S) «c DP(Y,S), and we have proved the
inclusions D(Y,S)‘L < Kp, (Y,S) €« DP(Y,S). Let ¢: (X,S)— (Y,S)e DP(Y, S).
Since G(X)D, is t-closed subgroup of C, the minimal transformation semigroup
([G(X)D,1, S) and the extension y: ([G(X)D,],S) = (¥, S) with (G(X)D, O
Op)y =yop (pe I) are defined by Lemma 5. Here, G([G(X)D,], G(X)D; O
Qu)= G(X)D,. Let &: (W,S)— (¥,S) be the maximal D-factor of the extension
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1340 A. 1. GERKO

V. Then G(W)=(G(X)D,)D;= G(X)D; by Lemma 1. Since GX)c GX)D, =
= G(W), we have that, by Lemma 3, the distal extension & is a factor of the extension
¢ which belongs to DP(Y,S). Hence, 8 is an isomorphism. Therefore, G(X)D; =
=G(W)=C, ¢e Kp, (¥,5) and DP(Y,S) < Kp (Y,8). If ¢:(X,S)—= (¥,S)e
€ Kp (Y,5), then G(X)D;=C and, by Lemma 7, ¢ and the universal extension for

D(Y,S) are disjoint. Hence, (pED(Y,S) ; KD, (Y,5) <« D(Y, S) and the inclusions

Dp(Y,S) c KD[ ¥Y,S) <« D(Y, S)J' are proved. The statement 1 is proved.

2. The statement 2 is proved by analogy.

3. The inclusion F(Y,S)™ c RD(Y, )™ is obvious, since RD (Y, S) < F(¥, S).
Let ¢: (X,S)—> (¥, S) e RD(}’,S}J' and y: (Z,5) = (Y,S)e F(Y,S). If e
€ RD(Y, S)'L, then. ¢ € RDP(Y,S) and C = G(X)DH(C) by Lemma 1. Since
ye F(Y,S) cD(Y,S) N PRD(Y, S), we have that D; < G(Z) and, by Lemma 4,
H*(C) c G (Z) for some ordinal o. Therefore, C = G(X)D H(C) =

= g(X)D,Ha(C) c GX)D,G(Z) < G(X)G(Z) < C, hence, C = G(X)G(2Z).
The fact that  is a distal extension implies that Rgy=RqyJ and ¢ Ly by Lemma
7. Thus, @ € F(Y, S)J- and we have proved the inclusion RD(Y, S)J' < F(Y, S)J‘.

The statement 3 is proved.
Corollary 1. If S is a group or the semigroup S is G-compact and Ss < sS

(s € S), then D(Y,S)*=RDP(Y,S).

Proof. This is a consequence of the Theorem 1 and of the theorems on the
structure of distal extensions transformation groups [10] and semigroups [11] (here,
D(Y,S)=F(Y,S)).

Theorem 2. PS4(Y, S)*=RIC4(Y, S)=Ka(Y,S)NRIC(Y,S).

Proof. Let (W, S8) — (Y,S) be a Whitney sum of the extensions from PS4 (Y,
S), vge W be a point such that Pryv, = x0, where (X,S)— (¥,S)e PS4(¥,S)
and let x0e Xu be a point which is used in definition of the G(X,x%. If V'= VpS,
then, by Lemma 2, V* is the minimal subset of W and G(V*,vo) =N [G(X, x%) | (X,
S)— (Y, 8) e PSAY,S)]. If (X,8) = (Y, S)e PS4(¥,S), then A C G(X) and,
hence, A © G(V*). Therefore, the extension B:([4],S) — ([G(V")], S) with
(AOp)B=G(V)Op (pe ) is defined correct. The extension & : ([A], S) = (¥,
S) with (A ©p)8=yyp (pe I)isdefined too. Since G([A]) =A, e PSA({, S),
and, for every (X,S)— (Y, S)e PS4(Y,S), there exists commutative diagram

(4L B> (6M1.s) - (*.5)
L A
x,S) — (X, 9),
we have that the extension & is universal for PS4 (Y, S). Supposé that y: (Z, S) =

— (Y, 8)e PSA(Y, S)% zo€ Zu, zgy=y,. Then y L8 and Rys= (29, A Qu)L
Let r be a projection of Ryg onto [A]. Then, in view of the fact that Vpel

Vl(yp) X {AO P} = r'i(AODp) = {(20. A0 q)|qeIAnADg=A0 p} =
= {(209. A0 p)|ge AO p} = xAOp x {AO p},
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ie. v I(yp)x{AOp}=27A0px {AOp}, wehave that y~l(yop) = 2pAO p
and Yy € RIC4(Y,S). The inclusion PS4(Y, S)J‘ < RIC4(Y,S) is proved. Let

Vi (Z,8) > (Y,8) e RIC4(Y,S), zp€ Zu, Zg¥ =y, and Y~ (yp) = 2)AO p for
V pe I Andlet r bea projection of Rys onto [A]. Since

Vpel r(AOp) = yl(yp)x {AOp} =
= A0 p X {AOp} = (20, AQuWAOp,

relation r~/(AQOp) = (7, AQuWAOp holds V p € I. At this point, Ry is
minimal, consequently, y L 8 and ywe PSy4 (Y,S)J'. The inclusion RIC4 (Y, S) <
c PSA(Y, S)* (and the equality PS4 (Y, S)™ = RIC4(Y, S)) is proved. Let y: (Z,
S)—= (Y, S)e € RIC4(Y, S). Therelation ye PS4(Y,S) implies y L 8 and, thus,
C= G(Z)A by Lemma 7. Consequently, y € K4 (¥, §). Obviously, RIC4(Y,S) <
c RIC(Y, S), so the inclusion RIC4(Y,S) < K4(Y,S)N RIC(Y,S) is proved too.
Suppose that y: (Z,S) = (¥, 8) e KA(Y,S)NRIC(Y,S), zg€ Zu, zo¥ =Y,
Then C= G(Z)A and y~-!(yp) = ,COp V p € I At this point, y~!(yop) =
=2A0p (pel) and e RIC4(Y,S). Theinclusion KA(¥,S) N RIC(Y,S)
< RIC4(Y, S) is also proved and the proof is complete.

Corollary 2.

1. POY. 8L = RICCY, 5).

2. RICp (Y, S) = DP(Y,$)NRIC(Y, S).

3. RICp,(Y,8) = RDP(Y, SYNRIC(Y, S).

Theorem 3. PSy (Y, S)" = RDP(Y, S)NRIC(Y, S).

Proof. Since RD(Y,S) € PSy)(Y,S) and P(Y,S) © PSy)(¥,S), we have
PSyc)(Y, Sy < RD(Y, SYLN P(Y, $)L. Therefore, by Theorem 1 and by Corollary
2, PSyo)(Y, S)J' = RDP(Y,S)NRIC(Y,S). Suppose that ¢: (X,5)—= (¥, S5) e
€ RDP(Y, S)NRIC(Y,S) and y: (Z,8) = (Y, S) e PSycy(¥,S). Then, by
Lemma 6, C= G(X)H(C) and H(C) < G(Z). Therefore, C= G(X)G(Z). Since
@ isa RIC-extension, we have Rgy= RyyJ and, by Lemma 7, ¢ L y. Hence, the
inclusion RDP(Y, S)RIC(Y, S) C PSyc)(Y, S)* is proved.

Theorem 4. Let o> 0 be an ordinal. Then:

1. KH“{C)(Y’ S) = KH(C}(Y: S).

2. PSya(1:St = PSy)(Y, St = RICy(,S) = RICyu,(X.S) =
= RICp, (Y, S). :

Proof. The statement 1 is obvious. The statement 2 is a consequence of the
statement 1 and of the Theorems 2 and 3.

Theorem 5.

1. RIC4(Y,S)c PS,P(Y,S).

2. RICp (Y, 8)=PSp P(Y,S) NRIC(Y,S).

3. RICp,(Y,S)=PSp,P(Y,S) NRIC(Y,S).

4. For every ordinal «, RICHG(C)(Y, S) = PSH.,(C)(Y, SYMNRIC(Y,S).

Proof. 1. Let ¢ € RIC4(Y, S). T_hen pe PS,(, S)J' by Theorem 2. Suppose
that we PS4 (Y, S) is a factor of ¢. Since ¢ is RIC-extension, ¥ is RIC-
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extension too. Hence, Y is an isomorphism (since ¢ L ). Therefore, p € PS4P (Y,

S). The statement 1 is proved.
2. Obviously, PSp P(Y,S) < DP(Y,S), therefore the statement 2 is a

consequence of following series of inclusions
PSpP(Y,8) N RIC(Y,S) c DP(Y,S) N RIC(Y,S) =
= RICp (Y,S) c PSpP(Y,S) N RIC(Y, S).
3. The statements 3 and 4 are proved by analogy the proof of 2.
Corollary 3. PSp, P(Y, St = PSp P(Y,S) N RIC(Y,S), i=1,2.

Theorem 6.

1. PRDP(Y,S)N RIC(Y, S)=PSDZP(Y,S)ﬂRIC(Y,S).

2. DP(Y,S)N PP(Y,S)=PSDIP(Y,S)DPP(Y,S)‘ _

3. RDP(Y,8)( PP(Y,S)=PSp,P(¥, )N PP(Y, S).

Proof. 1. Let ¢:(X,S) — (¥,S)e PRDP(Y, S)NRIC(Y,S) and let
V:(Z,8)—=>(Y,S)e PSp,(Y,S) beits factor. Suppose also that 1: (W, S) — (¥, S)
be a maximal RD-factor of . Then y e RIC(Y, S) too and, by Lemma 6, G(W) =
= G(Z)H(C). Since ¢ € PRDP(Y,S) and n € PRD(Y,S), m is an isomorphism.
Therefore, C= G(W), whence G(Z)H(C)=C. Hence, by virtue of H(C) < D,
and Dy < G(Z), wehave C= G(Z), whence ye P(Y,S). Andsince ye RIC(Y,
S), ¥ is an isomorphism. Therefore, ¢ € PSp,P(Y, S) and the inclusion PRDP(Y,
SHN R[C(Y,S)CPSDZ(Y,S)QRIC(Y,S) is proved. -

Inverse, let @: (X,S)— (¥, 5) e PSDz(Y, SYNRIC(Y,S) and y: (Z,S)—
— (Y, S8)e PRD(Y, §) be its factor. Suppose also that n: (W, S§) = (¥, S5) isa
maximal RD-factor of . Then G(W)= G(Z)H(C). Since he PRD(Y,S), we
have that m is an isomorphism and C= G(W), whence G(Z)H(C)=C. Since y €
€ PRD(Y,S), H*(C) c G(Z) for some ordinal co. Hence, C = G(Z)H(C) =
= G(Z)H*(C) = G(Z), i.e., C= G(Z). Thus, y is an isomorphism. Therefore,
Ppe PSDzP(Y, S), ¢ € PRDP(Y,S), and the inclusion PSDZP(Y, SYNRIC(Y;S) <

C PRDP(Y,S)() RIC(Y,S) is proved. The statement 1 is proved.
2. To prove the statement 2, it suffices to show the implication

¢ € DP(Y,S) N PP(Y,S) = ¢ € PSp P(Y,5).

Let € DP(Y,S)(\PP(Y,S) andlet y: (Z,5) = (¥,S) with D) c G(Z) bea
factor of ¢. Suppose that 1: (W, S) — (Y, S) is the maximal D-factor of y. Then
G(W) = G(Z)Dy = G(Z). Since m is D-factor of ¢, we have that m is an
isomorphism and, consequently, C= G(W). Therefore, C= G(Z) and the extension
y is proximal. Andsince @ € PP(Y,S), we have, that  is an isomorphism, and,
consequently, ¢ € PSp IP (Y, S). The necessary implication is proved.

3. The statement 3 is proved by analogy. _

Theorem 7. PRD(Y, S)*=PRDP(Y, S)( RIC(Y,S).

Proof. Since, by Theorems 4 — 6,

PRDP(Y,S) N RIC(Y,S) = PSp,P(Y,S8) N RIC(Y,S) ="
= RICD; (Y, S) = RICH(C)(Y, S),

to prove our theorem it suffices to show the equality

PRD(Y, SY* = RICy (Y, S). @)
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If H(C)=C, then PRD(Y,S)=P(Y,S) (by Lemma 4, since H*(C) = C for all
ordinals &) and RICyc)(Y, S) = RIC(Y, S). At this point, the equality (2) is proved
by Corollary 2. Let H(C)# C. Then, by Lemma 4, PRD(Y, S) = PSH‘,(C)(Y, S) for
some ordinal o> 0. And at this point, the equality (2) is proved by Theorem 4.

Theorem 8.

1. PRD(Y,S)N RIC(Y,S) < RD(Y, S)* =Dy, )L

2. RDP(Y,S) = (PRD(Y, S)N RIC(Y, $))™-.

3. PRD(Y,S)N RIC(Y,S) = PRD(Y,S)N RD(Y,$)** = PRD(Y, S)N D (Y,
Syt

Proof. 1. Obviously, RD(Y,S)**c D(Y,S)*t. Let ¢: (X,8)— (¥, S) e

€ PRD(Y,S)NRIC(Y, S) and y: (Z,S) = (Y, S) € RD(Y, S)Y To prove the
statement 1, it suffices to show that ¢ L y. Suppose that n: (W, S) — (Y, S) isa

maximal RD-factor of ¢. Then D, G(W) = G(X)H(C). Since y e RD(Y, $)*
and RD(Y, S)-=RDP(Y,S), wehave C= G(Z)D,. Therefore, C= G(Z)GW) =
= G(Z)G(X)H(C), e, C= G(Z)GX)H(C). Since ¢ ePRD(Y,S), we have that
by Lemma 4, H%(C) ¢ G(X) for some ordinal o. At this point, C =
= G(Z) GXOH(C) = G(Z) GX)H*(C) = G(Z) G(X), i, C= G(Z)G(X). Inview
of the relation @ € RIC(Y,S), wehave Rgy= Ry,J and, by Lemma7, ¢ L.

2. Statement 1 and the equality RD(Y, 8$)t=RD(Y, S)*+ imply the relation

RDP(Y,S) = RD(Y,S)* < (PRD(Y,S)N RIC(Y, $))~L.
Since RD(Y,S)< PRD(Y,S)N\RIC(Y;S), we have

(PRD(Y,S)N RIC(Y,S)* < RD(Y,S)* = RDP(Y,S)c

< (PRD(Y, S)N RIC(Y, S))™.
Hence, the statement 2 is proved.
3. Since D(Y, S) < RIC(Y,S) and RIC(Y,S)=P(Y,S)* = Py 8)H =
=RIC(Y, $)*4, ie., RIC(Y,S)=RIC(Y, S)*L, we have

DY, S)yt < RIC(Y, S)H = RIC(Z, 5).
Therefore, the statement 3 is a consequence of the following series of inclusions:

PRD(Y, S)N RIC(Y,S)<= PRD(Y, S)(\ RD(Y, S)t

< PRD(Y, S)( D(Y, S)*+ < PRD(Y, S)N RIC(Y, S).
Theorem 9.
1. PRD(Y, S)( RDP(Y, S) < RIC(Y, S)*.
2. RIC(Y, S) = (PRD(Y, S)(\ RDP(Y, )™
3. PRD(Y,S)N RIC(Y,S)* = PRD(Y,S)N D(Y,S)t = PRD(Y, $) N

N RD(Y, S)*~

Proof 1. Let @: (X,S5)— (Y,S)e PRD(Y,S)(NRDP(Y,S). Then, by Lemma
4, H*(C) c G(X) for some ordinal o, and, by Theorem 1, ¢ and every regionally
distal extension from K(Y,S) are disjoint. Let y: (Z,S) — (¥, S) e € RIC(Y, S)
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and let Vo (W, 8)— (Y, S) be its maximal regionally distal factor. Ti'len, by Lemma
6, G(W) = G(Z)H(C). This fact, the relation ¢ L Yo, and Lemma Ty G=
= G(X)G(Z)H(C)= G(X) G(Z) H*(C) = G(X) G(Z), i.e, C= G(X)G(Z). At this

point, in view of y € RIC(Y, S), we have ¢ Ly by Lemma 7. The statement 1 is
proved.

2. By virtue of RIC(Y, S)=RIC(Y,S)*L, statement 1 implies

RIC(Y,S) < (PRD(Y,S)N RDP(Y, S))L.
Now, since P(Y,S) < PRD(Y,S)(\ RDP(Y,S), we have

(PRD(Y,S)N RDP(Y,S)*c P(Y, )t =

= RIC(Y,S)c (PRD(Y,S)N RDP(Y, S))*
and the statement 2 is proved.
3. Since RD(Y,S)c D(Y,S)c RIC(Y,S), wehave RIC(Y,S)XcD(Y,S)Lc
c RD(Y, S)J" Hence, by statement 1 and by Theorem 1, we have inclusions

PRD(Y,S)N RDP(Y,S)< PRD(Y,S) RIC(Y,S):c PRD(Y, $)N

N D(Y,S)* < PRD(Y,S)N RD(Y,S)L = PRD(Y,S)N RDP(Y,S).

Hence, the statement 3 is proved.
In the case where Y = {*} is a singleton, the semigroup S is commutative, and

M(*, 8§)=M(S), wehave:
Theorem 10.

1. PS )t =RIC,(S)* =K, (5):

2. D(S)t=PSp (S)=PSp P(S)=RICp (S)=DP(S).

3. RD(S)'=PSp,(8)* = PSy)($)* = PSp,P(S)=RICp,(S) =RDP(S).
4. PRD(S)*=PRDP(S)=RDP(S).

5. (PRD(S)N RD(S)H L= (PRD(S)N K(S)1)*+=K(S).
Proof. This follows from Theorems 1 — 9 since in our case RIC(*, §) = K(S)
and C=0G.
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