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INEQUALITIES FOR COMPLEX RATIONAL FUNCTIONS
HEPIBHOCTI JIJIsI KOMILUIEKCHUX PAIIIOHAJIbHUX ®YHKIIIA

For the rational function r(z) = p(z)/H (z) having all its zeros in |z| < 1, it is known that

r'(2)| > %\B'(Z)HT(Z)I for |z] =1,

where H(z) = Hn 1(z —¢j), |ej] > 1, n is a positive integer, B(z) = H*(z)/H(z), and H*(z) = 2" H(1/Z). In this
j=

paper, we improve the above mentioned inequality for the rational function r(z) with all zeros in |z| < 1 and a zero of

order s at the origin. Our main results refine and generalize some known rational inequalities.

Jlnst pauioHansHoi GyHkuii 7(z) = p(z)/H(z), wo mae Bei Hyni y |z| < 1, BUKOHYETBCS HEPiBHICTH

r'(2)] = %IB’(Z)IIT(Z)I ms |z =1,

n . . — co .
e H(z) = H l(z —¢5), lej| > 1, n — noparue uine, B(z) = H*(2)/H(z) i H*(z) = 2"H(1/Z). V uiii po6ori
j=
BKa3aHy HEpiBHICTh YIOCKOHAIECHO I pallioHansHOl GyHKIHT 7(2) i3 HymsiMu y |z| < 1 Ta HysIeM HOPSAKY S y MOYATKY
KoopauHaT. Hamri 0CHOBHI pe3ynbTaTH YTOYHIOIOTH Ta y3arajbHIOIOTh A€SAKi BIJOMI palioHaJbHI HEPIBHOCTI.

1. Introduction and statement of results. Everywhere in this paper we assume that m, n €

€ {1,2,...}. Let Py, be a class of all polynomials of degree at most m. For ¢;, j = 1,2,...,n,
n

belong to the complex plane C, we take H(z) = H 1(z —¢;) and B(z) = H*(z)/H(z), where
j:

H*(z) = 2"H(1/Z). Here, Z = x + iy = © — iy, x, y are real and i is the imaginary complex unit.
Also, let

Rm,n - Rmm(clv cee 7cn) =

=p(2)/H(2); p € Pm, H(z) = H(z —¢j), where |¢j| > 1, j=1,....,n
j=1

denote the class of rational functions with poles at cq,ca,. .., ¢,. For m = n, we write R,, := R, .
Li et al. [4, 5] obtained Bernstein-type inequalities for the rational function r(z). They proved
that if the rational function r(z) € R,, having all its zeros in |z| < 1, then, for |z| =1,

()] = S|B'(2)r(2)|- (1.1)

Let o € C is any fixed number. For a polynomial p(z) of degree n, D,p(z), the polar derivative of
p(2) is defined by

Dap(z) = np(z) + (a = 2)p'(2).

Polynomial D,p(z) is of degree less than or equal n — 1 and
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lim [Dap(z)] =7'(2).
a—r00 o

In this paper we first give a generalization and refinement of inequality (1.1) by proving the
following theorem.

Theorem 1.1. Let 7(z) € Ry, has all its zeros in |z| < k, where k < 1, with a zero of order
2(m + sk)

T Then, for any ~y with |y| <1 and |z| =1,

s at the origin and m < n <

14k

() + - <z>] > 5 (1B Xt Z BB

Remark1.1. In particular case, if we consider p(z) as a polynomial of degree n, then, for rational

. _pz) _ p(2)
function r(z) = HE) ~ (e a)t’ we have

- () -2

H* (2)

and, for B(z) = H)

- ()

2
—1

Hence, for |z| = 1, we have |B/(z)| = TM

zZ—

Now by taking m =n and ¢; = o, j = 1,2,...,n, in Theorem 1.1, for |z] = 1, we get

2Dap(2) +

SR

1 2-1) 2 1— 2
1+k 51 n(|af )+ sk+n(l —k)+2nRey\ |p(2)] (12
|z — a|ntl 2\ |z—al? 1+k |z — a|”
or
ny(a — 2) 1 /n(la?—1) 2sk+n(1—k)+2nRevy
D, _ > — — 7
Daple) + 0y 2 4 (ML — 2 al) p(e)
or
ny(a — z) 1 /n(a>=1) 2sk+n(1—k)+2nRevy
D, _ > = -1 .
Daple) + 0 gt 2 4 (MU — CENNE]

Therefore, we have the following result which is a refinement of the result due to Dewan and Mir [3].

Corollary1.1. Let p(z) be a polynomial of degree n, having all its zeros in |z| < k, where
k < 1, with a zero of order s at the origin. Then, for every o with |o| > 1, any v with |y| < 1 and
|z| = 1, we have

2Dap(2) +

p(2)]. (1.3)

n'yl(ci—kz) (z)' > (n+ sk +1111j_e]:)(|a| -1)

By dividing both sides of (1.3) by |«/| and letting |a| — oo, we get the following result which is
a generalization of the result due to Aziz and Shah [1].
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Corollary1.2. If p(z) is a polynomial of degree n having all its zeros in |z| < k, k < 1, with a
zero of order s at the origin, then, for any v with |y| <1 and |z| = 1,

n + sk + nRevy

2 (2) + —Lp(z)] > r PG

1+ k7

If we take m = n and k = 1 in Theorem 1.1, then we have the following refinement of
inequality (1.1).

Corollary1.3. If r(z) € R, having all its zeros in |z| < 1 with a zero of order s at the origin,
then, for any v with |y| <1 and |z| =1,

ny

2r'(2) + —=r(2)| > =(|B'(2)] + s + nRe)|r(2)|. (1.4)

1
2 -2
Next, we use min,|—; |7(z)| to obtain the more precise of inequality (1.4).

Theorem 1.2. [f r(z) € R,, having all its zeros in |z| < 1, with a zero of order s at the origin,
then, for any v with |y| < 1 and |z| = 1,

2r'(2) + %r(z) >

> % <(B'(z)| + s+ nRey)|r(2)| + (|B'(2)| + s + nRe~y — |25 + n7y|) g“ﬁ‘r(m) .

Let min|,|—; |[r(2)| = r(20). Similar to (1.2), if we take ¢; = o, j = 1,2,...,n, in Theorem 1.2,
we have

ny(a — z)

2 1 /(a2 - 1) 1p(2)]
> ((2——H Re~y | 221
[z — ]+l —2<< r—ap TRV T

!
+ (n(a| ) + s+ nRevy — |25+n7]> 7‘17(20” > ,

|z —af? 20 — o

ZDap(z) + p(Z)

or

Dapte) + 1Dyt > 1 ((MAED s (o e ) o+

=2 |z — af

7n(|a|2—1)7 s+ny| — (s +nRev))|z — « |z = af”
+ (ML (25 il (s Rz -

)

|20 — |

or

> 5 ((n-+s+nen)(al - Dip(a)+

# (0= s+ ] = nRexlal = (o + s+ nker —n) ({257 ) teoll).

Therefore, the next result is obtained for the polar derivative of a polynomial.
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Corollary1.4. Let p(z) be a polynomial of degree n having all its zeros in |z| < 1 with a zero
of order s at the origin. Then, for every o with || > 1 and any ~ with |y| <1, |z| =1,

Dupe) + 4= p00)| 2 § (0454 k) ol = DIpGa) 1+
—um—s+Mﬂ—nmwwn—m+s+M%v—MﬂnGj;i)Igymao. (1.5)

By dividing both sides of inequality (1.5) by |«| and letting |o| — oo, we have the following
refinement of a result which has been proved by Dewan and Hans [2] (Theorem 1).

Corollary 1.5. If p(z) is a polynomial of degree n, having all its zeros in |z| < 1, with a zero of
order s at the origin, then, for any v with |y| <1 and |z| =1,

n+ s+ nRe~y
2

n—s+n|y| —nRevy min [p(2)]

+
p(2) . min

ny
o (2) + hoa)| >
By referring to the above theorems, the bounds which are obtained for rational function depends
only on the zero of largest modulus and not on the other zeros even if some of them are close to the
origin. Therefore, it would be interesting to obtain a bound which depends on the location of all the
zeros of a rational function. In this connection, we use some known ideas in the literature and obtain
the following interesting result.
2°p(2)
Theorem 1.3. Jj =
fr(z) H(z)
n
—b;), |bi| <1,0<s<mn,and H(z) = H 1(z—cj) by |¢j| >1,j=1,...,n, then, for |z| =1,
]:

€ Ry, having all its zeros in |z| < 1, where p(z) = bHTl_ls(z—
1=

Pz g (st 1+{%1 B (=)l (16)

i=1
Similar to (1.2), under the formula (1. 6) inc;j =a, j=1,2,...,n, we have the following result.
Corollary1.6. Let p(z) = bz*® H (z —b;), 0 < s <n, be a polynomial of degree n having

all its zeros in |z| < 1. Then , for every o with \a! >1and |z| =1,

n—s
o]~ 1 11,

[Dap(2)| 2 —5— | n+ s+ ——=— | [p(2)| (1.7)

2 n—s )
1+ Hi:1 |bs|

By dividing both sides of inequality (1.7) by |«| and letting |o| — oo, we have the following
refinement of the result which proved by Zireh [7].

Corollary1.7. If p(z) = bz* HT,l_ls(z —b;), 0 < s <mn, is a polynomial of degree n having all
1=
its zeros in |z| < 1, then, for |z| =1,
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2. Proofs of the theorems. For the proofs of these theorems, we need the following lemma
which is due to Ossermann [6, p. 3514] (Lemma 1).

Lemma 2.1. Let f: D — D be an analytic function, where D = {z € C: |z| < 1}. Assume
that f(0) = 0 and exists a continuous extendibility of f'(z) with |z| < 1 to the point b with |b| = 1.
Then

, 2
OESe=er o

Proof of Theorem 1.1. By hypothesis we have

where b;, |bi| <k <1,i=1,...,m— s, are the zeros of r(z). Therefore,

21’ (2) o zp'(z)  2H'(z) LM
r(z)  1+k p(2) H(z)  1+k

zH'(2) ny
_S+z;z—b HZ)  1+k @.1)

Now we have

2zH'(z) "2z "\ 1+ Zc;
R —n= —1= I
e( H(z) ) " Zz—cj jz::ll—zcj

el
= Z ‘1 _zé ‘2 - |B,(Z)|7

which implies

zH'(2)\ _ n—|B'(2)|
R = . 2.2
(G ) =" 22
Now, for |z| =1 and |b;| < k, where k& < 1, we have
z 1
R > 2.3
b T 1tk -3

So, for |z| =1, by (2.1), (2.2) and (2.3), we obtain

(5 ) = (8 ) () 75

i=1

— z n—|B'(z)] nRey
= — >
S+Re<zz—bi> > ik S

=1
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m—s n—|B'(z)] nRey

TR T 2 1+k
_|B'(2)] N 2(m + sk) —n(1 + k) + 2nRey
2 2(1+k) ’

and, hence,

21’ (2) ny 2r'(2) ny
r(z) +1—1—16‘2Re<7“(z) +1—i—k>Z
|B'(z)]  2(m+ sk) —n(1+ k) + 2Rey

+ 511 k) ’

>

from which we can obtain Theorem 1.1.

Proof of Theorem 1.2. Let m = minp,—; |r(2)|. If m = 0, then we have the result from
Corollary 1.3. Suppose that m > 0, then m < |r(z)| for |z| = 1. If |A\] < 1, then it follows by
Rouche’s theorem that the rational function R(z) = r(z) + Amz® has all its zeros in |z| < 1 with a
zero of order s at the origin. By applying inequality (1.4), for rational function R(z) for |z| = 1, we
obtain

2R(2) + U R(:)| 2 5B ()] + 5+ nRen)|R(:))

or
(|B'(2)| + s + nRey)|r(2) + dmz®|.

l\DM—l

' (2) + Asmz® + %(T(Z) + Amz®)| >

By using a suitable argument of A, we have
Ir(2) + Amz®| = |r(2)| + |Amz®].

Using this equality for the right-hand side of above inequality, we get

' (2) + m7’(2)

1
5 s+ ml=*| = S(B'(2)] + s + nRey) (ir(2)| + \lm).

Since |z| = 1, then

2r' () + %r(z)‘ %((\B'( )|+ s+ nRey)|r(2)] + (|B'(2)] + s + nRey — |25 + ny|)|\|m).

Now making |A| — 1, we get

r(2) + m7“(2)

Dr(2)] 2 S (UB ) + 5+ nRen)ir(=)| + (1B/(2)] + 5 + nRey — [25 -+ moJm).

from which we can obtain Theorem 1.2.
Proof of Theorem 1.3. By similar argument in Theorem 1.1, we can write

r(z) _ zsp(z) _ bz’ sz—ls(z — bz)
H(z) H;;l(z —¢j) 7

where b;, |bj| <1, i=1,...,n — s, are the zeros of r(z). Therefore,
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re (i) = o (55) 7 (i) e
2p'(2)
p(2)

zeros in |z| < 1 and implies ¢(z) = 2" *p(1/Z) # 0 in |z| < 1, then S(z) =

Now we calculate Re ( > . Since p(z) is a polynomial of degree (n — s), which has all its

zp(2)
q(2)

function in |z| < 1, where S(0) = 0 with |[S(z)| =1 for |2| = 1. Applying Lemma 2.1 to S(z), we
conclude that

is analytic

2

1S(2)] > m (2.5)
ow, for S(z) = 2n(2)
Now, for S(z) o)
28'(z) . 2p(2)  2d(2)
I IS NTE) 20
Since ¢(z) = 2" *p(1/%Z), then
q'(2) = (n—s)20"*"Vp(1/z) — 2" (1/7).
Also, for |z| =1,
W) [0
o - e-0- (55 7
From (2.6) and (2.7), we get
250 n—s-— eZp/<z) rz| =
s = D)+ 2Re= 8 for 2] = 1. (2.8)

Also

hence, for |z| =1,

25'(2) — Ay — 1— b
=1 —
S(z) +;Zbi+;1—biz z;|zbl|2
! !/ /
It means that ZSS(,(;) is positive and ZS(S) = ZS(S) for |z| = 1. Since |S(z)| =1 for |2]| =1,
hence,
/
Z;S) —19(2)| for |2] = 1. (2.9)

By using (2.8) and (2.9), we have
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/
S'(2)=—-(n—s—-1 +2ReZp(Z) for |z| = 1. 2.10
18(2)] = )+ 2R for (210
As
byr [ 2—bi
S — A= — )
=2 Hl (1 - bz-z)
hence
15'(0)] = T Ivil. (2.11)
i=1
From (2.5), (2.10) and (2.11), we get
/ PR— —_—
ReZ2) , n=s=1 for |z| = 1. (2.12)

1
p(z) = 2 "
1+ 1T, ol

By combining the relations (2.2), (2.4) and (2.12), the required result is obtained.
Theorem 1.3 is proved.
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