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ON COMPENSATED COMPACTNESS
FOR NONLINEAR ELLIPTIC PROBLEMS
IN PERFORATED DOMAINS

IIPO KOMIIEHCOBAHY KOMITAKTHICTH
OJI HEJITHIMHAX EJIOTHYHIX
3AJAY Y HEPO®OPOBAHHX OBJIACTAX

‘We consider a sequence of Dirichlet problems for a nonlinear divergent operator A: W;,(Q_,) -3

[Ilr:: (.Qs)]. in a sequence of perforated domains Q, < Q. Under the condition on the local capacity of
aset Q\Q,, we prove the following principle of the compensated compactness: lim (A.r;,, z,) =0,
S—poa

where Ir,(x) and z(x) are sequences weakly converging in W23(Q) and such that r(x) is

analogous to a corrector for homogenization problem, z(x) is an arbitrary sequence from W (Q,)
whose weak limit is equal to zero.

Posrnapaersesa mociigosricTs sanay Jipixie [i1s1 HesTlHIHHOTO AUBEPreHTHOrO EJIIITHIHOIO OIlepa-
Topa A: Wi(Q,)— [W,l (.Q,):[ B mocJaifosHOCTi nepdoposamax ofnacrel £, Q. 3a yMOBH Ha
JIOKANbHY €MHICTE MHOXHHH £\ £, MOBEOEeHO TAaKHH NPHHIHI KOMIEHCOBAaHOI KOMIAKTHOCTI:

lim (Ar,z) =0, né r,(x), z,(x) — cnabko s6ixni B W(Q) mocimosHoCTi Taki, mo 7,(x) —
s—poe

aHAJIOT KOPEKTOpA JUIA 3a/{avi YCepeIHeH A, Z,(x) — HOBiIbHA mocytioBHicTs B Wi (Q,), coabka
IPaHHIA AKOL HOPIBHIOE HYJIIO.
1. Introduction. Let Q be a bounded open set in the r-dimensional Buclidean space

R" andlet Q, CQ, s=1,2,..., bea sequence of subdomains. In Q; we consider a
nonlinear elliptic boundary-value problem

o4 (. ou % 2
gla“f [x’“a‘;) = Ela—%i}(?): x€Q s, (1.1)
u(x) = f(x), xe dQ;. (1.2)

The asymptotic behaviour of solutions of such type problem for s — e was
studied in papers [1 — 3], monographs [4, 5] and in papers of another authors (see [6 —
9] and references in [1]) for nonlinear equations satisfying strong monotonicity as-
. sumptions.

A new monotonicity approach for the study of the asymptotic behaviour of solu-
tions of the problem (1.1), (1.2) for the equations (1.1) satisfying weak monotonicity
condition was developed in the paper [10]. In this paper we assumed that C,, —
capacity of the part of the holes Q\Qg, s=1, 2,..., in small cubes is estimated by
Lebesgue measure of the cubes. This approach was based on new Convergence
Theorem that is analogous to well known compensated compactness principle [11, 12]
for linear equations with periodic coefficients.

The aim of this paper is to establish analogous Convergence Theorem under very
weak assumptions on the sets Q; that are coincided with corresponding conditions in
[1]. Our main hypothesis is the following condition B1 where K(x,r) denotes the
closed cube at centre x and side 2r, and C,,(F) is the m — capacity of a closed set

F C Q with respect to a fixed bounded open set Qg such that Q C Qg, p (L0,
Q) =1, where p(9Qg, Q) is the distance from dQq to Q.
Condition By. There exist a non-negative bounded measure v(B), defined for
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ON COMPENSATED COMPACTNESS FOR NONLINEAR ELLIPTIC PROBLEMS ... 1535

every Borel set B C Q, and a sequence pg > 0, tending to zero as s—> oo such that
the inequality
Cn (K(x, )\ Q) < V(K(x, 7+ py)

holds for every xe € and for every r = p; with K(x, r+p;) S Q.

We take the attention of the reader that the Convergence Theorem of this paper
gives us a possibility to make principal modification in the construction of the corrector
in the paper [1]. In the paper [1] the definition of the subdivision of the domain and
consequently. the_construction .of the asymptotic. expansion.was. connected. with.the.
sequence of solutions wu (x) of the problem (1.1), (1.2). Using the Convergence
Theorem of this paper we can construct corresponding subdivision and the asymptotic
expansion without the connection with u (x).

Using the Convergence Theorem of this paper we are able to analyse the
asymptotic behaviour of solutions of the problem (1.1), (1.2) with weak monotonicity
assumption for a;(x,p), j=1,...,n, in the sequence of domains €2 satisfying the
condition By. This result will be published in forthcoming paper of the author.

2. Statement of the main result. We assume that the functions a;(x, p), j =

=1, ...,n, are defined for x € R", p € R" and satisfy the following conditions:
Condition Ay. The functions a;(x, p) are continuous in p for almost all xe R"

and measurable in x forall pe R"
Condition A,. There exist positive constants v{,V, and m e [ 2, n) such that

for xe€ R", p,q € R" the inequalities

n

-21 a;(x, p)p; 2 V1|pI™, @.1)
=

ZI [a;(x, ) - aj(x 9] (2j - ;) 20, (2.2)
-

lejx p)| S valpl®?, i=l.....m (2.3)

hold.

Remark 2.1. The inequality (2.2) means the weak monotonicity assumption for
the equation (1.1). The strong monotonicity condition from [1 — 10] is the following
inequality

il [af(x, p)—a;(x, Q)](Pj-Qj) 2 vi|lp—q|™.
i=

Rernark 2.2. We can replace in right-hand sides of inequalities (2.1), (2.3) |p|™,
IpI™ by (1¢1p1)"|pI%, (1+|p|)" | p| respectively.

Our main assumption on the sequence £2; is condition B; which was formulated
in the introduction in terms of the m-capacity C, (F). For every compact set F
contained in ¢ the m-capacity C,,(F) of F with respect Qg is defined by
equality
m
Cn(F) = inf | dx, 24

Qq

where the infimum is taken over all functions ¢ (x)e Cy(£2y) which satisfy the
equality @(x)=1 for xe F.

For the proof of the Convergence Theorem we need also the following additional
assumption on the measure V.

99(x)
dx
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1536 1. V. SKRYPNIK

Condition B,. There exists an increasing continuous function @(p), such that

V(K(x, p)NQ) < ap) 2.5)
for arbitrary xe Q, p >0 and

I-Q—(P—l—dp < too. (2.6)
0

Rermark 2.3. 1t is simple to check (see [1]) that the condition (2.6) implies

@) _ o
p—}Op""‘m

Remark 2.4. We can assume that for an arbitrary Borel set B € Q an inequality
v(B)=measB holds where measB is the Lebesgue measure of B. For this it is suf-
ficient to change the measure v on the measure V such that V(B) = v(B)+ measB.

Let us fix a function y(x) of class Cg'(Qy) equalto 1 on Q. A crucial role in
this paper belongs to special auxiliary function v (x, F, q) that is defined as a maximal
solution of a boundary-value problem

Z axj ( x] =0, xeQo\F, (27"

v(x) = qy(x), xe AQ\F). 28)
Here F is an arbitrary closed subset of Q, g is an arbitrary real number. The
solvability of the problem (2.7), (2.8) in WA(Qq \ F) is followed easy from the theory
of monotone operators. In the paper [13] it is proved the existence of such solution
U(x) of the problem (2.7), (2.8) that v(x) < ¥(x) for an arbitrary solution v(x) of
this problem. The function U(x) is called the maximal solution of the problem (2.7),
(2.8). We extend v (x, F, g) to R" by setting v(x, F,q)=¢q in F and v(x, F,q) =0
outside Qg.
Let us introduce a special decomposition of the domain £ depending on a
sequence Ag. Let t; be a solution of the equation

1

t.?l-i‘l (w)m = pn+1 (2.9)

s [m s 2
where p; is the sequence from the condition B1.
We define A, to be the odd integer number which satisfies an inequality
Ky e ho s, (2.10)

5
It is easy to check following properties of A;:

lim Ay = +eo,  lim A,p, = 0 (2.11)

§—ye0

(see Lemma 4.1 [1]).
For a given point xg) € K(0,A;p,) we consider the cubic lattice composed of the

points ng) = xff) +2Aspset, where o = (01, ..., 0,) is a multi-index with integer
coordinates and we denote

Fy = | {& (=, 2op) \ K(x$, A = 6)p5) } (2.12)
o
where the union is taken over all possible multi-indices ¢ with integer coordinates. -
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From Lemma 4.2 in [1] it is followed that there exists a point x%‘) e K(0,A;p;)
such that

V(FNQ) < %ﬂv@). | 2.13)

The domain Q will be decomposed
Q= { U K(x$, 2, ps]}U U, (2.14)
ael;

where I is the set of all multi-indices o such that K (x§?,24,p,)CQ and U, is
the complement in & of the set U K (x(c',f), Agp 5).

ael,
Moreover we introduce the notations
Ks(o) = K(x§,0p;),  Ki(@) = K(x§, A —2)py). (2.15)
Let us define the function
U{;)(x: q = v(x' Ki(o)\ 4, ‘3): (2.16)

where v(x, F, g) is the solution of the problem (2.7), (2.8) which was introduced
above.
We define new sequence Ly by the equality

1
o(Agp,) |m-1 :
o = max x[ﬁ} APy - @17)
SES "
We have from the Lemma 4.1 [1]
Jim g, = 0. (2.18)

Denote by L (€2, v) the space of functions v(x) defined on 2 measurable with
respect to measure v and such that

I @y = [l@)IPdv < o.
Q

Let gs(x) be an arbitrary sequence in L, (€2, v) that converges strongly in L ,, (€2,
V) to some function gg(x) and we denote

1/
@ = —L— [ qav. (219)
& V(K()) K;[“) s
We introduce subsets I, I7 of multi-indices o
L= {oel:|q@)>2u}, 17 = {ael:|q¥)|<2u,} (2.20)
Define the functions
79 = vQ(x 7)), (2.21)
where _
7 = ¢, for ae I, g =2p, for ae I”. (2.22)

For an arbitrary function g(x) we denote its positive part by [g(x)], =
= max {g(x), 0}. We define the cut-off functions @&)(x) by the equality
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1538 I V. SKRYPNIK

0P = ;;mm{[lv@(xﬂ ““L%}, (223)

where
u = p,max{1[¢$|}. (2.24)

Let us construct the following sequence which is fundamental in the analysis of
asymptotic behavior of solutions of the problem (1.1), (1.2)

r(x) = 2} (% 45) 9 (%) (2.25)

Remark that r,(x) is analogous to the corrector which was constructed in [1 — 5]. In

particular r;(x) is analogous to principal term rs(:"J (x) of asymptotic cxpansmn of the
sequence of solutions in [1].

Our main result is the following theorem.

Theorem 2.1 (Convergence Theorem). Assume that conditions A1,A2,B1,B2
are satisfied and let g (x) be some sequence converging strongly in L, (Q,Vv). Let

Z,(x) be an arbitrary sequence of functions such that z(x) € T«?’,ln(Qs) and zy(x)

converges weakly to zero in W,},(Q), Z(x) =0 on Q\Q;. Then the following
equality

o~ ar, (x)] 9z,(x)
lim W e D | 25 40 = 0 2.26
S_)WJ; f[aj(x, 3x axj x (2.26)

holds.

Remark 2.5. We take the attention of the reader that in conditions of the
Theorem 2.1 the sequence 7,(x) converges in Wi(Q2) only weakly (see Lemma 4.3
below) and this convergence is not strong,.

3. Estimates for potentials. In this section we formulate some integral and
pointwise estimates for the potential function v(x, F, g) introduced in Section 2 as
solution of the problem (2.7), (2.8).

Let us fix a compact set F contained in  andlet v (x, g) = v(x, F, q). For 0 <

< KL< |g| we define the set

EW) = {xeQq: o(x q)l<p} R

‘We shall assume that conditions A 1, A, are satisfied. We shall use integral and
pointwise estimates for v(x, g) that are proved in [1] (lemmas 2.1 and 2.5
respectively).

There exists a constant K ; depending only on v, Vg, n, m such that the
estimate

ox

m
2659 ax = Kiplgl™ ¢2)

EW

holds for every ge R and forevery p with 0 <p <| g|.
It is easy to see that the inequality 0 < lv(x, g) <1 holds for every g#0. So we
q

obtain an estimate of the norm of the function v (x, g) in W, (Q,) ifweput pu=|q|
in (3.2).
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Assume that K(xg,2r) C Qg and set F is contained in a cube K(xg, r). Then
there exists a constant K, depending only on vy, V2, n, m such that the following
estimate

r 17 @)
o5 Dl 5 Kalgl| =" (D) 63)

holds for x € K(xg, 2r)\K(xg, r), where p(x, K(xg,r)) is the distance from the
point x to the cube K(xq, r).

Let us introduce auxiliary function w (x, g, F) as a solution of following
boundary-value problem

i i{ it mﬁza—w} =0, xe K(xg,2r)\F (3.4)
“~ 9x: ||dx ox; ’ 0 ’ '
j=1""17 J

w(x) = gp(x), xe J[K(xg,2r)\F], (3.5)

where ge RY, F is a closed subset of K(xq,r) and ¢(x) is a function of class
Cy (K(xp, 2r)) equal to one in K(xg, r). Bxtend w(x, g, F) on F by the equality
w(x, q,F)=q for xe F.
This function w(x, g, F) satisfies estimates analogous to estimates (3.2), (3.3).
Theorem 3.1. Let A be some number from the interval (3/2,2). Then there
exists a constant K3 depending only on m, n, A such that the estimate

dw(x)
dx

holds, where w(x) is the solution of the problem (3.4), (3.5).
Proof is analogous to the proof of the Theorem 5 in [13].

Theorem 3.2, Let w(x) be the solution of the problem (3.4), (3.5). Then there
exist positive constants o, K4 depending only on n, m such that the estimate

W)l < Kalgl [M]u{g_ﬂ_@}ﬁ 67

< M{M}ﬁ for xe K(x, Kr)\K(xU,%r) (3.6)

r phim

n—=m
r

holds for x € K(xg, 2r)\K[x0,ng,
Proof. Let x’ be an arbifrary point on the boundary of K(xg, 2r) and denote
M’ = max {]w(x)|: L eB(x’, g]}, where B(xg, p) is a ball at centre x, and radius

p. Using Moser method for the proof of-Holder continuity of w(x, g, F) (see for
example [14], Chapter IX, §5) we obtain the estimate

lw()—wx)| < q['i_ri']]aiw for xe B(x',%) (3.8)-

with constants ¢, C; depending only on n, m.

Now the inequality (3.7) is followed from (3.8) and the analog of the estimate (3.3)
for w(x).

Theorem 3.3. Let w(x) be the solution of the problem (3.4), (3.5) and let
be some number from the interval (1, 2). Then there exists a constant Ks depend-
ing only onn, m,y such that the inequality
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1540 1. V. SKRYPNIK

n=im

1
. C,(F) =
mm{|w(x)|: xEBK(xG,Tr)} Ks[q|{ ( )}”‘ 1 3.9
holds.
Proof. It suffices to consider the case g > 0. Define r; =yr + j2—7)r/5,
Jj=1,2,3,4, and functions Y, (x), Y,(x)e Cy(K(xp,2r)) such that y,(x)=1 for

xe K(xq,r3), W;(x)=0 for x¢ K(xq,r3), Y,(x)=1 for xe K(xq, r3)\K(xo,
rp) and Y,(x)=0 for xe K(xy,ry) or xg¢ K(xq, r4). We can assume that

V()
dx
Constants C; in the proof of the proof of Theorem 3.3 depend only on n, m, .

We substitute in the integral identity

a—w m—2
dx

< GE kara
r

n o
9w 99 dx =0, o@(x)e Wi(K(x,2r)\F) (3.10)

J=1 K(xp,2r)
a test function @ (x)=[g—w(x)] ¥{"(x). Using Holder inequality we obtain
a w

m—1

I

K (50,20) 1 dx

1
g o m aw)|”
ad| ]| |—ax

Vi(x)dx < C

I

m-1
[w(x)]—cmf'(m—l) dx} " <

m=1
< c4q[M(rz)]°rf"—“’>’m{ 2D prg-omin-D v’z"(x)dx} ", e
K(xps2r) | 9%
Lo m-—1
where D =K (xq, r3)\K(xg, rp), 0= —,
2m
M(p) = max {w(x): xe K (xq, p)}. (3.12) .

Using the Harnack inequality for the equation (3.4) (see [15]) we have
min {w(x): xe K(xq, r4)\K(xg, r1)} > 0. Substitute in the identity (3.10) new test
function @(x)= w' o™/ (" D(x)y(x) and we obtain

Iw(x)|"
a_x

[w(]—om Dy ) dx <
K(xp,2r) -

Iw(x) o
dx

< ¢l

T K (xp,2r)

()] =om/ Dy (x) dx.

Estimating the last integral by Young inequality we have

dw(x)|"

S| N Dy dx <

K(xg,2r)
£ W | Il -0z < oM™/ =0, (5.13)
™ Ko, r\Koun)
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From inequalities (3.11), (3.13) we obtain the estimate

] R O e
K(xg,2r) 0x
+ Ceq[M@E)])™ " < Coq[M@p))™ . (3.14)

By the definition of the capacity we have the following estimate for the integral on
the left-hand side of (3.14)

EICAT]

dx

dx > g Cp(F). (3.15)
K(J.'D,?-?‘)

The inequalities (3.14), (3.15) imply the estimate

M(r1) 2 Cy q{ ,:Ef:) }’H (3.16)
From the Harnack inequality [15] and (3.16) we have the estimate
: . p) . > m(F) m-l
min {w(x): xe dK(xp,r1)} 2 CuuM(r1) 2 Cipq

and the proof of the Theorem 3.2 is completed.
Denote

n—m-+1 pr—m 2

T(r) = ]: pw(p) p+ o) (317)
0

where @(p) is the function introduced in the condition B,.
Lemma 3.1. Assume that conditions B1, B, are satisfied. Then there exists a
constant K¢ depending only on n, m such that the inequality

av,
) < K1() (3.18)
K(zo,n|¥ =]
holds for x e K(xq 2r), where K (xq, 2r) is an arbitrary cub satisfying an
inclusion K(xg, 2r) C Q.
Proof. Denote @(r, p) = @(min (r, p)). From the properties of the function ®
we have

sup V(K(xq, )N QN B(x,p)) < o, p).

xeR"

Using the Theorem 6.1 of [16] we obtain the inequality

vy . 3}' o@.p) ,

K(xo _r)lx y|n—m n m-l-l

= CIS {I f:)—(rf-?—l dp T m(r) n];m} s C13 (1 +
oP

n—mr

o

that gives us the estimate (3.18).
Lemma 3.2. Let v be the measure introduced in the condition B 1 and assume

that condition B, is satisfied. Then for any function u(x)e W:(K(xq,2r)) and
any cub K(xg, 2r) CQ the inequality
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1542 I. V. SKRYPNIK

du(x)|™
|u() -, |"dx < Kfc(r)W _(%2 dx
K (%0, 25\ K (x0, ) (%0, 7)) K (39, 7) .

holds with a constant K, depending only on n, m. Here
1
Uy r= ——— u(x)dv. (3.20)
T V(K(x, 1) K(,E[,,r)
Proof. Remark that from the conditions B, B, and from the Theorems of § 8.6,
8.8 in [17] it is followed the compact embedding
W2 (K(x0,2r)) € Ly (K(xg,2r),v) for K(xq,2r) CQ. (3.21)
Consequently the integral in (3.20) is well defined and it suffices to prove the estimate
(3.19) for u(x)e C'(K(xy,2r)).
Let xe K(xq, 2r)\K(xq,r), ye K(xg, r) be such points that

X=X .. ¥ Y0

= = .
lx=xo|  [y=yol

Using an quality

[x=xo]

u(@) - u@y) = | %% (%o +0F)dt

[y=yol

and a straight-forward computation we obtain
lu(x) = uy,r| <
1
du(xg + mt)

e dr} (3.22) |

1 1=n/m
O N— y—x dv
V(K(xp, 7)) K(;;l;,r)l o y{ '! ot

Evaluate the first integral on the right-hand side of (3.22) by using Holder
inequality and the estimate (3.18) and we obtain

J 1_}’ —Xp |1_Pl Im d\r'y < Cl4 [V (K(xu, ?'))] (m_l)]m ‘t”m(r) B (3.23)
K(xg,7)

Representing the integral on the left-hand side of (3.19) in spherical coordinates
centered at x; with respect to variables

o= 2" ¢ 50,1), p-= [x—xgl € [p1(®), p2(®)]
|x—xo]
we have from (3.22), (3.23)
o 2(®) = %
lux) -, ["dx = [ [ |uxo+p0)-u,,|"p" dpde <
K(x,2r) \ K (xg,7) S(0,7) pr(w@)
p2(®) m
< Gs[V(K (x, r))]'l'c(r)r’-' _E}_u(xgt—ﬂml " tdtdo =
. S(0,1) py(w)
& au(x)
= Cs———= () (3:24)
SV(K(xu, r) K(,r)| 0%

The proof of the Lemma 3.2 is completed.

ISSN 0041-6053. Ykp. mam. sypH., 2000, m. 52, N® 11



ON COMPENSATED COMPACTNESS FOR NONLINEAR ELLIPTIC PROBLEMS ... 1543

4. Proof of the Convergence Theorem. Denote by Gé‘) the support of the

function cpw(x). In this section we shall use the notation C;, j = 17, 18,..., for
constants which depend only on n,m, V1, Va2, V().

Lemma 4.1. Assume that conditions A1,A,,B1,Bo are satisfied. Then there
exists an integer §1 such that the inclusion

G < K(x§, (A -Dp,) for ael (4.1)

holds for s = s;.
Proof. Using the pointwise estimate (3.8) and the conditions B1, Bz we obtain
the inequality

L
79| < G max{|a), 20} {C‘—‘“"”"‘c(ﬁfﬁhf A} s

1
& n—. 0) }‘s &5 E
< Gy max {2} 2n i [ 2L | 2
for x € K (ng), (A =Dp _,.). By the maximum principle the same inequality holds for

every x ¢ K|x, (S) Ay —1p,). From (2.11), (2.18), (2.17) we have the inequality
Iy 5 5

1

% Aops) |m-1 _ C 0
Cia D 1 0)( sPs < 17 < s
1 {(xsps)""" B

for sufficiently large s. Consequently from (4.2), (2.24) we have

Dv(s)(x)l___:' =0 for xe K(x[(f),(ls-—l)ps] 4.3)

+
which implies (4.1).
Lemma 4.2. Assume that conditions A1,A2,B1, B, are satisfied. Then the
inequality
meas G < Cig(hs py)" 1y V(K (3§, s —1)ps)) (4.4)

holds.
Proof. We introduce an auxiliary function

(s) )
() = — 3O (x)—Fa | Ha
(x) LLUx:mn«{[vm (x) 4 ] 4 }

4

As in the proof of the Lemma 4.1 we can prove that cp(")(x) =0 for x& K (o) and

s large enough. Using Poincaré’s inequality, the estimate (3.2) and the condition Bj
we obtain

ITC@|" ,

[ [o90|"dx < Gotpam | |2

K, (o) Ko(o)
< ooy (Mg ps) V(K (xS, (hs = Dps))-

Observing that $)(x) = 1 for x € G we obtain the estimate (4.4) from the last
inequality.
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Lemma 4.3. Assume that conditions A1,A, B1, B, are satisfied and let g (x)
be an arbitrary sequence that converges strongly in L,,(Q,Vv). Then the sequence

.r_, (x) defined by the equality (2.25) converges strongly to zero in W;(Q) for any

P <m and converges weakly in W,}l(ﬂ) as s—yeo,
Proof. We can assume that s > sy, where s; is defined in Lemma 4.1. Then
from the inclusion (4.1) we have

G n 05‘3 =@ for a#p, o Bels. (4.5)

Let us estimate the norm of the gradient of r (x) in L, (Q) for s large enough
such that |Ly<1. We have

a'?‘_!.(X) = < C21 2 -[ Bv( )(x, q(s)) —
ox |1 (@ “oel, GO dx
) (. FEN|™
+Cy Y [ j vz, a$)|™ %—) dx, (4.6)
ael; -"

where ES) = {xeQq: E%<|vsf)(x)|<ug) 3
We evaluate the first summand on the right-hand side of (4.6) by using the
inequality (3.2) and the condition B : :
s [ [pfwd)”

= dcS Cp 3, |q(’>| V(K (). (4.7
ael; g

oel

From the Holder inequality we have

1

(s) 1 m m
95 gs(x)dv| < {——— lgs()] dV} 4.8

| v(K (@) K,L) d V(@) K,L)
and we estimate the sum on the right-hand side of the inequality (4.7)
> 69" vE& @) < [ lgse)|™dv. 4.9)
ael; Q
Remarking that the inequality

[v¢x, ¢$)| < 2p;  for ae 17 (4.10)

holds we can evaluate the second summand on the right-hand side of (4.6) analogously
to (4.7), (4.9) and we obtain the estimate

]

Q
Remarking that the function r4(x) vanishes outside U{xE ! G%) and using the -

5

ar(x)|"
Jx 4

< czﬂrj2 lgs(x)|™ dv. (4.11)

Holder inequality we get

11 |
< " rs(x)“ { meas G&”}P ™ for l<p<m.
Ly(Q) ox L@ Loel, T

ax (%)
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The second factor on the right-hand side of last inequality tends to zero by (4.4), (2.17),
(2.18). This completes the proof of the Lemma.

Lemma 4.4. Assume that conditions of the Lemma 4.3 are satisfied. Then the -
sequence

@) = 3 v, g5 ) (4.13)

oely *

converges strongly to zero in W;}t (Q).
Proof. Analogously to the proof of the Lemma 4.3 we have the estimate

]

Q

ar(x)|"

£ dx < Gy 3 4]V ()

aely

and the right-hand side of the last inequality tends to zero by the definition of I; and
(2.18). The proof of the Lemma is completed.
Let { be an arbitrary sequence of real numbers satisfying an equality

lim §; = 0. (4.14)

§—poa

Let us define the subsets Ij ;, I3 ; of multi-indices o by the equalities

g, = {aer:t]d|" 1<1} B, = {aer: t]d@"" >1}
and denote

s = Y vPxaNePx), i=1,2. (4.15) .
aelf,

Lemma 4.5. Assume that conditions of the Lemma 4.3 are satisfied and let T,
be an arbitrary sequence satisfying the condition (4.14). Then the sequence r;  (x)
defined by (4.15) converges strongly to zero in W2 (Q).

Proof. Denote Q.= Ume!i ) K, (o). From the inequality

Sy < Y a9 M vk ()

aelj

and (4.8) we have
v(Q,) S L [ gy(x)|™av. (4.16)
Q
Amalogously to the proof of the inequality (4.11) we obtain
| or3,s(x)|"
al 9x

ax 5 Cus [la.clmay
s

and the convergence of the right-hand side of last inequality to zero is followed from
(4.14), (4.16) and the assumption on the sequence g, (x). The proof of the Lemma is
completed.

Proof of the Theorem 2.1. Define the sequence .{_ by the equality
.9 = max {” (x) " EZ(.Q, v)? l‘s Pss {T (?“s ps)] 1.-’2m}’ (417)

where z;(x) is the sequence introduced in the Theorem 1.1. This sequence { , satis-
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fies the condition (4.14) and let r{ (x), 715 4(x) be sequences defined by the
equality (4.15) for considered choice of (.

Using the condition A ,, Lemmas 4.1, 4.3, 4.5 and assumptions on z (x) we
obtain

S a1,2) @] 250 . _
‘ll’n}“’;i{aj[x’ ax ]_a{x’ ax H el

J
and it is sufficient to study the behaviour of the term

s 911, 5(x))) 3z,(%)
Jg = , — = | = dx, 4.19
? le SJ; aj [x ax axj * ( )
Denote
. 1
C,(Kie)\ Q)| m—1
59 = Ks(ij{—m HCATEDI (4.20)
¢ 270 [Asps]™™
where the constant K [%) is defined in the Lemma 3.2.
Define a function
© 2 ind | w® 501 - 82
(@) = Zymind | WO K@\Q, 1) - 2% | ;2 (@421
8¢ 2 ], 2

where w§)(x, F, q) is the solution of the problem (3.4), (3.5) with xq = x((f), r=
=Agps. Thecub Kj(cr) in (4.20) is defined by (2.15).
Using the estimates (3.7), (3.9) and the choice of 8 we have

tO@ =1 for xe K(ng,%%,sz, (4.22)
(Px) =0 for xe K(x§),2h,p,) \ K(xE, v p5), (4.23)
with some number vy depending only on n, m.
We rewrite J in the from
5
Jg = E J.E-l), (4.24)
i=1
where
n (s
JO = > [:a}(x 0 (U(chpg?)J _ J[x, a;‘a H_ags(x)d ;
a&l. =1 g ) * el

n (5)
®= 3y aj[x, o J(l—cﬁﬂ(x))%zs(x) dx,  (425)
o)

J

n (s) (s)
e ol R L e L
e, [=1 g x Xj
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B n ' () ()
19 == 3 350 [ on2L)5 0

Cl'.EI]”;jzl K‘(Cf.) ax axJ ’
where
1
7(0) = ———— [ z@)dx,
. meas (K(0)) g {ay
vg) = U:(:f)(x: qt()f)): gs(a) = K(x((f): 2\ ps)'
Define a set

B0 = (ko s )] < u}.

The function’ (psf)(x) is equal to one if |v5f)(x, qc(f))‘ > pY, ae I Using (2.3)
and Holder inequality we obtain the estimate

0| <

m-l

@ ]
<Gty | Hha—(ugf)rpf;’)) - aa&} dxt %
aelis g - 7F *
i
X {j 9%(x) dx}m. (4.26)
dx
Q

We estimate the second factor on the right-hand side of (4.26) by using inequalities
(3.2), (4.8). We obtain
: m
} dx .<

= Gyl 2 qus)lmv(Ks(a)) = CZT}‘I’S_[ 1?s(x)|mdv
) Q

U’E‘rl,s

£ [28

and the right-hand side of the last inequality tends to zero as s — c=. Taking into
account the assumption on z,(x) we obtain

lim J® = 0. (4.27)

oo

In the same way as for J_Sl) we obtain the equality

lim J& = 0. (4.28)
]
The equality
J@ =0 (4.29)

is followed from the definition of the functions vgf)(x, q,gf)) and from the properties of

L), z,x).
In order to estimate J §4) we remark that from the Theorem 3.1 the inequality
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3P| . Cu

ax | Agps
holds for a.€ I . Using the condition A> and Holder inequality we obtain the
estimate

(4.30)

m=1 1

@™ m

s ot 3 {1 P ] ] [ es@re

ls Ps aelis | D, (c) dx D (o)
(4.31)
()
where D (o) is the support of the function g%‘—(x—)

x

We estimate integrals with v{ in (4.31) by using the estimate (3.2) and integral
with z;(x) by using the Lemma 3.2, We obtain
1

. m
790 < Cals@up ™ 3, o8| v, (”*"”’"‘{ [ |5 dx} -
vely, Bl o%
(4.32)
Estimating the right-hand side of (4.32) by Holder inequality we get
m=1 i1
@ < 1/m mgl ™ 9z md " 4.33
IO < Cultp)]"™4 [ las|™avy " 4 | xp . (433)
g - Q
Taking into account that ©(r) tends to zero as r— 0 we get from (4.33)
sz;u}nwﬁ@ = 0. (4.34)

Let us consider the behaviour of J; ) as s—>oo. Remarking that the support of
AP
dx

is contained in K (ng), YAsp _5.) \K [x(") =AsP 5] and using the inequality
(3.2) we have the estimate

1 oo dx\ﬁ
- K

5()

(s)|™
4§ Cou(K2(0) \ Q) | m1
< C s V(K (o 4.35

3 { ] V&) €
From the Holder inequality and the Lemma 3.2 we have the estimate

1

m

dx} ;

for e I{; we obtain from

Zy(06) — [ zxyav

1
V(Ks (CC)) K x(a)
Using Remark 2.4 and the inequality |q(‘9) |m~1 <
(4.35), (4.17) and the last inequality

3 1 2x (o) g
£ Cy3 {’C (Msps) V(K (Of.)) K;[OLJ %

1

5

‘J{s)l < Cagllz “L,,,(Q vyt Caq T(As Ps) (4.36)

ax L, (@
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From compactness of embedding W,}, (Q)c L, (V) and (4.36) following equality
lim J&® = 0. (4.37)

=)o
holds. Now the equality (1.26) is followed from (4.18), (4.19), (4.24), (4.27)—(4.29),
(4.34), (4.37) and the proof of the Theorem 1.1 is completed.
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