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UNIQUENESS OF SOLUTIONS OF IMPULSIVE
HYPERBOLIC DIFFERENTIAL-FUNCTIONAL
EQUATIONS

€JUHICTDb PO3B’A3KIB I'MIEPEOJITIHIX
JUOEPEHIIAJIBHO-OYHKIIOHAJIbHUX
PIBHAHD 3 IMILY JIbCAMM

For impulsive partial differential-functional equations, we prove theorems on the existence and
uniqueness of solutions and their continuous dependence on the right-hand sides of the equations.

Hns hynknionansio-gudbepeHianbHUX PIBHAHD 3 YACTHHHHMH IOXiIHHMH Ta iMIyJIbCcHOIO Aiero mo-
BefleHi TeopeMH iclyBanns i eqHHOCTI po3s’A3KiB Ta IX HenepepBHOI 3aJ/Ie3KHOCTI Bifl MpaBol YacTHHH.
1. Introduction. Numerous problems in the theory of differential or differential-
functional equations have been solved by means of differential inequalities. The
-classical theory of partial differential inequalities is described in detail in the mono-
graphs [1] and [2]. The main applications of the theory deal with such questions as es-
timates of solutions of partial differential equations, estimates for the domain of
existence of solutions, criteria of the uniqueness of solutions, stability criteria, continu-
ous dependence of a solution on initial data and on the right hand side of the equation,
etc, A similar role in the theory of differential-functional equations with the first-order
partial derivatives is played by ordinary differential-functional inequalities. Some
results in this field can be found in [3, 4]. All results in [3, 4] concern initial-value
problems for the first-order partial differential-functional equations.

In the present paper, we give a generalization of the well-known theorems on dif-
ferential inequalities with initial conditions [1, 2] or differential-functional inequalities
with initial and boundary conditions [5, 6] to the case of impulsive differential-func-
tional inequalities.

The theory of impulsive ordinary differential equations was described in [7, 8].
First, the theory of impulsive partial differential equations was introduced in [9—11]
and [12]. In [13], impulsive differential inequalities and uniqueness criteria for the
Cauchy problem for nonlinear impulsive partial differential equation of the first-order
were considered.

In the present paper, we show that impulsive ordinary differential-functional in-
equalities can be applied to the proof of a comparison theorem and in the uniqueness
theory of impulsive partial differential-functional equations.

‘We now formulate the problem.

Let C(X,Y) denote the class of all continuous mappings from X into Y, where
X and Y are metric spaces.

We introduce the following assumption: :

Assumption Hj,. Assume that a region Q R I+n satisfies the following condi-
tions:

i) Q isopenand Q < (-h,a)X R", where h20 and a>0; _

i) let Q.= {(& ) = (& ny,....,n)e Q:E<x} Assume that Q, is
bounded for each x € [-h, a); ' :

iii) let S, = {y: (t,y)e Q}. Assume that S, is nonempty for each t€ [k, a);

iv) for each (x,y)e $ and each sequence {x()} such that x) e [-h, a),

v=1,2,..., and lim x™ = x, there exists a sequence y(¥) such that y(") e
V=3 oo . _
€ Suw, v=1,2,..., and lim y™ =y.
Vo oo
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Suppose that Q satisfies Assumption H,. Then we define Ey = {(x,y) e Q:

xe [-h,0]}.
Assume that 0 <x; <...<xy<a are given numbers. Let L, = {xy, ..., %},

P; = (x5, x4, i=0,1,..., k, where x3=0, x,,;=a, and Q; ={(x,y)e Q: x€e
e P;}.

Letsets Z and Z, besuchthat ZNZy, = & and ZUZ, = {(x,y)e FrQ: x#
#x;, i=0,1,...,k+ 1} where FrQ is the boundary of €. We assume that the dif-

ferential equation is satisfied on Z and consider a boundary condition on Z;. In the
next parts of the paper, we formulate additional conditions on the sets Z and Zj.

Let E = QUZ, By, = {(x,7)€ Q: x€ Ly, } and E" = Uxe[—k.a) ;.

Let Cimp'(E * R) denote the class of all functions z: E*— R that satisfy the
following conditions:

i) z|g, zlq, are continuous for i=0, 1, ... ks

ii) foreach i, j, 1<i<k, 0<j<k, there exist the limits

im_ z(ts) = z(x7,y), Y€ S,
(68— (37, !

and

lim  z(@t,s) = z(xF,y), yeS,, and z(x],y) = z(x;.y), ye S,
(faS)—>(xJT,y)( ) = 205,5), ye Sy (x5, = z(x.7) yeS,

‘We denote by C{mp (E*, R) the set of functions z € Cimp(E', R) such that z has
partial derivatives D,z and D},z — (Dyzz,...,D).n) on Q;, i=0,1,..., k, and there
exists the total derivative of z on the set Z.

Let T' = (E\Ejpp) X R X Cimp(E™, R) X R" and I'= By X RXCh, (B R).
Assume that f: T—R, g: T >R, ¢: Ep— R, and y: Z,— R are given func-
tions. We consider the impulsive differential-functional equation

sz(x,)’) o f(X,}', z(x, }’), Z, D}.Z(x;y)): (xx y)E E\Eimpa (l)

Az(x,y) = g(x, 3, 2(x7 ¥} 2), (x.¥)€ By, . @

where P (}'1: !yn)} DJ'Z = (D}'lz’ e DJ';:Z)? and AZ(X, y) = z(x, )’) = z(x_,
y), with the initial-boundary conditions

z(‘r! y) = (‘p(x:y) on EO’ Z(x, )’) . W'(x, y) on Zo. (3)

In the differential equation (1), there is a dependence on the point (x,y), on the
values of unknown functions of z and their derivatives at the point (x, y), and on the
function z. The differential-integral equation

Dyz(x,y) = Fl[x,y,z(x,y), [z, s)dras, Dyz(x,y)]
H(x.y)

or the differential equation with retarded argument
D.z(x,y) = Fp(x,y,2(x,¥), z(A(x, ), B(x, ), Dyz(x, )
are examples of Eq. (1). Similar examples can be given for Eq. (2).
The function u: E*— R is a solution of problem (1)—3) if u e Cj':np (E*, R) and
u satisfies Egs. (1), (2) and the initial-_boundary conditions (3).
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2. Comparison theorem. Let Ciy,([-h, a), R,) denote the setof all & : [k, a)
— R, such that

i) 05|£_;,’0I, 0¢|Pfarecontinuous foreach i=0,1,...,k;
ii) foreach i, j, 1<i<k, 0<j<k, there exist the limits

lim_o(x) = o(x), and lim o(x) = o(x}), and a(x]) = o(x).
x=x; x——-)x}'

For we Cpp(E", R), wedefine Tw: [-h,a)— R in the following way:
- (Tw)(x) = max (Ju(x,y)|: ye S, }.
Assume that A = (Ay, ..., A,): E\Ep,, —» R", and
G ((0, @)\ fipp) X Ry X Cypyp ([=1, @), R,) = R,,
G Lmp X Ry % Cimp([—h, a),R.) > R,
are given functions. We consider the impulsive differential-functional inequalities

sz(xa y) - i ?"f(x’ y) Dyl,-z(xs }') < G(xs |z(x, y)ls TZ), (xs y)e E\Eimpi
L i=1
|Az(x, y)| € &(x|2(x7, 3 T2),  (x,Y)€ Eipp.

‘We prove that the functions satisfying these inequalities can be estimated by solutions
of ordinary impulsive differential-functional equations.

Assumption Hy. Assume that the function A = (Ay, ..., A,): E\Ey, — R" has
the following property: for each (x,y)e Z, thereexists €3> 0 such that (x -1,y +
+TA(x,y)) € Q for te [0, gl :

Assumption H,. Assume that

1) the function o: ((0, @)\fiyp) X Ry X Cip ([ 1, @), R,) — R, is continuous
and nondecreasing with respect to the functional argument and satisfies the Volterra
condition, ie., if (x,p)e ((0,a)\limp) X Ry, 2, Z € Cipp([-h,a),R,) and
z(&) = Z(&) for E<x, then o(x,p,2) = o(x, p,T);

2) the function G : Ly, X Ry X Cypyp([-R, @), R,) = R, is continuous and non-
decreasing with respect to the last arguments and satisfies the following left-hand-side
Volterra condition: if z(§) = zZ(&) for & < x;, then &(x;, p,2) = &(x;, p,2), i =
=1,2,...,k, pe R,;

3) foreach ye C([~h, a), R,), the maximum solution of the problem
a’'(x) = o(x,a(x),a), xe (0,a)\fnyy,
Ao(x) = 6(x,a(x7), @), x€ Ly, @)
oa(x) = y(x), xe[-h,0],
where Ac(x) = a(x) — o(x™), existson [-h, a).
Lemma. Suppose that Assumption' Hy is satisfied and

D p E_Cimp([—h,a),R_,_) and p (t) € y(t) for te [~h,0], where ye
€ C([_h’ 0])R+);

2) ®(-,Y) is the maximum solution of (4) and T, = {te (0,a): p(t) >
> oM}
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]

3) for x € T \Ijp, we have

D_p(x) £ o(x,p(x),p),
and for x € Iy, N T,
Ap(x) £ &(x,p(x7),p).
Then p(x) < w(x,v), x€ [-h, a).
In the proof of Lemma, we use the classical methods. Here, we omit details (see [1]

or [2] for the case without functional variable).
Theorem 1. Suppose that Assumption H and Assumption H | are satisfied

and

1) the function u € Cipyy(E", R) satisfies the initial inequality |u(x,y)| <
< y¥(x), (x,y)€ Ey, where ye C([-h,0],R,);

2) the functions ¢ and & satisfy Assumption H, and o(-,Y) is the maxi-
mum solution of (4) ;

3) the boundary estimate |u(x,y)| < @(x,Y), (x,y)€ Z,, is true;

4) the inequalities

D, u(x,y) — Zl, Ai(x, y) Dy u(x, y)| <

i=l1
< O'(x, |”(x: Nl Tu), (x,y)e E\Eim;u
and
[Aux,y)| £ 6(x,[u(x", )|, Tw), (x,y)€ Enyp,

are true. .
Under these assumptions, we have

lu@ | € 0@, (e E"

Proof. Let p(x) = max{|u(x,y)|: ye S}, x€ [-h,a). Then p €
€ Cimp([-h,a), R,) and p(x) < ¥(x) for xe [k, 0]. Let x* e (0, a) be a point
such that p (x*) > @(x* 7). Thereexists y* & S,. such that p (x*) = (" %)
We have (x*,y*) e E. '

Assume that (x* y*) € Int E\ Ejp,,. Then D, u(x* y*) = 0 and we get

D_p(x*) £ |D,u(x*y")] =

n

= | D,y = 3, M"Y Dyu(x", ¥ <
i=1

< o (x* [u(x* »*»)|, Tu) = o(x*, p(x*), p).

Assume that (x* y*) € Z. Then there exists €9> 0 such that (x*—7,y" +
+TA(%y)) e Q for te [0,g0]. Since p (x*) = |u(x*, y*)|, we have
a) p(x*) = u(x*y*) or b) p(x*) = —u(x*,y*).

Let us consider the case a). We define #(t) = u(x*—7,y*+ TA(x*»")), T€
e [0, gp]. Asaresult, we get

d
* < —=u(0).
D_p(x™) dtu()
Since
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8~

7(t) = —Dyu(x*—t,y*+TA(x* y*) +

n
+ Z D},fu(x* -,y +T AR, YA (5, YY)
i=1 .

we have
D_p(x") < - ZE(0) =
L o .
5 ;
= Dou(x",y") + Y, Du@x’, y) M"Y <
i=1 -
<wodx? (x| Tu)=clx’,p 5. p).
In a similar way, we obtain the inequality D_p (x*) < o(x* p(x*), p) if (x* y*)e
Z and the possibility b) holds. 2
Since |u(x;, )| < Julxy, y)| + 60 lu(x, )L, Tw) and |u(x, y)| < p(x)
for y € S,,, wehave

p(x) = luy9| < p(x7) + 8(x,p (%), p)
or %
Ap(x) 2 Blaplal yp): I=Lduuk

By Lemma, we get p(x) £ @(x,vY), x € [-h,a), which completes the proof of
Theorem 1. _
3. Estimation of the difference between solutions of two problems. Uniqueness

criteria. We now introduce Assumption H3 for the functions f: I' >R and g: 7=
— R.

Assumption H;. Suppose that '

1) afunction f: I'—= R of variables (x,y, p, z, g) satisfies the Volterra condition
on T, ie.,if (x,y,p,q)€ (E\Eipp) XRXR", 2, Z € Cippp(E", R), and z(€,M)=
=z(E, ) for (§,m)e E\Ey,, E<x, then f(x,y,p.2,9)= f(x,»,P.Z.2) ;

2) there exists partial derivatives (D f, ..., D, f)= D, f on I" and for each
(x,y)e Z, there is g9> 0 such that (x—T,y +TD,f(x,y,p,2,q)) € Q for 1€
e [0, &), (P2, )€ Cimp(E", R)XR";

3) foreach (x,y,p,2) € (E\Eimp)xRx Cimp(E*,R) we have D f(x,y,p,z
g)e C(R", R");

4) the functi01‘1 g: I' - R of variables (x,y, p, z) satisfies the left-hand-side
Volterra condition. '
Let us consider problem (1)~—(3) and the problem

sz(x’ y) = }:(x: y! z(x, y}! Z, D),Z(x, y))! (x: y) € E\Eimp?
Az(xl y) = g(x! Vs Z(x_! )’), Z)’ (I, )’)E Eimp! . (5)
z(x,¥) = (%), (x,y)e Ep; z(x,)= ¥(xy), (xy) e Z,

where F: T—R, §: E,— R, ¥: Zy—>R, and §: I — R are given functions.
The following theorem allows us to estimate the difference between solutions of the
problems (1)—(3) and (5).
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Theorem 2. Suppose that Assumptions H,, H,, and Hj are satisfied and
1) f: T —R and the estimate
|fx.% p.2.9) = F(x%.5.Z 9)| < o(x|p-5l.T(z-2)
holdfor (x,y,p,z4q), (x,%.P.Z.q) € T;
2) lo(x,») = §(x, 9| < Y(x) for (x,y) € Ey, where ye C([-h, 0], R,);
3) @(-,7) is the maximum solution of (4) and
lW(xy) = @] < okx,y), (x,3) e Z;
4 g: T >R and on T,
lg(x, % P, 2) = (x5, 5,2)| < &(x|p-Pl, T(z-2);

5) functions u,v € Cimp(E*,R) satisfy problems (1) — (3) and (5) respec-
tively. -
Then

[u(x,y) - v(x,y)] < o@x,7), (x,y)eE" (6)

Proof. Let us define Z(x,y) = u(x,y) — v(x,y), (x,y)e E We have
|Z(x, ¥)| < y(x) for (x,y)e Ey and |Z(x, y)l < 0(x,7), (x,y)e Z,. Since

D,Z(x = ¥ D,7(x y)J D, f(W (R, x, ) dn +
i=1 0
+ f(x 3 u(x ), Dyv(x, ) — F(x 3,v(x y),v, Dyv(x, ),
where
W, x,5) = (x5 u(x, ), u, Dyv(x, y)) + L (Dyu(x, y) = Dyv(x,5)), (7
we get '

n 1
D.Z(x,y) = Y, DyZ(% ) [ Dy F(W(p, x, ) dn| <
i=1 0

< o(x|z2(x, )], TZ).

Moreover, |AZ(x, y)| < &(x,|Z(x7, y)|,TZ), (x,y)€ Ejpp. By Theorem 1, we have
(6).

In order to simplify the formulation of the subsequent theorem, we introduce the
following assumption:

Assumption Hj,. Suppose that Assumption H, is satisfied and the function
w(t) = 0, te [-h, a), is the unique solution of the problem (4) w1th Y(£)= 0, te
e [-h,0].

The following uniqueness theorem is a consequence of Theorem 2:

Theorem 3. If Assumptions Hy, Hs, and H, are satisfied and

1) the inequality

if(x: Dz, g) - f(x: ¥ D Z, Q)l < U(I, Ip = EL T(Z - Z))
holds on T°;

2) the inequality

Ig(x’ Y Dy Z) - g_(xa Y Iﬁ, 2‘)l = a(x, |P - )EL T(Z— Z))
holds on f‘,

ISSN 0041-6053. Yxp. mam. #ypH., 1999, m. 51, N¢ 2



UNIQUENESS OF SOLUTIONS OF IMPULSIVE HYPERBOLIC ... 247

then solution of (1) —(3) is unique in the class C;np (E*, R).
Example. Assume that Q = (—h,a)x (-b,b), where h =20, a >0, b =
=(by,...., b,), and b;>0 for i=1,...,n. Then  satisfies Assumption Hj.

Let f: TR and g: I" > R with Q given above satisfy Assumption Hj; and
let the function

signD, f = (signDy, f, ..., signD, f)
be constant on I'.
We define the sets [, and I, I, (1L = &, in the following way:
I, ={ie{l,...,n}: D, f20on I}, .
={ie{l,...,n}: D, f<0onT}

Let Zy = {(x,y)e (0,a)x [-b,b]: x#x;, j=1,..., k, and there exists i€ I,
such that y; = b; or there exists i € I_ such that y; = —b; }.
By using Q introduced above and Z,, we define the sets E,, Z, E, Eimp’ and

E*. A solution of problem (1) —(3) in this case is unique in the class Cfmp (E*,R).
The next theorem shows continuous dependence of squUons on the initial data and
on the right-hand side of the equation.

Theorem 4. Suppose that the conditions of Theorem 3 are satisfied and the func-
tions u,v € Ciyy (E", R) are solutions of (1) —(3) and (5), respectively.
Then for every £>0, one canfind 8> 0 such thatif, on T,

If(x,y,P,Z, q} T J'E(x,)’}Psz,Q)l 270

and
lo(x, ) —d(x, | €8, (x,y) € Ey,
W) - T <8, (xy) e Z,
gty p,2) — B(xy.p, 2| €8, (x,5,p,2) € T,
then

@,y —vx )l <e (xy)e EN
Proof. For £>0, we can choose &> 0 such that the maximum solution ®(-, )
of the problem _
a'(x) = o(x,o(x), ) + 8, xe (0,a)\fy,
Ao(x) = 6(x,a(x7),) +8, xely,
a(x) =8, =xe[-h,0],
is defined in the interval [-A;,a) and ® (x,8) < &€ for x € [—-h,a). Denote
Z(x,y) = u(x,y)— v(x,y). By Theorem 1, we have
Z(x )| < o(x,8) <& (%) e E
which completes the proof.
4. Differential-functional inequalities. In this part of our paper, we give theo-
rems on impulsive differential-functional inequalities.
Theorem 5. Suppose that Assumptions Hy and H, are satisfied and
1) the function f: I" — R is nondecreasing with respect to the functional argu-
ment and the function g: T — R is nondecreasing with respect to the last two ar-
guments; -
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2) the functions u,v € Cfmp (E*, R) satisfy the conditions u(x,y) < v(x,y),
(x,y)e EyUZ,, and the inequalities

Dy u(x,y) < f(x ¥ u(x, y),u, Dyu(x, y)),
®
D v(x,y) > f(x y,v(x),v Dyv(x ),

hold for (x,y)€ S\Ejy,, where
= {& ek uE ®) <vE M), E<E, EMeE uE,n =vEn}
and
Au(x,y) < g(x, y,u(x",y),u), (x,y)€ EppNS,
Av(x,y).> g(xy,v(x7,¥),v), (x,¥)€ Epp(S.

Then u(x,y) <v(x,v), (x,y)e K
Proof. 1t is sufficient to prove that § = &. Let (x* y*)e S. We have

u(x,y) < v(x,vy) for x<x*, (x,y) € EY, and u(x* y*) = v(x* y*). It follows
from (8) and condition 1 that ’

Dxu(x*’ y*) = va(x*: y*) <

& i L ok
< 3 (Dyu(x,y") = Dy, 3M) [ Dy F(W (i, 2", ¥7) din
i=1 0 :

where W is defined by (7).
Assume that (x*, y*) € Int E\Ej,,. Then Dyu(x*, y*) - D},v(x*,y‘) = 0 and

D u(x* y*) — D,v(x%y*) 2 0.
Assume that (x* y*) e Z. Let g4>0 be such that-

1
P(r) = [x"‘ ~1, 5 1 Dyf(wm,x*,y*))du} e T, 1el0 el

0
Denote (1) = u(P(t)) — v(P(t)). Wehave #(0) = 0 and (1) < 0, T€
€ (0, ). Hence,

0< %5(0) = —(Dyu(x* y*) - Do (x*»") +

n 1
+ E (DJ’E u(x*, y*) ) D)’;v(x*’ J’*)) j Dq!- f(W(“'? x*} y*)) dl'l'
i=1 0
ar

Dol ") = Davlahp')y 2

n 1
> Y (D, u(x",y*) = Dy, y) [ Dy, F(W(, %", 57) dp.
i=1 0

Assume that x* = x; forsome i=1,..., k. Then

u(x;, y% - v(x;, ") <
< u(x,y") = v(x,y") + g(x ¥, ulai, y),u) — g(x, ¥, 0(x7, y),0) < 0.
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In each of these cases, we arrive at a contradiction, which proves that wu(x, y) <

<v(x,y) for (x,y) € E".
We now formulate a theorem on weak inequalities.

Theorem 6. Suppose that Assumptions Hy, Hs, and H, are satisfied and

1) f: T' = R is nondecreasing with respect to the functional argument and g :
I' = R is nondecreasing with respect to the last two arguments,

2) the following estimates hold on T and T, respectively:

1f 3 p.2.9) = F (62 P.% 9| < o(xlp-Pl.T(z-2),
le(x, . p,2) = (%3, 5. 2| < &(x|p-Pl. T(z-2);

3) the functions u,v € Cfmp (E*, R) satisfy the initial-boundary inequalities
(x,y)e EgUZ,,
(x, )€ E\Ejmp,
(x,7)€ E\Eimp,

u(x,y) < v(x,y),
Dx u(x’ )’) < f(x) ¥ u(x’ y): i, Dyu(xs y))!
Dyv(x,¥) 2 f(x,%v(x ),v Dyv(x ),

and
(I,)’)E Eimpa

(x, )€ Eyyp-

Au(x,y) £ g(x yul(x",y),u)),
Av(x,y) 2 g(x y,v(x",¥),v),

Then u(x,y) < v(x,v), (x,y)e E".
Proof. Let ;>0 be such that, for each 0 <& <g;, the maximum solution

(-, ) of the problem

o’(x) = o(x,o(x), &) + &, x€ (0,a)\liy,

Aa(x) = 6(x,a(x7),a) + & x€ Ly,
’ o(x) = ¢, xel-h,0]
exists on [-h,a) and lim @(x, &) = 0 uniformly on [-h, a).
e—0
We define D(x,y) =v(x,y) + @(x,€), (x,y) € E* 0<e< €;. For (x,y) e

€ EyUZ,, wehave u(x,y) < v(x,y) < d(x,y).

Let (x,y)€ E\Ejy, Then
D.5(x,y) = Dyv(x,y) + o'(x,€) 2

2 f(x,3v(x),v,Dyv(x,y) + o(x, o(x, &), 0(,€) + & =
= f(x 20,0 Dyv(xy) — (%, 5(x),5, D,8(x,5) +
+ f(x,3.9(x),5 Dy5(x, ) + o(x, o(x, &), 0(, &) + &
> —o(xv(x, y) = 3(x, Y|, Tw-D) +
+ f(x,3,9(x5),0,Dy5(x,5) + o(x, 0(x,8), 0(-, &) + &
= f(x 59,0 D,d(x,y) + & >
> f(x 5 0(x, ), Dy(x,7)).

I\

Moreover, for (x,y) € Ejy, wehave
AD(x,y) = Av(x,y) + Aw(x, €) 2

= g(x’ )’,U(«’-‘ua y),'t}) = g(x’ ¥, v(x_, y); 5) +
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+ g(x y,v(x7,¥),0) + (x,0(x7, &), 0(, &) +& =
2 =6(x,Jv(x7,y) = (7, ), Tw-9)) +
+ g(x, y,v(x7,),9) + &(x, 0(x7, &), (-, &) + & >

= g(x’ y:i’(x_s y):ﬁ)'

Hence, by Theorem 5, the inequality wu(x,y) < ¥(x,y) holds for (x,y)e E".
Passing to the limitas € — 0, we get

u(x,y) < v(x,y), (x,y)eE"
Theorem 6 has the following consequence:

Remark. If a function f: I' - R satisfies Assumptions H,, H3, and H, and

conditions 1 and 2 of Theorem 6, then a solution of the problem (1) — (3) is unique in
the class Cipyp (E*, R).
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