UDC 512.44

T. Landolfi (Dep. Math. and Appl. Univ. Napoli, Italy)

ON GROUPS FACTORIZED BY FINITELY MANY SUBGROUPS*

ПРО ГРУПИ, ФАКТОРИЗОВАНІ СКІНЧЕННИМ ЧИСЛОМ ПІДГРУП

We prove that every group factorizable into a product of finitely many pairwise permutable central-by-finite minimax subgroups is a soluble-by-finite group.

Розвивається спектральна теорія та теорія розсіяння для одного класу самоспряжених матричних диференціальних операторів эмішаного порядку.

1. Introduction. In 1986, M. J. Tomkinson [1] proved that if a group $G = A_1, \ldots, A_n$ is factorized by finitely many pairwise permutable Abelian minimax subgroups A_1, \ldots, A_n , then G is soluble. The aim of this short paper is to obtain a generalization of this result providing a positive answer to the following question suggested in [2] (Question 17):

Let the group $G = A_1, \ldots, A_n$ be the product of finitely many pairwise permutable minimax central-by-finite subgroups A_1, \ldots, A_n . Is G soluble-by-finite?

This problem should of course be seen in relation with the well-known Chernikov theorem [3] stating the almost solubility of an arbitrary group factorized by two central-by-finite subgroups.

Theorem A. Let the group $G = A_1, \ldots, A_n$ be the product of finitely many pairwise permutable minimax central-by-finite subgroups A_1, \ldots, A_n . Then G is a soluble-by-finite group.

The famous Kegel – Wielandt theorem on the solubility of a finite product of pairwise permutable nilpotent subgroups proves that the result of Tomkinson is a special case of Theorem A. Note also that the conditions of Theorem A cannot be weakened under assumption that the subgroups A_1, \ldots, A_n have finite Prüfer rank, even if they are Abelian (see [2], Prop. 7.6.3). Since a soluble-by-finite product of polycyclic-by-finite subgroups is likewise polycyclic-by-finite (see [2], Theorem 4.4.2), Theorem A has the following consequence.

Corollary A_1 . Let the group $G = A_1, \ldots, A_n$ be the product of finitely many pairwise permutable finitely generated central-by-finite subgroups A_1, \ldots, A_n . Then G is polycyclic-by-finite.

On this subject, we also prove the following related result:

Theorem B. Let the soluble-by-finite group $G = A_1, \ldots, A_n$ be the product of finitely many pairwise permutable cyclic-by-finite subgroups A_1, \ldots, A_n . Then G is Abelian-by-finite.

^{*} This work was done while the author was visiting the Ukrainian Academy of Sciences in Kiev. He is grateful to the Institute of Mathematics for its warm hospitality.

[©] T. LANDOLFI, 1999

Note that for the case where the subgroups A_1, \ldots, A_n are cyclic, a corresponding result was proved in [4].

As a consequence of Theorem A and Theorem B, we have, of course, the following: Corollary B_1 . Let the group $G = A_1, \ldots, A_n$ be the product of finitely many pairwise permutable (central cyclic)-by-finite subgroups A_1, \ldots, A_n . Then G is Abelian-by-finite.

Note that Corollary B_1 can be applied, in particular, to products of finitely many pairwise permutable finite-by-cyclic subgroups.

Corollary \mathbf{B}_2 . Let the group G = AB be the product of two (central cyclic)-by-finite subgroups A and B. Then G is metacyclic-finite.

Our notation is mostly standard and can be found in [5]. Recall, in particular, that a soluble-by-finite group G is *minimax* if it has a series of finite length whose factors either are finite or infinite cyclic or quasicyclic of type p^{∞} for some prime p. The number m(G) of infinite factors in such a series is an invariant called the *minimax rank* of G.

2. Proofs. In order to prove Theorem A, we need the following already known lemmas. The second of them was proved in [6] in a more general situation.

Lemma 1 (see [7], Corollary 1). Let G be a soluble-by-finite minimax group, and let A and B be subgroups of G such that AB = BA. If A_1 is a subgroup of finite index of A, there exists a subgroup of finite index A_2 in A_1 such that $A_2B = BA_2$.

Lemma 2 (see [6], Theorem B). Let the infinite metabelian group G = AB be the product of two central-by-finite subgroups A and B. If G is minimax, then at least one of the subgroups A and B contains an infinite normal subgroup of G.

Proof of Theorem A. Assume that the theorem is false, and among the counter examples with a minimal numbers of factors choose one $G = A_1 \dots A_n$ such that the sum $\sum_{i=1}^{n} m(A_i)$ is minimal. The above quoted result of Chernikov [3] yields that $n \ge 3$. Set $A_1 \dots A_{n-2} = A$, $A_{n-1} = B$, and $A_n = C$. By assumptions, the subgroups AB, BC, and AC are soluble-by-finite, and, hence, also minimax (see [8, 9] or [10]). By Lemma 1, there exist central subgroups of finite index B_1 of B_1 and C_1 of C_2 such that $B_1 C_1 = C_1 B_1$. The same lemma yields the existence of subgroups of finite index B_2 of B_1 and C_2 of C_1 such that $AB_2 = B_2A$ and $AC_2 = C_2A$. Clearly, A has infinite index in G, so that BC is infinite, and then B_1C_1 is an infinite metabelian group. By Lemma 2, there exists an infinite normal subgroup N of B_1C_1 which is contained either in B_1 or in C_1 . In particular, we have either $N \leq Z(B)$ or $N \leq Z(C)$. If follows that either AB or AC is contained in $X = N_G(N^A)$. Suppose that $B \leq X$, so that $X = ABC_0$, where $C_0 = X \cap C$. Moreover, $N^A = N^{AB_2} = N^{AC_2}$, so that subgroup $\langle B_2, C_2 \rangle$ is contained in X, and so also $\langle A, B_2, C_2 \rangle \leq X$. It follows that X is of finite index in G (see [2], Lemma 1.2.5). Since N is infinite, and is contained either in B or in C, the minimal assumption yields that the factor X/N^A is soluble-by-finite. On the other hand, N^A is contained either in AB or in AC, so that it is soluble-by-finite. Therefore, G is also soluble-by-finite, and this contradiction

proves the theorem.

412 T. LANDOLFI

Proof of Theorem B. The group G is polycyclic-by-finite by a famous result of Lennox – Roseblade and Zaitsev (see [2], Theorem 4.4.2). By induction on n, we can suppose that the subgroup $A = \langle A_1, \ldots, A_{n-1} \rangle$ is Abelian-by-finite. Let U be an Abelian subgroup of finite index of A, and consider cyclic subgroups of finite index B_1, \ldots, B_n of A_1, \ldots, A_n , respectively. Set now $U_i = U \cap B_i$ for all $i \leq n-1$. Application of Lemma 1 yields that, for every $i=1,\ldots,n-1$, there exist subgroups of finite index X_i of U_i and Y_i of B_n such that $X_iY_i = Y_iX_i$. It follows now from Proposition C of [4] that there exist subgroups of finite index C_i of C_i and C_i of C_i of C_i and C_i of C_i is Abelian. Then $C_n = \bigcap_{i=1}^{n-1} C_i$ is a subgroup of finite index of C_i (see [2], Lemma 1.2.5). Therefore, C_i is Abelian-by-finite.

Proof of Corollary B₂. The group G is Abelian-by-finite by Corollary B₁, and so it contains an Abelian subgroup of finite index U. Let A_1 and B_1 be cyclic subgroups of finite index of A and B, respectively. Then also $\langle A_1 \cap U, B_1 \cap U \rangle$ has finite index in G (see [2], Lemma 1.2.5). On the other hand, the Abelian group $\langle A_1 \cap U, B_1 \cap U \rangle$ is obviously metacyclic and, hence, G is metacyclic-by-finite.

The author is grateful to Professor Ya. P. Sysak for his useful suggestions.

- 1. Tomkinson M. J. Product of Abelian subgroups // Arch. Math. 1986. 47. P. 107 112.
- Amberg B., Franciosi S., de Giovanni F. Products of groups // Oxford Math. Monographs. –
 Oxford: Clarendon Press, 1992.
- 3. Chernikov N. S. Product of almost Abelian groups // Ukr. Math. J. 1981. 33. P. 110 112.
- Heineken H., Lennox J. C. A note on products of Abelian groups // Arch. Math. 1983. 41. P. 498 – 501.
- Robinson D. J. S. Finiteness conditions and generalized soluble groups. Berlin: Springer, 1972.
 Franciosi S., de Giovanni F. On normal subgroups of factorized groups // Ric. mat. 1990. 39. –
- P. 159 167.

 7. Wilson J. S. On products of soluble groups of finite rank // Comment. math. helv. 1985. 60. –
- P. 337 353.

 8. Chernikov N. S. Groups which are products of permutable subgroups. Kiev: Naukova dumka,
- Sysak Y. A. Radical modules over groups of finite rank. Kiev, 1989. 51 p. (Preprint / Akad.
- Nauk Ukraine. Inst. Mat.; 89/18).

 10. Wilson J. S. Soluble groups which are products of groups of finite rank // J. London Math. Soc. —
- Wilson J. S. Soluble groups which are products of groups of finite rank // J. London Math. Soc. 1989. – 2. – P. 405 – 419.

Received 19.08.97