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p-ADIC MARKOYV PROCESS
AND THE PROBLEM OF THE FIRST RETURN OVER BALLS

p-AAUYHI MAPKOBCBKI TPOHECH
TA 3AJAYA HEPIIOI'O NTIOBEPHEHHSA J1JIA KYJIb

We consider the pseudodifferential operator defined as H*p = F1[((£)* — p™®)F], where (£)* = (max{|¢|p, p"})®
and study the Markov process associated to this operator. We also study the first passage time problem associated to H“
for r < 0.

PosrsnaeThest icesnonudepentianbuumii oneparop Hp = F (€)Y — p" ) Fo], ne (£)* = (max{|¢|p,p"})®, Ta
BHBYAETHCS IOB’SI3HHUIT 13 M OIEPATOPOM MapKOBCBKHIT mporiec. TakoK BHBYAETBCS 3a/1a4a Yacy MEpIIOTO HPOXOALY IS
H® npu r < 0.

1. Introduction. Avetisov et al. have constructed a wide variety of models of ultrametric diffusion
constrained by hierarchical energy landscapes (see [2, 3]). From a mathematical point of view, in
these models the time-evolution of a complex system is described by a p-adic master equation (a
parabolic-type pseudodifferential equation) which controls the time evolution of a transition function
of a random walk on an ultrametric space, and the random walk describes the dynamics of the system
in the space of configurational states which is approximated by an ultrametric space (Qj).

The problem of the first return in dimension 1 was studied by Avetisov, Bikulov and Zubarev
in [4, 5], and in arbitrary dimension by Chacon-Cortés, Torresblanca-Badillo and Zufiga-Galindo in
[8, 15]. In these articles, pseudodifferential operators with radial symbols were considered. More
recently, Chacon-Cortés [7] considers pseudodifferential operators over Q;L, with nonradial symbol;
he studies the problem of first return for a random walk X (¢, w) whose density distribution satisfies
certain diffusion equation.

In this paper we define the operator

H% = F ()" — p") F]

for ¢ € S(Qp), where (£) = max{|¢|,,p"}. We also define the heat-kernel Z,. as

Zy(x,t) = / y(—a) e (O ge, (1.1)
Qp

Heat kernels of this type have been studied in [6], where it is shown that function

u(w,t) = Zp(z,t) % Q(|z],) = / X(—2€)e O P0(I¢,) de
Qp

is a solution of the Cauchy problem
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u € C([0,00],8(Q@p)) N C* ([0, 0], L*(Qy)),

%(:L‘,t)—l—(HO‘u)(:c,t):O, reQ, te€(0,7], a>0,

u(z,0) = Q(|xp).

We show that Z,.(z,t) is the transition density of a time and space homogeneous Markov process,
which is bounded, right-continuous and has no discontinuities other than jumps, see Theorem 4.1.

In [12] Kochubei considers the Vladimirov operator restricted to a ball By and studies a Cauchy
problem. Despite he uses a different approach to the one given by Casas-Sanchez and Rodriguez-
Vega in [6], the kernel Z,. (1.1) is the same. On the other hand, Khrennikov and Kochubei (see [11])
show that the family of operators Z,. * - is a strongly continuous contraction semigroup on L!(B,).

Among other properties, the kernel Z,.(x, t) vanishes outside the ball of radius p~", which implies
that the process remains supported in the same ball. For that reason, we are interested in the case
r < 0, and thus Z, C B_,. In these conditions it is possible to study the problem of the first return
by a trajectory of the stochastic process entering the unit ball. In order to solve this problem we
demand that » < 0 and the natural answer is that the trajectory is always recurrent. Observe that
this problem is different to the one solved by Bikulov in [5], where the author define the stochastic
quantity as the first passage time entering some domain B, (a), since his solution is not bounded, the
answer depends on the range of «, whereas we do not have conditions on «. Our work can be seen
as a continuation of the problem of first return for a stochastic process, considered by Avetisov in
[4], since we use the same techniques, but a different symbol.

The article is organized as follows. In Section 2, we collect some facts about p-adic numbers.
In Section 3, we define the pseudodifferential operator, we show it has an integral representation and
solve the Cauchy problem based on the results of [6]. Section 4 is dedicated to the p-adic Markov
process over balls. In Section 5, we study the problem of the first passage time entering the domain
Z,,, we conclude that the process is always recurrent with respect to the unit ball, see Theorem 5.1.

2. Preliminaries. In this section, we fix the notation and collect some p-adic facts that we
will use through the article. For a detailed exposition on p-adic analysis the reader may consult
[1, 14, 16].

2.1. The field of p-adic numbers. Along this article p will denote a prime number. The field of
p-adic numbers Q,, is defined as the completion of the field of rational numbers Q with respect to
the p-adic norm | - |,, which is defined as

0, if =0,
‘37‘1) =

where a and b are integers coprime with p. The integer  := ord(x), with ord(0) := 400, is called
the p-adic order of .

Any p-adic number z # 0 has a unique expansion x = pord(@) Zéooa:jpj , where z; €
J:

€{0,1,2,...,p—1} and z¢ # 0. By using this expansion, we define the fractional part of x € Qy,
denoted {z},, as the rational number
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0 if =0 or ord(z)>0,
{z}p =

—ord(xz)—1 .
(o) Zj:o O, i ord() < 0.

For r € Z, denote by B,(a) = {x € Q,: |z —al|p, < p"} the ball of radius p" with center at a € Q,,
and take B, (0) := B,.

2.2. The Bruhat—Schwartz space. A complex-valued function ¢ defined on Q, is called locally
constant if for any x € Q,, there exists an integer [(x) € Z such that

o(x+z') = ¢(x) for 2’ € Byy. (2.1)

The space of locally constant functions is denoted by £(Q,). A function ¢: Q, — C is called a
Bruhat—Schwartz function (or a test function) if it is locally constant with compact support. The
C-vector space of Bruhat—Schwartz functions is denoted by S(Q,). For ¢ € S(Q)), the largest of
such numbers [ = [(¢p) satisfying (2.1) is called the exponent of local constancy of .

Let S'(Q,) denote the set of all functionals (distributions) on S(Q,). All functionals on S(Q,)
are continuous.

Set x(y) = exp(2mi{y},) for y € Q,. The map x(-) is an additive character on Q,, i.e., a
continuous map from Q, into S (the unit circle) satisfying x(yo + y1) = x(yo)x(¥1), Yo, y1 € Qp.
2.3. Fourier transform. Given { and x € Q) the Fourier transform of ¢ € S(Q,) is defined as

(Fo)(€) = / Y€y  for £€Q,
Qp

where dz is the Haar measure on QQ, normalized by the condition vol(By) = 1. The Fourier
transform is a linear isomorphism from S(Q,) onto itself satisfying (F(Fp))(§) = ¢(—¢&). We will
also use the notation F,_,¢¢ and & for the Fourier transform of ¢.

The Fourier transform F [f] of a distribution f € S’ (Q,) is defined by

(Flfl o) =(f, Fle]) forall ¢eS(Q).

The Fourier transform f — F [f] is a linear isomorphism from S’ (Q,) onto S’ (Q,) . Furthermore,
f=FIFE)
3. Pseudodifferential operators.

Definition 3.1. For all o € C, we define the following pseudodifferential operator:
HY% =F (&) =) Fel, ¢ €SQ),

where (£)% = max{[¢],, p"}.

It is clear that the map H*: S(Q,) — S(Q)) is continuous. Also it is possible to show that the
pseudodifferential operator H“ has the following integral representation:

(Hp)(x) =
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_ 1-p
- 1_pa+1

prety / (o(z —y) — p(x))dy —

lylp<p~T

plat) / o(r —y) — p(x) i

’y‘a-i-l aE
lylp<p~"
2kmi
Definition 3.2. Ser o = — ke Z,
Inp
Ko@) WM_& +priet )1pa+1] Qp"|zlp)  fora# -1+ ay,
o(z) =
(1=p QP [x]p) (1 = 7) —log,|z|,) Jor ao=—1+ oy,

and, for o = 0, we define Ky = ¢.
After some calculations it is possible to show the following result.
Theorem 3.1. The Fourier transform (as a distribution) of K, is given by (£)® for all a € C.
Definition 3.3. For x € Q,, t € R, the heat kernel is defined as

Zifat) = [ x(-a) e 197 ag

Qp

The following properties are proved in [6].

Lemma 3.1. For a > 0, t > 0, the following assertions hold:
(1) Zy(z,t) € C(Qp, R) N LY Q) N L*(Qy) for t >0,

(2) Zy(x,t) >0 forall x € Qp,

3) / (x,t)dx —/ Zp(x,t)dx =1,
|zlp<p~"

4) hmt—>0+ Zy(,t) * p(x) = @(x) for ¢ € S(Qp),

5) Zp(x,t)x Z(x,t') = Z(x, t + 1) for t, t' >0,

6) Z(z,t) < Ctlzl* ((pa=")" —p™).

Observe that thanks to (3) the heat kernel is concentrated in the ball B_,..
If we set, for ¢ € S(Q,),

Zp(x,t) x p(x), ift >0,
u(zx, t) = (3.1)
o(x), ift =0,

then it is easy to see that u(x,t) € S(Qp) for ¢ > 0, and also it is possible to show that, for ¢t > 0,
a >0,

Ta)

H* (u(a, 1)) = Fl, [((€)% = pr)e 1077 g(¢))
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Theorem 3.2. Consider the following Cauchy problem:

u € C([0,00],8(Q,)) N C([0,00], LA(Qy)),

Z(m,t)—F(Hau)(x,t):O, reQ, te(0,7], a>0,

'LL(.%',O) = 90(1')7 p e S(Qp)

Then the function u(x,t) defined in (3.1) is the solution.

Proof. See Theorem 3.14 in [6].

Another interpretation for the fundamental solution Z, was obtained in [12].

4. p-Adic Markov process over balls. The space (Q,,| - |,) is a complete non-Archimedean
metric space. Let B be the Borel o-algebra of p"Z,; thus (p"Zy, B,dx) is a measure space. By
using the terminology and results of [9] (Chapters 2, 3), we set

p(t,z,y) = Z(x —y,t), t>0, x,y€pZp,

and

/p(t,a:,y)dy fort >0, z€Q, BebkB,
P(t,z,B) =< /B

1p(x) fort = 0.

In this case the Markov process remains in the ball p"Z,, r < 0.

Lemma 4.1. With the above notation the following assertions hold:

(i) p(t,x,y) is a normal transition density,

(ii) P(t,x, B) is a normal transition function.

Proof. The result follows from Lemma 3.1 (see [9] (Section 2.1) for further details).
Lemma 4.2. The transition function P(t,z, B) satisfies the following two conditions:
(i) for each uw > 0 and compact B,

lim sup P(t,z, B) = 0;

|z|p—o0 t<u
(ii) for each € > 0 and compact B,

lim sup P(t,z,Q, \ Be(z)) = 0.

t—0t% zcB
Proof. (i) By Lemma 3.1 (6), we have

Pt 2, B) = / Zu(x — y,t)dy < Ct / e — gl ({plz — 9) 1) — ) dy =
B B

= Ctlal, ()" = 97®) [ dy,
B

since, for x € Q, \ B, we have |z|, = |z — yl,. Therefore, lim,| _,o, sup;<, P(t,7, B) = 0.
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(i1) By using Lemma 3.1 (6), a > 0, we have

P(t,z,Qp \ Be(z)) < Ct / lz—yl, ! ((plz—y)™")" —p'*) dy =

|lx—y|>€

=Ct / \z|;1 ((p 2:_1>a —p") dz.

|z|>€

Ifp"~t <e<|z[pore<p ! <z, then (p 271)" = p"* and

/ ]z]gl (<p z_1>a — pm) dz = 0.

|z|>€
Thus,
P(t,z,Qp \ Be(x)) < Ct / 2 =yl ((p(z =)™ 1) =p™) dy =
|z—y|>e
=Ct / \z|;1 (\p z_llg‘ —pm) dz <
P> |z>e
< Ctp~! / |z|;17adz =
pTT1>z[>e
= Ctp’l(]l.

Therefore,

lim sup P(t,z,Q, \ Be(z)) = 0.
t—0t% zcB

Lemma 4.2 is proved.

Theorem 4.1. Z,(x,t) is the transition density of a time and space homogeneous Markov pro-
cess in p'Zy, called E(t,w), which is bounded, right-continuous and has no discontinuities other
than jumps.

Proof. The result follows from [9] (Theorem 3.6) by using that (Q,,|z|,) is a semicompact
space, i.e., a locally compact Hausdorff space with a countable base, and P(t¢,z, B) is a normal
transition function satisfying conditions (i) and (ii).

5. The first passage time. From now on, we assume r < 0 and we study the problem of the
first return to the domain Z,,.

By Theorem 3.2, the function

u(w,t) = Zp(z,t) % Q(|z],) = / X(—z€)e O =PI, de (5.1)
Qp

is a solution of
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ou
E (l‘, t)
u(z,0) = Q(|z|,).

Among other properties, the function u(z,t) = Z,(z,t) * Q(|z,), ¢ > 0, is pointwise differentiable
in t and, by using the dominated convergence theorem, we can show that its derivative is given by
the formula

+ (H%)(x,t) =0, z€Q, t>0,

i) = [ r(-ae) (©° — ) e @0 e, de (52

Qv

Lemma 5.1. If a > 0 and r <0, then

/ K, (y)dy < 1.

1<|ylp<p~7
Proof. We have
| EKaly=
I<lylp<p~T
1—p® a+1 r(a+1)
:m p v |a+1 dy—p dy| <
I<|ylp<p~" I<lylp<p~T

1—p® a+1 1 d r(o+1)( —r 1 _
<1_7pa+1 p |y|T+1 y—p (" -1 =

1<|ylp

—1 a

1—p 1—p
T1_pol 1y aP (1 =p") =

:1_i(1+ (1 —p)) <1
1— pa+1 p p :
Now
/ Kaly)dy =
I<|ylp<p~T
1—p° +1 rla+1
=T |7 ey~ ay| >
I<|ylp<p~T 1<|ylp<p~T
Ay — 1)(1 — pre ro(] _ pQ
>p(p )AL =p™) | P p)>a
pa+1 -1 pa+1 —1

Lemma 5.1 is proved.
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The rest of this section is dedicated to the study of the following random variable, by using the
same techniques given in [4].
Definition 5.1. The random variable 17, (w): 2 — Ry defined by

inf{t > 0| T(t,w) € Z, and there exists t' such that 0 < t' < t and T(t',w) ¢ Z,}

is called the first passage time of a path of the random process X(t,w) entering the domain Z,.

Lemma 5.2. The probability density function for a path of T(t,w) to enter into 7, at the instant
of time t, with the condition that ¥(0,w) € Z, is given by

g(t) = / Ka(y)uly, t)dy. (5.3)
I<lylp<p~"
Proof. We first note that, for z,y € Q(|z|,), we have

u(w —y,t) = /Xp(—(w —y) - e MO g =

ZP

_ / (O™ ge = / (= - €)e 1O P ge —
ZP ZP

= u(z,t),
ie., u(z —y,t) —u(x,t) =0 for x, y € Zy.

The survival probability, by definition
S(8) = So () = [ ula s,
Zp

is the probability that a path of T(¢,w) remains in Z,, at the time ¢. Because there are no external or
internal sources,

(1) = Probability that a path of T(t,w)  Probability that a path of T(¢,w)

goes back to Z, at the time ¢ exits Z, at the time ¢
=g(t)—C-S(t) with0 < C < 1.

By using the derivative (5.2), we have

1 — p&
_ # it / / (w(z =y, 1) — u(x, £))dydz —

lz]p <1 1<]y|p<p~T
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—platl) / / u(z _2|/’ ’o)z-‘rl w@,?) dydzr| =
Yy

|z|p<11<|ylp<p~"

1_pa (o
=1 it p(“)/ / u(x —y,t) dyde —

|z]p<11<|ylp<p~T

O"H / / a+1 )dydx +

[z]p<11<|ylp<p~T

1 po
+1_7p€+1 TOH_l / / 33 t dydac—

lz]p<11<|ylp<p~"

a+1)
(+ / / a+1dd$

[z]p<11<|ylp<p~T

Now if y € Q(p"|ylp) \ Q(|y|p) and z € Q(|z|p), then u(x — y,t) = u(y, t), consequently,

/ Kao(y)u(y, t)dy+

1<|ylp<p~T

/ Ko(y)dy / w(@,t) dz =

1<|ylp<p~T |z[p<1
=g(t) = CS(t),
where
c=- (/‘ Kaly)dy.
1<|ylp<p~"

Lemma 5.2 is proved.
Proposition 5.1. The probability density function f(t) of the random variable 1z, (w) satisfies
the nonhomogeneous Volterra equation of the second kind

o0

mo=/ﬁu—ﬂﬂﬂm+f@-

0

Proof.  The result follows from Lemma 5.2 by using the argument given in the proof of
Theorem 1 in [4].
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Proposition 5.2. The Laplace transform G, (s) of g(t) is given by

Xp(—€ - )
| ww [ ST (67 = pray B

I<|ylp<p~" [€lp<1

Proof. We first note that

e Ka(y)e O 7")Q(l¢],) € £1((0,00) x Qp"[€]p) \ Q) x Qp, dtdyde)

for s € C with Re(s) > 0. The announced formula follows now from (5.1) and (5.3) by using
Fubini’s theorem.
Definition 5.2. We say that X(t,w) is recurrent with respect to Zj, if

PH{weQ: 1, (w) <oo}) =1. (5.4)

Otherwise, we say that T(t,w) is transient with respect to Zy,.

The meaning of (5.4) is that every path of T(¢,w) is sure to return to Z,. If (5.4) does not hold,
then there exist paths of (¢, w) that abandon Z,, and never go back.

Theorem 5.1. For all o > 0, the processes T(t,w) is recurrent with respect to Zy.

.. G
Proof. By Proposition 5.1, the Laplace transform F'(s) of f(t) equals 1—‘_253)()’ where G.(s)
r(s

is the Laplace transform of ¢(¢), and thus

Zf 1+é()

Hence in order to prove that T(¢,w) is recurrent is sufficient to show that

G,(0) = lim G, (s) = o0,

s—0

and to prove that it is transient that

G,(0) = lim G,(s) < oo,

s—0

G- [ RaloD=80) jegy ¢

1<|ylp<p~T [£|p<p"

K _
+ / Md&iy:
s+ [&]g —pr
1<lylp<p=7 p"<[¢]p<1
Ka(y)x(=&y)
K (y)dy + / AL ST dedy =
/ a(y)y S+|§]g‘—pm fy
I<|ylp<p~" I<]ylp<p~=" p"<[¢|p<1
—r k-1
—k
[ s S I [t
I<|ylp<p~" ulp=1
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—r —r—1

k—m
P _ —
+ Z Z s +p—ma _ pra / / Ka(p b )X(_p kuv)dvdu.
k=1 m=k

[ulp=1 |v[p=1

Therefore, lim,_,o G, (s) = oo and the process T(t,w) is recurrent.

Theorem 5.1 is proved.

The meaning of this result is that every path is sure to return to Z,, this always holds and the
process is never transient, this agrees with the fact that the process is concentrated in p"Z,, r < 0.
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