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STOCHASTIC DYNAMICS AS A LIMIT
OF HAMILTONIAN DYNAMICS OF HARD SPHERES

CTOXACTHYHA JUHAMIKA SIK I'PAHHUIISL
T'AMIJIBTOHOBOI JTUHAMIKH IIPYZ2KHUX KV JIb

‘We consider the stochastic dynamics that is the Boltzmann—Grad limit of the Hamiltonian dynamics of a
system of hard spheres. A new concept of averages over states of stochastic systems is introduced, in
which the contribution of the hypersurfaces on which stochastic point particles interact is taken into ac-
count. We give a rigorous derivation of the infinitesimal operators of the semigroups of evolution oper-
ators.

Buanavuena cToxacTHyNa AHHAMIKa, 5iKa € rpanuuelo Bossumana — Ipepa Big raMissTonosol gunaMiky
CHCTeMH NMpPYXKHHX KyJib. BBefieHo HOBY KOIIIENLilo cepefnix Bifl crocTepesXyBanux 3a CTallaMH CTo-
XaCTHYHHX CHCTeM. B HLOMY BPAXOBYIOTHCS BKJIA[IH Bijf MiNeproBepXolib, 114 AKHX B3aeMo/IiloTh Tou-
Kobi cToxacTHuni yacTku. [ano crpore pusuavenns indiniTesivanniux onepaTopob AJs HiBCPYIH
enoJIoliiHIX onepaTopiB.

Introduction. The stochastic dynamics that corresponds to the Boltzmann hierarchy
was recently proposed in papers [1, 2].

In the present paper, we prove that the stochastic dynamics is a certain limit of
averages over the sphere of the Hamiltonian dynamics of system of hard spheres as
their diameter tends to zero (the Boltzmann-Grad limit). We define the domain (set) of
interaction in which the stochastic dynamics differs from the Hamiltonian dynamics of
the free particles.

By using the concept of the domain of interaction, we define the operator of
evolution for the stochastic dynamics and its infinitesimal operator. We prove that the
operator of evolution of stochastic particles and its infinitesimal operator are the limits
of the averages of the operator of evolution of a system of hard spheres and its
infinitesimal operator, respectively, over the sphere as its diameter tends to zero.

Thus, in this paper, we present the rigorous derivation of the new concept of the
stochastic dynamics of a system of point-particles as the limit of the average over the
sphere of the Hamiltonian dynamics of system of hard spheres as its diameter tends to
Zero.

The crucial circumstance in this new concept of the stochastic dynamics and
associated with it an average of observables over states of system of point-particles,
that are governed by the stochastic dynamics, consists in taking into account the
hypersurfaces of lower dimension than the phase space. In the traditional statistical
mechanics hypersurfaces of lower dimension are neglected. In the next publications
we will show that in solutions of the Boltzmann equation and the Boltzmann hierarchy
the same hypersurfaces of lower dimension are taken into account. Namely, the terms
of the series of iterations for the Boltzmann equation, as well as for the Boltzmann
hierarchy, can be represented through the integrals over the hypersurfaces of lower
dimension on which the stochastic particles interact.

Thus, the new concept of the stochastic dynamics corresponds to the Boltzmann
equation and the Boltzmann hierarchy.

1. Stochastic trajectories as the limit of the Hamiltonian trajectories of hard

spheres as diameter tends to zero. First, consider two hard spheres with diameter a
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STOCHASTIC DYNAMICS AS A LIMIT OF HAMILTONIAN DYNAMICS ... 615

and mass 1. Denote by (g,,p,)=x,, (¢, p2) = x, the positions of their centers and
their momenta; x; and x, are their phase points.

We fix the initial momenta p, p, and consider the position q?, qg, such that
the vector q? - qg is parallel to the vector p; —p, and (p; —p,)-( q? - qg) < 0.
Then for given g5 consider the semisphere ¢5 —am, where |n|=1, ne S
n - (p; —py) < 0. As the initial position of the first sphere, we take the point q? and,

as the initial positions of the second sphere, we take the points qg -amn, ne o
(Fig. 1).

(fé’ —an qlu —an

g —al2n+ pT

Fig. |

We consider a positive (increasing time) 20 and ¢ = 0 is initial time. It is
obvious that, at the time

0_ 0

42 — 492

_le-a| (L1)

|py = P2l

the particles collide and touch each other at the point q]u - =1 + p; 1. After the

(SRR~

clastic collision, their momenta are
pi = pi=nn- (P =pa)
Py = py-Mn-(py-p2), me SZ
The corresponding Hamiltonian trajectory is defined as follows:
Q) =qr+pits Pty =pi. Q1) = ga+pat, Pr(t) =pp, 15T,
O\ =q+pt+pit=1), P(1)= p;, (1.3)
Q:(1) = g2+ paT+ p3(t=1), Pa(t) = p3, 1>7,
forall ¢, = q? —amn, Ne $2, and fixed q, = q?. Denote by

X(t) = (Qi (1), Py(1), Q5(1), Py(1))

the trajectories (1.3) of two hard spheres.
We defined by (1.3) the bunch of trajectories which is characterized by the vector

ne S7. Now let the diameter « tends to zero. Then for ¢ <1, the entire bunch of
trajectories (1.3) is shrunk to the single trajectory
0
()= q +pt, Py(1) = py,
(1.4)
Q,(1) = qfq_} +pat, Py(t) =py, ST
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For t>1, the arbitrary trajectory (1.3) with fixed n 2 converges to the trajectory
0(t) = ¢l +p1T+ pi(t=1), Py(1) = P,
(1.5)
0x(t) = gg+pat+ p3(t—1), Pr() = p3, t>7,

with the same ne S2.
Now we define the stochastic trajectories for two point-particles. We suppose that
particles move as free ones until their positions coincide:

Q,(8) = g1 +pit,  Py(t) = py»

(1.6)
Q5(8) = qa+pat,  Pa(t) = pa.
If their positions coincide at time T,
Q1(t) = Q,(1), .
then they collide instantaneously and their momenta change jumpwise
Pi(1+0) = Py(1)+mn - (Py(1)-P(7)) = pi, an

Py(t+0) = Py(t)+mn - (P1(?)~Py(T)) = p3,

if N - (py—py) <0, where |n|=1, ne S2. If the vector ne S2, - (p;—p2) =0,
then, after collisions, the momenta p;, p, do notchange. We suppose that the vector
ne $2=S2u Sf is a random one with the constant density of probability % (M) =

= 1/4w, and the particles after collision may have vectors p}, p} with ne S with
the same constant probability. Thus, the stochasticity consists in the fact that, with the

same probability, the particles after collision have the momenta p{, p, defined by
(1.2) with random vecter n e 52,
For t> 1, the particles again move as free ones

01(t) = qp+pyt+ pit—71), Pi() = pf,
Qs(t) = gy +ppT+ p3(t—1), Po(t)= p3, t>1 me S2, -
Q1(8) = g1 +pit, Pi(t) = pyp»

02(1) = ga+pat, Py(t) =py t>7, mMe Si.
It is obvious that the limit trajectories of hard spheres (as a — 0) (1.4), (1.5) coincide
with the stochastic trajectories (1.6) — (1.8) for the same e S$2, ¢; = q?, 4= q5.

The stochastic dynamics is defined by the stochastic trajectories, while the
Hamiltonian dynamics is defined by the Hamiltonian trajectories.

If g, =g, at initial time ¢ =0, then the stochastic trajectories are defined as
follows:

Q1(t) = g1+ pft, Pi(t) = pf,

(1.9)
Qy(t) = g1+ pat,  Pa(t) = p3, t>0,
where pf, pj are defined by (1.2) with ne S2. If ne S2, then
Q(8).= q,+pit,  Pi(¥) = py,
(1.10)

Qs(2) = qa+pat,  Py(t) = pp, t>0.
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Let us stress that, for the stochastic dynamics, the state of particles at the instant of
collision is defined not only by their positions and momenta, but also by a random

vector € %= S2U $? with constant density of probability on S2. Note that the
union of the points (1.9) of the stochastic trajectories
X(t) = (Q,(1). Py (1), Q2(1). Pp(1))

with respect to the random ne S2, ¢> 0, and 41, P1» pp forms a set of the same
dimension as the phase space.

If hard spheres touch each other at initial time ¢ = 0, i.e., g, = ¢, —am, then for

2

ne S:,

Q\(1) = g+ pit,  Py(1) = pi,
(1.11)
Q,(1) = g —an+ p3t, P.(1) = p3, t>0.
If ne §7, then
Q\(1) = qy+pit. Py(1) = py,
(1.12)

Qs5(1) = gy —an+pyt,  Ps(t) =py, 1> 0.
Note that there exists another possibility to obtain the stochastic trajectories.
Namely, fix the positions q:] and q;? of two hard spheres, fix the difference of their

momenta p:] - pg that is parallel to the vector 9'1" - (}5’. Let

0 0
T = |(’+_‘L},| >0
in - P2

be the instant of collision.

Consider the all initial momenta (p, p;) such that spheres collide as time 1 and
the unit vectors n in direction of their centers at the instant of collision belong to the
semisphere 52 (Fig. 2). The initial momenta (p;, p,) depend on 1M, (py,p;) =
=(p;(M) p2(n)) and there is one to one correspondence between M and ( p,(N),
p>(N)). After collisions the hard spheres have momenta (1.2) with 1 € S%. The
Hamiltonian trajectories with the above described initial data are again represented by
formula (1.3) with ¢, = q:’. qr = q;‘. We will say that the collection of this
trajectories is the cone of trajectories
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It is obvious that momenta (p;(m), p,(N)) are continuous functions on & and

tend to (pln, py) as a— 0. The limit as @ — 0 of the cone of trajectories of hard
spheres (1.3) coincidc with the stochastic trajectories (1.6) — (1.8) for the same m €
€sS2, g1=4qf, 2= 45, 1= Py, P2= D3

Now we proceed to the problem of convergence of the Hamiltonian trajectories of

two hard spheres (1.3) to the stochastic trajectories (1.4), (1.5) when the diameter a
tends to zero. For this purpose, we associate the Hamiltonian trajectory with the
stochastic trajectory with the same vector .

Lemma 1. The Hamiltonian trajectory of two hard spheres (1.3) converges to
the stochastic trajectory (1.4), (1.5) (or (1.6) — (1.8)) with the same m uniformly
with respect to time, and the following estimate holds:

IX()-X®)|| <a t=0, (1.13)

where || -|| is the Euclidean norm in the phase space.

) Proof. Bstimate (13.1) follows directly from definitions (1.3) — (1.8) of the
Hamiltonian and the stochastic trajectories. Lemma 1 holds for the bunch and the cone
of trajectories.

Remark 1. It follows from the Hamiltonian dynamics of hard spheres that particles
can collide only if (g1 —¢) - (p1—p2) <0 or - (p;—p2) <0 (for initial data ¢, =
qg —amn, q; = q? , M€ S$%). This means that, in the stochastic dynamics, particles
also collide only if 1+ (p; —p,) < 0. But after collision, we have 7 - (pf —— p3) <
-1 (p;—pp) =0, thus M € S2 with respect to the momenta pf, p5. In order to

avoid the repeated collision at the same instant of time, we require that for 1 € Sf
momenta do not change.
Let us show that the convergence of the Hamiltonian trajectories to the stochastic

ones implies the following weak convergence: For continuous functions f5(xy, x5) =
= f>(x), consider the functional

-

2",

0 52
(1.14)

= (ql.p1, & —an,p;), me S,

for the Hamiltonian dynamics. Here, dn is an element of the unit sphere |n| =1,
and X%(t,x%) denote trajectories (1.3) with the initial data x“ Thus, functional (1.14)
is an average over the sphere am, me S of the bunch of trajectories of hard spheres

with the initial data x"= (¢, p, ¢5 —amn, p,), ne $2 forfixed (g, p1, 45, p2)-
Consider also the functional

1 '
@ | apX@, ), x=(apn a3 p2), me SZ, (L19)
0 hoi

for the stochastic dynamics. Here, X (¢, x) are the stochastic trajectories (1.4), (1.5)
with the initial data x = ( q?,pl, qg,pz), ne S%. Now we show that there exists the
limit of functional (1.14) as a — 0, and it coincides with functional (1.15).

Lemma 2. The following formula holds
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1 1
s [ ar [ anaf(xi@x) = = [ [ an O o
0

2 4
0 52 L 52

lim
a—0 4ma

uniformly with respect to 1.
Proof. We have

!
2 dg,r A 7 -
Jf’n — { J da* [ (XU, x)) = (X1, )]
% i j v { dn| H(XW, xM) = HEXW, )| =0 (1.16)
a—0 4 3

because, as it follows from Lemma 1,

lim [A(X9(, x9) - KX, 0))] =

a0
uniformly with respect to 0<1'< 1 and ne $2. Thus, according to Lemma 1 and 2,
the stochastic trajectories are the uniform and weak limit of the Hamiltonian
trajectories in the above described sense.

Note that in the case of the cone of trajectories, we integrate in (1.14) over the
semisphere ne S and the initial momenta (p;(n), p»(M)) depend on 7 as it was
described above. The limit of the Hamiltonian dynamics of hard spheres is the
stochastic dynamics, but not the free one.

It is easy to extend the all above obtained results for negative (decreasing) time, <

. . e % 2
< (. Namely, it is sufficient to replace the semispheres S~ and Sf by the
semispheres Sf and §2, respectively, in all constructions for positive (increasing)
time, = 0. For example, if ¢, = ¢, at the initial time ¢ = 0, then the stochastic
trajectories are defined as follows:

Q1) = g1+ pit. Py(1) = pf,

(1.17)
Q-(1) = g+ p3t, Py(t) = p3, 1 <0,
where p;, p> are defined as in (1.2) for ne 9" If ne S2, then
Q1) = q +pit,  Py(1) = py,
(1.18)

Q.(1) = ¢, +pat, Py(t) = py, 1 <0

The union of the points X (7) (1.17) with respect to the random vectors ne Sf. t<0,
and ¢, p;, p, forms a set of the same dimension as the phase space.
If hard spheres touch each other at the initial time =0, ie., ¢, =¢; —an, then
for ne 52
Qi(1) = g1+ pit,  Py(1) = pi,
(1.19)
Qa(1) = gy —an+ p3t,  Py(t) = p3, 1< 0.

It ne S2, then
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620 M. LAMPIS, D. YA. PETRINA, K. D. PETRINA

O1(t) = g1 +pit,  Pi(t) = py,
(1.20)
05(¢) = qy—an+pat, Py(t) =py, t<0O.
It is obvious that the Hamiltonian trajectories of hard spheres (1.19), (1.20) converge as

a — 0 to the stochastic trajectories (1.17), (1.18) with the same 7.

2. New representation of the Hamiltonian and stochastic trajectories. In this
section, we introduce a new representation of the trajectories of interacting hard
spheres and interacting stochastic point-particles. In both cases, there also exist free
trajectories for noninteracting hard spheres and stochastic pomt—pamcles

In order to interact, the positions of centers of hard spheres g;, ¢, must belong at
some time T=0 to the hypersurface

gy = gqp+an, 'r]ES2 (2.1)

with arbitrary py, p,. For given fixed py, py, q1, hypersurface (2.1) is parametrized
s el 2

iq] 2|
In order to interact, the positions of the stochastic particles must belong at some

time T=0 to the hypersurface

by the vector 1 € 52, n=——>*=

q1 = q meS? (2.2)

with arbitrary p;, p,. In the case of the stochastic dynamics, in every point of
hypersurface (2.2), there exist random vectors T € S* with the constant probability
density % (m)=1/4m. In this case, hypersurface (2.2) is characterized by points g; =
g, P1, P> and the random vectors 1.

Consider the initial positions such that hard spheres interact at some time T on the
interval [0, ¢]. In order to obtain them it is necessary to shift the points ¢; = g5 + am

“backward” in time on the time interval [—<, 0]. According to the dynamics of hard
spheres, we obtain

(91 -P1%.P1, 91 —aN —PoT,p2), M€ 82, ( p1=py)-M <0 _—

(q1- Pi% Pl q1—an-pi% p3),  Me 8%, ( py—py)m 2
Denote the collection of points (2.3) with arbitrary q;, py, ps, NE S%.ne S.% , 0<
<1<t by Df, Obviously, the domain D, is of full Lebesgue measure. We define
the infinitesimal and entire volume of Df, in the next section. Hard spheres with
initial data (2.3) from the domain DZ, interact (touch each other) at time =7t during
the “forward” evolution on the time interval [0, t]. For =1 — 0, points (2.3) are

shifted along the Hamiltonian trajectory to the points

(41.P1- 91 —an.pz), Me 52,

2.4)
(g P> q1—an, p3), me S}
For t=1+0, they turn into the points
(g1, Pi>q1—am, p3), me 82,
(2.5

(41, P1» 91 —an,pz), M€ S2.
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Finally, for t> 1, points (2.3) turn into the points
(q+ pi(t =), pjsqy—an+ p3(t =), p3), mne S2,
(2.6)
(g +p (U=Thpr.gy—an+p(t=1),p), Me Si.

Note that points (2.4) are the states of hard spheres before collision because 1 - (p; —
. 2 *® .

—p2)<0 forme S, and M- (pf = p3)S-M-(p,=-p2) <0 for ne SE, i.e., the
2 . 2 = " *

vectors Ne S belong to the semisphere S- with respect to the momenta p;, p;.

Analogously, points (2.5) are the states after collision because 1N - (p; —p,) 20 for

ne S;,and n-(pf = p3)<=-n-(p,-py)20for ne S2, i.e., the vectors ne 52

belong to the semisphere S7 with respect to the momenta py, pa.

: : . i i 2 :

Note that the collection of points (2.6) with respect to ne S°, ne $2, 0<t<1,
4y, Py, P2 is of the same dimension as the phase space. We call the domain DY, the
domain of interaction of two hard spheres.

Now consider the stochastic particles and again shift the points ¢, = ¢, N € .,
P1- P> of hypersurface (2.2) “backward” in time on the interval [-1,0]. According to
the dynamics of stochastic particles, we obtain

2
(¢, =P %P1 g1 —=P2T.p2),  NE S,
2.7)
e * * 1 2
(¢ = PI% pisqy— Pa% p3),  ME S;.

Denote the collection of points (2.7) with arbitrary ¢, p,, p>. NE€E 5 ne L Fal
st<t by D_,. Obviously. the set D_, has the same dimension as the phase space
and is of full Lebesgue measure with respect to the variables ¢, p;, p,, N, T. We
define the infinitesimal and entire volume of D_, in the next section. We call the set
D_, the set of interaction of two stochastic particles.

Stochastic particles with initial data from the set D_, interact at time T during the
forward evolution on the time interval [0, r] because for t =1, particles touch each
other. For =1 -0, points (2.7) are shifted along the stochastic trajectories to the

points

(91:P1-41-P2)» M€ S,

(2.8)
(41 Pi-41> P3),  ME Si.
For =1+ 0, they turn into the points
(q1. P~ a1, P3). Me S2,
(2.9)
(41> P15 ¢1-P2)» M€ S
For > 1. points (2.7) of the set D_, turn into the points
(¢1+ PGt =) pi g+ p3(t=1), p3), Me S2,
(2.10)

(@) +pi (=T Py g +p2(1=T),py),  Me ST
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It is obvious that the collection of points (2.10) with respect to M € §2, ne Sf,

0<t<t g, py, P is of the same dimension as the phase space.

Thus, we have obtained a new representation of all Hamiltonian trajectories of hard
spheres (2.6) and of all stochastic trajectories of stochastic particles (2.10) that interact
at some time T on the interval [0, #]. We have also obtained a complete description of
the initial phase points (2.3) and (2.7) for the trajectories of interacting hard spheres
and interacting stochastic particles, respectively. We have shown that the points of the
domain of interaction Df, and the set of interaction D_, are the states before
collisions for the “forward” motion of hard spheres and stochastic particles,
respectively.

All result above can easily be reformulated for negative (decreasing) time. The

domain Dj is the collection of points

(q1+ Pi% plogy—an+ piv, p), me S% m-( py—py) S0,

(2.11)
(@1 +P1%P1 g1 —an +paT.py), M€ Sz, M- ( p1—pa) 2 0.
For —t <0, points (2.11) turn into the points
(g1 +p1(=t+7),py, gy —an +py(—1+7),py), M€ 2,
(2.12)
(q1+ Pi(-t+7), pf, g —an+ pj(—t+7), p3), me %, 0<7t<y,
during the “backward” evolution on the interval [—¢, 0].
The set D, is the collection of points
(g1+ pi% Pl a1 + 3% p3),  me SZ,
(L13)
(q1+P1%Pu ¢ +P2%py), ME S;, 0S TSt
For —t <0, points (2.13) turn into the points
(q1+Pp1(=t+7),p1 @y +Pa (=2 +T)py),  MeE 52,
(2.14)

(g, + pi“(—r+t), Dl qr + pa(—t+ 1), p;), ne Sf, 0<t<t

during the “backward” evolution on the interval [—f, 0]. Note that the sets D_, 2.7
and D, (2.13) have the following characteristic property: The vectors of differences of

positions are parallel to the vectors of differences of momenta. Indeed, for D_,, we
have

2
q1—=P1T—q1+pyT = T(P2—-p;1), ME S,

wpf - p3), mMe St

q1—PiT—q1+ P2t

For D, we have

wpf —p3), me SZ,

@1+ piT—q1— paT

q1+Pp1T—q1—P2T = T(p,—p1), TMeE S

In the previous section, it was pointed out that, according to the stochastic dynamics,
particles may interact only if the vector of difference of their initial positions is parallel
to the vector of difference of their initial momenta. We have shown above that all
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points of the set D_, taken as initial data for the “forward” evolution satisfy this

condition. Analogously, all points of the domain D, taken as initial data for the
“backward” evolution also satisfy this condition.
Remark 2. It should be stressed that the collection of points (x|, x,) (2.7) or

(2.13) of the set D_, or D,, 0 <t <1, haslower dimension in the phase space because
it consists of points such that the differences of their positions are parallel to the

differences of their momenta. It is obvious that points (2.7) with n € 5% do not

change in the phase space as 1 varies on 52
It is quite easy to check that the Jacobian of the transformation (x,, x;) = (g, —

- T PG —P2T Pa)y ME 52, te[0,1), q,€ R3, Py € R3, P2 € R?, is equal to
zero. One can also check that the Jacobian of the transformation (x, x5) — (g, —

- PPl q - Pt i), me S2, 1€ [0,1), q, € R, p, e R}, p, € R®, isalso
equal to zero. In the case of hard spheres, it was established that the corresponding

Jacobian of the transformation (x|, ;) = (¢, —=p; T, P g —an—=pT,.py), NE B
DETEY of ()= (g = 0% dp—an— o5t o) e 85, DErsE is
different from zero and equal to a*|n - (p1 = p2)| [4]. This means that the domain
DY, has full Lebesgue measure in the phase space (with respect to x|, x;).
3. Functionals. Consider the following functional:
(S50 f = 2O fa. 92) =
1 ;
= ; J‘ [Sg(f)fz{,\'-| N .1'2) - Sg(f)fz{,\'] s X2 )]lpz(.\'], .\'2}d\'1 d.‘.'2 s tz 0. (3. 1)

where f5 is a continuously differentiable function, ¢, is a test function, S5(7) is the
operator of evolution of two hard spheres  85(1) f2(x), x2) = £ (X1, x,, x5)), and
V(1) is the operator of evolution of free point-particles Sg(r)fz(.\:,, %) =61, X
v2)). By X“(1,x,.x%,) and X"(r, x,.vy) we denote the trajectories of two hard spheres
and two free particles, respectively. The properties of the operators  S5(r) and Si‘(r)
in the space L., are described in detail in [3, 4]. For what follows, it is convenient to
define the operator S3(r) on forbidden configurations |g, — ¢, | < a@ as the operator

of free evolution.

The function
B0 Bty )= S0 Hx. ) (3.2)

is different from zero in the domain DY, because, for initial data from D¢, hard
spheres interact at time T on the interval [0, 7] and, according to (2.6), we have

S5(1) fo(xp, X3) — YD) (X1, Xp) =
= folqr+ pit =0, pi.gy—an+ p3(t = 1), p3) -

~falqy +p (1= P gy —an+py(1=T),py),  Me S,
(3.3)

SE) f(x1, X3) — S2(8) oy, X2) =
= falgy+p (=) pp, gy —an +py(t=1), py) -

~f(q + pit=71), pi g —an+ p3(t =1, p3), mMe Si.
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For initial data outside the domain D?,, function (3.2) is equal to zero because

hard spheres do not interact and their trajectories coincide with free ones.
Thus, functional (3.1) can be represented in the following form:

(S50 f, = S5Oz 92) =
= % J [S3(®) fo(xy, x2) — SS (O (x1, x9) )02 (x1, X5 ) dxy dxy =

De,

dt J an quldpldpz aIn-(pr-p2)| x
52

B | =

o —_—

X [falqr+ pi(t—7), Pl g1 —an+ p3(t =), p3) —
— fo(q1 +p1(t=1), p1, g1 —an +pa(t—1), pr)] X
XQ (91 —p1% P11 —aN—PaT, Pp) +

1 1
+ = [ dt [ dn [dgydp dp, @®In - (p1—p2)| X
0

st

ve]

X [fo(qy +p1(t=T)p1, g1 —an +py(t=7T) p2) -
- f(g + pit =), pl. g1 —an+ p3(t - ), p3)] X
X9 2(q1 - Pi Pl q1—an—piT, p3) =
= j dr j dan quldp;dpz a|n- (pr-p2)| %

o 2
x [fylqr+ pi(t =), pf a1 —an+ p3t =), p3) -
— folg1+p1(t=T) P g1 —an +pa (1=T) p)] X

X ¢ 2(q1 —=P1% P1» 91 —aN —Pa%, P3) =

t

= [ v | dn [dgydp dg,dp; @I - (1 —p2)|8(q1 — g2 —am) X
0o sz

x [falgr+ pit—7), pl.ax+ P3¢ —7), p3) —

— folqy +p1(t=7T), Py, @o + Po(t=T), P2)] 92(q1 —P1 T, P1» 2 — P24 P2) =

t
= J dt _[ dn Jd41dpzd42dpz @M - (p1—p2)18(gy +p1T— g —paT—an) X
o 2

X [folgr+p17+ Pt =), P, a + P2 T+ p3(t — 1), p3) —
— fo(q1 + P11, P1> @2 + P2t P2)] ©2(415 P1s 925 P2)- 3.4

In (3.4), we have used the variables T, M, ¢, pj, pp in the domain D¢, and
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corresponding Jacobian [5]; in the second term with Sf, we have used the variables
pi, p, instead of p,, p,, taking into account that the corresponding Jacobian is
equal to one. The infinitesimal volume of the domain D¢, in the variables T, n, ¢,
P1» Po isequalto dy dy, =dtdndg,dp, dpzazin “(py=pa)l

One can see that the term with Sf coincides with the term with $? because the
points from DY, with S? represent the states before a collision in the “forward”

evolution as well as the points from DY, with SE. Indeed, in the second term in (3.4),
N-(pi-py) =-n-(p-p) £0, ne S,

and, thus, ne S% with respect to the momenta py, p5. In the first term 1 - (p, -
~p>) <0, ne S%, and we also have points from D, in the states before a collision.
These circumstances explain the factor 1/2 in functionals (3.1), (3.4).

Let us define the derivative of functional (3.1), (3.4) with respect to time at =0 .
From (3.4), we have

f: (S4(Nf = ST 1 93], n = J dn J.dql dg, dp, dp, a|n- (py=p2)| x
ol i
s

b

X [f2(q1e PYsgas P3) = o0q1sPrs 2, 22)] 841 — G2 = an) 92(qy. p1s 42, p2)  (3.5)

for arbitrary test functions @,. This means that
d i : 0 :
. (S0 fa(xp, x2) = S3 (D falxy, x2)) |y =
(

= @' [ dnd(gi—qy—am)In- (py=p)|O(=N - (P =p2)) X

b

X (g pregas P3) = (G5 P1s 42, p2)] =

- :( = '\] (( _(“})
=8(lq,—¢:1—a) i—'i-;-'-w_-_—f:—-——Ivf_p, - ™) @[—i-é:——_(—j“l‘(pl = pz)}
1 24 2
x [f2(qy pisaqae P3) = (415 P1s 2. P2)) (3.6)

in the sense of generalized functions. From (3.6), we get

2
el

d o . :
— M (f Xy, Xa == 2
dt 2(0f2(x ~}L=n E P

+ o [ and(g - g -an)In- (py-p)O(-1 - (py -p2)) X
st
x [fqr. pivaas P3) = f2(q1 P12, P2)]- 3.7
We have obtained a well-known expression [3, 4] with the boundary condition
according to which, in the first term on the right-hand side of (3.7), one must replace
P P2 by pl.op; for ¢y —¢g>—an=0, ne 3

Consider the derivative of functional (3.1), (3.4) with respect to time t#0. We
have

ISSN 0041-0053. ¥Yep. asam. wxypic., 1999 m. 51 N5
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S (S50 - 5O 02) =

t
= [ an [ dn [dgydp dg,dp, |- (py~P2)18(g1 +P1T— g —P1T—an) X
0o 2
* a * a * * * iy R
X || p —+Pza— fo(qr+p1T+ pi(t—1), pi, g +PaT+ po(t —7T), P2)
2

d d
= [Pl =—+p ‘—]fz(fh + P18, P1 G2 + P2ty P2)] 92(q1, P15 G2, P2) +
dq; gy :
+ [ dn [dqidp dg,dp, @I - (py~p2)18(qy +Pyt=da—pyt—an) X
52
X [fo(qy +p1t, PYs @2 + Doty P3) — fo(q1 + D1t P1s Go + Doty )] X
X @ 2(q1: P1> 920 P2)- (3.8)

This formula means that

d q g )
ESz(f)fz(quz) = [Pl a_ql+P2 ‘Bq_zJ S3 (1) fo(x1, %)

if gy —q,# (pp—py)t+an forall 0<t<¢, ie for (x,x)e¢ DZ,.

If g —g,=(py—p;)T+an forsome 0< T<¢, ie. (x,x) € D2, then (3.8)
implies :

d d d
— Sa(t (x,x)=(*~—-—+ *—)x
72 )f2(xp, xa i 5 P2 vy

X fo(qy+p1o+ pi(t—7), P, qa +paT+ pa(t—1), p3) +

W J an a®|n - (py-py)|8(q, +p1t— gy =pat—an) x
sz

X [falqy +p1t, PUs @2+ Pats P3) — £o(q1 +P18 D1 @2 + P2ty P2)]-
Consider the functional

o (S50~ 30 92, 68

which is the average of functional (3.1) over the sphere g; —g, —am = 0. It is easy to
see that, for continuous functions f, and ¢,, the following limit exists:

_ 1
lim —— (70, - SO f, 92) =
t
- %lj dv [ dn [dgydpdpy In - (p1—pa)] X
® 2 0o s

. X [folg1+ pit =), p{,q1 + p3(t=7), p3) -
- falgi +p1(2=1), Pl g1+ pa(t=1), p2)] 02(q; —Pl‘f,PI» q1—p2T. p2) +

+ EHZ_ dt!dnjdq;dpldpzlﬂ (p1-P2)| X
+
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X [flgy+p(1=T)p1. g +pr(t=1) pay) -
— folg + pit =), plog,+ p3(t =), p3)]e2(q, - pi T Pl gy — P3T, p3) =

1 !
= 3;{ dTSJz dn [dg, dpidp; |n - (py-p)|

x [folgy + pl(t =), p{.q, + p3(t = 1), p3) —
- fHlg +pi(t=1h g+ (1=1) p)] 92(q) =Py T P1a Gy — P2 T P2) =
I )
= ;—GE.[ dt J. dn qu] dpydgrdpy |- (py —p2) |8(g; — ) %
0 52
X [falgy + pit =), ploga+ p3(t = 1), p3) -
= g+ (=10 PG + P2 (1=1), p)]@a(gy =Py TPy G = P2 T Pa) =

!
I
s I dv [ dn den dpydqydpy M- (py = p2)18(q) +p1T=ga—paT) X
0 52

X [HLlg+pit+ pi(t=1), ploqa+p2t+ p3(t=1), p3) -

= falgy + it pisga + patp)1 020415 Py g2, p2) =

] )
= j dt J dn Idc;l dpydg>dps |- (py=pa)|8(qy +pyT—Ga—paT) %
an 0 s?

% [S:(0hE: 6~ SO hts sl ) = (S(th= S0 ). B9
where S,(r) is the evolution operator of the stochastic dynamics, S;(£)f5(x), x;) =
=f>(X (1, x;.x5)), and X (1, v}, x5) is the stochastic trajectory.

It follows from the definition of the stochastic dynamics (2.10) on the set D_, (2.7)
that

lim ——s (20 fs = SV for ©5) = (S5(0)fy = SU1) for @) =

a->0 dma”

= M [ [S2(0fa(x1,32) = S50 fr(x1, x2) ] @ (x, %) vy dly, (3.10)
D,

M is the operation of averaging with respect to the random vector 1€ 5_2_ The
infinitesimal volume dv, dv, = dvdndg,dp,dp;|n - (p, = p>)| coincides with the
infinitesimal volume of the domain DY, with a=1.
It is obvious that the function
S2(Df2(x1,%2) = (D) fo(xy, xp) =
L@ + P =0, pls g+ P2t =), p2) = ,
= Hlgy + p (=71 progp + pat=1) pa), M E S
Hlgy + pit = 0. pragy + Pt = 1), py) —
- * * * - 2
=Ll +pi(t =1, prag + p2(t = 1), p2), M E S

(v,v)e D_,
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is different from zero for (x;, x,) € D_, because, for initial data (xj,x3) € D_,
stochastic particles interact at =1, and stochastic trajectories differ from free ones.

In the set D_,, we used the variables T, M, ¢;, p;, p, and the infinitesimal
volume |7 - (p; —p,)|dvdn dq,dp; dp,. This volume was defined directly in formula
(3.9) and coincides with the infinitesimal volume a@*|n - (p; — p,)|dvdn dg,dp, dp,
used in (3.4) for @*= 1. It can be defined independently because the distance between
particles in the set D_, in the direction of the vector 1 is equal to In-(py—p2)l
The infinitesimal volume depends on the random vector m, and the factor 1/4w in
(3.9) is connected with the averaging operation M with respect to 1.

Using formulas (3.9), (3.10) we define the functional (S,(#)f3, ¢,) as follows

(S2(0)f 92) = (S50 f, 02) + (S2(Dfr = S . 92) =
= [dg,dp,dq, dp, £2(q) + P16, P1s @2 + P2t P2)92(q1 P1s 420 P2) +

5
J dt J dn [dqydpydg, dpy | - (p1 —P2) |8(q1 + P1T— 2~ P2 T) X
0o s

1
+ —
4n
X [fo(gy+p1o+ plCE =), P, 2+ 2T+ P3(t =), p3) —
— f2(q1+ P11, P1, 42 + P21, P2)] 92(41, P1» 925 P2)- G.11)
According to (3.11) the functional (Sy(2)f,, ¢,) consists from two terms. The first
one coincides with the corresponding functional of the free dynamics. The second one

takes into account the hypersurfaces ¢; + p;T=¢, +p;T, 0<T<¢, on which the
stochastic particles interact and where the stochastic dynamics differs from the free

dynamics. On these hypersurfaces we use the measure 8(g; + p;T— gy — Py T) X
X |M - (py—p2)|dq,dp, dg,dp, and the averaging procedure with respect the random

vector 1. The second functional was obtained as the limit as a — 0 of the average
over sphere of the corresponding functional (3.4) for hard spheres. Stress that it is a

crucial point in the definition (3.11) of the functional (S,(#)f5, ¢, ) because in
traditional statistical mechanics sets of lower phase than phase space are neglected.
Remark 3. Note that the integrand in functional (3.9) regarded as a function of the

phase points (xj, xp) is defined on the set D_, that consists of points with the
following characteristic property: the vectors of the differences of positions are parallel
to the vectors of the differences of momenta. This means that the set D_, is of lower
dimension than the dimension of the domain D¢ with a =1 or of the entire phase
space. But the integrand regarded as a function of 1, m, ¢, p;, py is different from
zero on the domain 0< T < ¢, M € 52, gy e R, prel, py e R3, and functional
(3.9) exists for test functions ¢, (x;, x,) with compact support and for continuous
functions f;. '
The main difference between functionals (3.4) and (3.9) is that the integrand of

functional (3.4)

[folgi+ pi(t =), Pl. g1 —an+ p3(t =), p3) -

= g1 +p1(t=) pr, g1 —an+pa (2 ), p2)] X

X @ 2(q1—P17T. Py 1 —aN =P T, Py)
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depends on the points
(¥ %2) = (g1 + pi(t =), pi. gy —an+ p;(t = 1), p3)
or
(xpX2) = (q+p (1=T) Py gy —an +pa (1 =1T) p3)

and the corresponding Jacobian of the transformation (xy, x3) = (T, M, ¢, p;, P2) is

different from zero and equal to |1 - (p, —p,)| in both cases.
The integrand of functional (3.9)

[folgy+ pit =), piig + p3(t = 1), p3) -

=~ fHlg +p (=1 ppq + P2 (=) )] 92(q1 =Py T P1 Gy — P2 T P2)

depends on the points

(xp.¥2) = (g + pi(t =), plagy + p3(t =0, p3)
or
(v, x0) = (g +p (U=T)hp g +pa(t=T)h pa)

with parallel differences of positions and momenta and, thus, of lower dimension than
the dimension of D | | = D!, and with the Jacobian of the transformation
(X, v9) = (T, M. ¢y, 2. p2) equal to zero. The integrand considered as a function of
0121, ne 52, g, € R3, PLE R3, P € R? is a continuous function with compact
support and, thus, functional (3.9) exists.

Now define the derivative of functional (3.10) with respect to time at ¢ = 0. From
(3.9), we obtain

|
g Sj dn Jfffll dpydpy | (py = pa)| %

. . . ;
:;,}' {53“).}‘2 - 55’(”.!3- (PEJL.-.-U =

I

x [AGqn pisgas P3) = L2040 1 G2, P21 92(41 21 42 2)

= é{' §[ dn Idfh dgydpydpy In - (py = p2)18(q) = ¢42) %

x [Aqy pisgas P3) = £H(41P1s 42 P2 920415 Py 925 P2)

= _[ dn J.f"'ii'r day dpydpy x(M)O(=n - (py =p2))IN - Py = p2)|18(q) = g2) X
52

x [falan P2 p3) = 2041, Pr 42: P21 92091, 21y 420 P2)
() = Zl;t- (3.12)
tfor arbitrary test functions ¢,. It follows from (3.12) that, for fixed n,
}% (S2(0£(x1. X2) = S3 () oy, X2)) | o =
=O0(-n-(p;-p)IN- @ -p2)18(q; —¢3) X
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% [fa(q1, PI> 42 P3) = f2(4qy, P1> 92, P2))- (3.13)
From (3.13), we have

d
e SO f(x, %) |,y =
2 0
= Z Di Y L, %) +O(-n - (pr—p2))In - (01 —p2) 18(q; —q2) X
i=1 i

X [£(q1 Pis 92 P3) — F2(q1: P15 92, P2)]- (3.14)
‘We have the boundary condition according to which, in the first term on the right-hand

side of (3.14), one must replace p;, p, by p}, ph for g; =¢,, ne S2. Comparing
(3.5) with (3.12), we obtain )

: i d
e (S5Of — S5O f, 92)|,og = = (&0 —SS(t)_fz, 92) =0
. B
lim —— — (S§0HG1 %) = S (000, %)|=o =
=M % (Sa(O) o (xy, %) — S5 (O F, (X1, %)) o+ (3.15)

Consider the derivative of functional (3.9), (3.10) with respect to time £ 0. We have

% (S(0f = S5O f, 93) =

1 t
- ?1;{.[ g .[ dn quldpldQZdP2|ﬂ‘@1‘?2)|5(q1+p11_q2_p11) %
o s

# ) 5 0 ; * ¢ * *
x [[Pl s—+p _)fZ(G'I 1T+ (=), P, g2+ PaT+ pa(t—7), p3) —
9g g,
d 0
= | pis=—+ P2 |(q + 1t Py, G2+ P2t Pa) | 92091, P1> 925 P2) +
9g 9¢,
|
T J dn quldpldqzdpzin (P =P2)|8(qy +pit—g—py1) X
T g2
X [folqy +p1t, BT, @2 + Pat, P3) — fo(qy + P14 P1s @2 + Pats P2)] X
X @ 2(q1, Py, 925 P2)- (3.16)

This formula means that _

d d 0
d_r.Sz(f)fz(Il» X)) = (Pl a—ql‘l'Pz g?'z—] Szo(t)fz(xp X5)

if ¢1— gy # (py—py)7T forall 0ST<¢, ie.for (x;,x)e D_,
If g1 —qa=(py—p;)t forsome 0<t<t, ie. (x;,x,)e D_, then (3.16) implies

d (2 ?
7 Sp(Dfalxy, x3) = (Pl 2 +p aqz) X
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X folq+pyt+ pl(t=1), ply g2+ pat+ p3(t = 1), p3) +

+ [A(q +p1T P g2 + 2T p3) = (g + Py T Py @2 + P2 p2)]8(T—1).
The results obtained above can be considered as the proof of the following theorem:

Theorem. The average of the operator of the system of two hard spheres over the
sphere G, — g, —an =0 converges as a — 0 to the evolution operator of the
stochastic dynamics of two-point particles (3.10). The average of the infinitesimal
operator of the system of two hard spheres over the sphere ¢, —q, —amn =0
converges as a — 0 to the infinitesimal operator of the stochastic dynamics of two-
point particles (3.15), (3.16). In both cases, the convergence is in the weak sense (in
the sense of generalized functions).

All result can be extended to the operators  S5(—1), S, (=1), SS(-—I), r<0. Itis
sufficient to replace the domains D¢,, D_, by D{', D, and the operators S5(1),
Sa(1), SY(1) by S8(=1), $2(=1), S3(-1).

We obtain

d . o
o SY=0fa(x, ¥2)| =

[

S 9, >
= — z 2 —‘;—j:(.\',. Xy) 4 a” I A 8(q, =g, —am)In - (p; =p2)| %
i=1 a(h' ‘\-3

xO(n-(py=p) (g1 Plagas P3) = (41 pys g2s P2
(3.17)

o
—'S'\ "I):)-'.-"! =
- S2=DA )0

2, 3
= =2 n e Hx, ) +8(q —q)In - (P =p2) | ¥
i=1 i
>N (py=p2)) LA P g P3) = (g Py 42, P2)]-
3 d . .
In the operators — Z Pi Fe we should replace the momenta p;, p, by py, p3 if
. dy;
j=1 i
gy —¢>—an=0, ne .52 for hard spheres or it ¢, = ¢,, N € SE for stochastic
particles.
4. General case of N-particle systems. The Hamiltonian dynamics of N hard

spheres is defined as follows: hard spheres move as free particles until two of them
collide, and their momenta after a collision change according to (2.1). Denote by

X“(1,x) the trajectory of N  hard spheres with x = (x, ..., xy), X%, x) =

= (X[, 1), ..., X5 2)), XF(,2) = (01, 2), BOGt, 1)), Xt X)) o=

The stochastic dynamics of N-point-particles is defined as follows: Particles move
as free ones until two of them collide and their momenta after a collision change
according to (2.1) but with a random vector m. Only pair collisions are considered.

Denote by X(r, x) the trajectory of N stochastic particles,
X(t,x) = (X, (4, x) .o, Xp(1,X)),
X0, x) = (Qi(t, x), Pi(t, X)), X(t,x)|,=0=x.
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All arguments presented in the previous subsections can be applied to N-particle
systems of hard spheres and stochastic particles, more exactly to every pair of colliding

particles. We are interested in relations between the operators of evolution of N -
particle systems of hard spheres and stochastic particles.

Consider the following functional for the case of N hard spheres:
(SH(fy = SN fw> on) =

= % I [SH O fy s oo > X3) = SR FyyGers e X)) ON (s oo X) ity -, ity

4.1)
We suppose that the test function @y is equal to zero in some neighborhood of the
intersection of two and more hypersurfaces |g;—g; |=a, (i,j)e (1,...,N), and the

function f; is continuous.

Denote by D¢ = D%V the domain of the initial data in the phase space, such that
spheres interact on the time interval [0, ¢], £>0 or, that is the same, the collection of
points of the trajectories X“(—7, x) with ¢;— q— amf =0 for arbitrary pairs (i, j)C
c(l,...,N)and 0<t<1t, t>0, !n,—j] = 1. It is obvious that, for initial data from
D?,, hard spheres interact in “forward” evolution on the interval [0, ¢], the function

[ S&(t) — SY(® 1 fy(x1s - » xy) # 0 for xe D%, and this function is zero for x¢ D2,

because hard spheres do not interact for such initial data and X“(t, x)= X (¢,x). Thus,
we have

(SHfy = SNOFy. on) =

= % J- [Sgr(f)fN(xl, e JCN) = ng(f)fN(.xl, seey XN)] (PN(XI, i ,xN) dri, sesy de.
D,
(4.2)

(For forbidden initial data, we put X“(t, x)= o (z,x).)
In order to define the infinitesimal operator of Sy(f), we restrict ourselves to an
infinitesimal # Then functional (4.1), (4.2) can be represented in the following form:

(SwOfy — SO fy, on) =
N t i j g
= Y, [ an [ dny [dgdpidpydxy ...y ...V ... dxy @Iy (pi-pp] X
i<j=10 s

X [filgr +p1(t=T)pyseen s @i+ PF(E =), P, ..., g —aMy +

+ pj(t =1, Pj»-eer gy PN(E—Th PN) —
= (a1 +p1 (=) Py oo s i+ (E=T), Diy -5 gy — AN

+ Pj(t“T),Pj, ,C]N'!'PNU—T),PN] X

XQ N(q1=P1% P15 - » 1= DiT Ppp -+ » 1= AN =BT Pjy -+ » GN— PN PN)- - (4.3)

. i J .
Here, the sign v ... Vv means that dx; and dx; are omitted. It is obvious that
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L (S0 fy = SY O o) oo =
ar NN NN PN =g =
= 2 ‘[ dn qu,—dp,—dpjdxi Vel Vo dayatng (pi-pplx
i<j=1 82
x [fn(qu, p1s e s qis Pi'v oo+ Gi=aNyj, Pjs-- s 4N+ PN) —
= N (G1Prs e G Pis o5 §i= AN Py oo 5 AN PN] X
XQ NG PLs oo s G Pis oo s §i = ANy Pjo oo+ 4N PND- (4.4)
For (4.4), we obtain
i s ¥ 2
— S8 Sf(Xps e s Xy = s fy(Xps s Xy) +
PR (D) (xy W)y E Pi P In(x N)
N y.J
+ Y [ dnga*8(gi-g;-anyping- (pi-p)lx
i<j=1 g2
70 TOEE o s ) R Y I R RS T |
x5 o= (g pi)  X; = (g p)) 4.5)

In free Poisson bracket, one should replace (p;, p;) by (p, p}) if gi—q;—an; =0

(boundary condition). Formula (4.5) can be represented in the following identical
form:

d & d
ESN(")fn-'(-“n--»s-\'.-v)lfzn = E P:’é:{:fN(-"l""'-"N) *

N
+ Y, @l (pi—pplO(=ny- (= p))8(1 45— ¢;1-a) x
i<j=1

o % 6 ST PR . SR ) [ 1 € TR, "XRRUI [ AN T )

q; — q;
n; = _.f.‘.__.i (4.6)
[‘171' G (fj |
Now consider the average of functional (4.3) over the sphere | g, — q; |=a
1 i N
7 (SN Sy = SN fys @n). @.7)
dma

It is obvious that, for continuous fy and @y, there exists a limit of functional (4.7) as
a— 0:

: 1 .
lim —— (SN(Dfy = SNy, On) =
a—0 4Ta
N 1 i 5
=y o= [ ac [ any [dgdpidp;dx, ...v...v ... dey |ng- (pi—ppl ¥
i<j=1 0 52

X [fxlgy +p(t=Thpps s i+ pit =), P\ ...
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g + Pi(t—17), P}, qy+N(E—1)pN) -
- (@ +p1 (=T pps s G +PE—Th Ppy e G5 +
. + pj(t =), Djs ... qy+PN(t=T) PN] ¥

X @ N(q1=P1%P1s v s §i—Pi% Pis v s §i— PO P - » - PNHPN). (4.8)

According to the definition of the stochastic dynamics and by analogy with the two-

particle system, functional (4.8) is equal to the following functional for the stochastic
dynamics:

o 4—;2 (SEOfy = SYOFy On) = SnOfy = SYOfy, 0n),  (4.9)

where Sy(¢) is the evolution operator of N stochastic particles.
Using (4.8) we define the following functional for N stochastic particles

(Sn()fws o) =
= JdQIdpl .. dqy dpy fy(q1 + P18, D15 -+ s N+ PNt PN) ON(G1s P1s -+ 9N PN)

N 1 t

> Te _[ at _[ ang _[df-?'ldpl ... dqy dpy | M- (Pi—ppI8(g;+piT—q;—p;yT) X

i<j=1 o s?
X [fy(qy+pit,pys oo s @ 4+pv+ Pi(E =), Pi>ee s GG +P;T+
+ pj(t="1), pjs.-rs qu+DNLDN) -
— (@1 + P16 Py o Qi+ Dt Pis oo s €GP Py - » AN PN PN)] X
x {PN(QI:pls s Ppoeee s q}ipji ey QNaPN) =
= (SN on) + (Sy(0)fy— SN () fin On)-

The functional (Sy(#)fy, ®y) is the average of the observable @y over state Sy (¢)fj
It consists from two terms: the first one is the average for the free dynamics, the second
one takes into account the hypersurfaces ¢;+p;t = gq; +p;T, 0 <7t <t where the

stochastic particles interact. In this circumstance consists the principal difference
between the traditional and the stochastic statistical mechanics: in the traditional
statistical mechanics sets of lower dimension than phase space are neglected.

The following formula is true for the derivative of functional (4.9) with respect to
time:

% (SN fy = SN () f» ON) o =

N 5 y .

1 i J

= > g _[ dng; _[dG’fdPidedxl Ve Vo dry mye (=Pl %
i<j=1 52

X [fw(quP1s -+ @i Pfs o @ Pjs oo » G PN) =
_fN(‘?l’Pl:”"‘?i’Piv-'iq'fipjw--:QN’pN] x

XQ N(q1P1s+29ppPir o2 G Pjp -+ » AN PND- (4.10)

ISSN 0041-6053. Ykp. mam. sypu., 1999, m. 51, N® 5



STOCHASTIC DYNAMICS AS A LIMIT OF HAMILTONIAN DYNAMICS ... 635

For fixed vectors Njjs formula (4.10)yields

d 3 )
= SNOfy (s )|y = E}’fg‘;fnr(-"h---sx;v) +

N
+ 3 In (pi=pPlO(=m - (pi=p;))d(q; — ;)%

i<j=1
X [f(@rPrs-e s Qis Pisees s @jo Do oo s N PN) =

= IN(Q1sP1s oo 5 Gis Pis +oo s Gp Py +++ » G PN )- (4.11)

We have the boundary conditions, and according to them one should replace (p;, p;)

by (pi. p;) if g;=g¢; inthe Poisson bracket.
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