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STABILITY ANALYSIS OF LINEAR
IMPULSIVE DIFFERENTIAL SYSTEMS
UNDER STRUCTURAL PERTURBATION

AHAJI3 CTIAKOCTI JOHIMTHUX _
[UOEPEHIIAJILHAX IMITY JIbCHUX CUCTEM
I3 CTPYKTYPHUMH 35YPEHHSIMUA

The stability and asymptotic stability of the solutions of large-scale linear impulsive systems under
structural perturbations are investigated. Sufficient conditions for stability and instability are formulated
in terms of the fixed signs of special matrices.

HocnipxyioTses CTIHKICTL Ta aCHMNITOTHYHA CTiMKiCTL posp’A3KiB BeMKoMacuITaGHOl NiHiHHOL iM-
MyJIbCHOL CHCTEeMH MPH CTPYKTYPHHX 36ypennax. HoctaTni ymoBH cTikKocTi Ta necTittkocTi echopmy-
JNLOBaHi Ha OCHOBI 3['IEKOBH3H8‘IEHDC'I'1 cneuiaﬂbm{x MaTpHUL.

1. Introduction. Many of the processes in engineering and technology deal with an
overcoming of the “threshold” phenomena. This is expressed in particular, in
accomulation by the process of some property with the consequent sudden change of
the state. The modelling of such a process when the ordinary differential equations are
employed is difficult to some extend and an attempt to encorporate new classes of the
systems of equations seems natural. The impulsive systems with structural
perturbations belong to a class of this type.

This paper concentrates on the investigation of stability and instability of large scale
linear impulsive systems under structural perturbations by the Lyapunov’s direct
method in terms of matrix-valued functions.

Sufficient conditions for various types of stability and instability are established. A
numerical example showing the application of some general results is given.

2. Preliminaries. According to [1—3] we consider the linear large scale impulsive
system decomposed into s subsystems

dx; ;
T AN Y SAyxs 1),
4 f=1
1)

5 G
Axp = Jyx + Z .)Tk,jxj; S = T(x),

Jj=1 '

J#i

=5 [0 PR WIS (1 £ [P e
where x; € R", 2?:1 n=n,x=(x,x,....x0) e R" A;, Jy, Ay, Ty are
constant matrices of the correspondent dimensions, the set G, and matrices S, S;, S;;
are defined in Appendix 1, the values T,(x), k=1, 2,..., are ordered by Ty (x) <
< Ty, 1(x) and such that T (x) — +e as k— +o. We shall assume, for simplicity,
that the system (1) satisfies all required conditions so that all solutions x(¢) = x(t, fy,
xp) of (1) exist for all 7= #,.
For the system (1) we construct a matrix-valued function
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Ux) = [Uy6, %), i,j=1,2,...,s, 2
with elements
UG = x Byx,  i=1,2,...,5, 3)
and
UG xp) = x] Byx;, i#j, i,j=1,2,...,s. @)

Here Bj;; are constant positive definite matrices, and B;; are constant matrices.
If in Hypothesis 1 from [4] we will accept

e (llxl) = willixll) = lxll, j=12..,s,
where @;1(-,-) and y;;(-) are functions from class K (see [5]), x ;€ RY, j=1,
2, ..., s, then we obtain the following.
Hypothesis 1. Assume that there exist
(i) the matrix-valued function (2) with the elémenm (3) and (4) ;

b

(ii) the constants aj;, by;, i,j=1,2,..,s, such that

aj;,
ay |l |* < Upx) < bill I Vxe Mo F=li%unes
I [l % 1] < Uil %) < byillx )l Y Gy x)e Al X N
127, 4,j=1,2...,5
Lemma 1. Ifall conditions of Hypothesis 1 are satisfied, then the function
V) =n"U@n, ne R, >0, ®)
satisfies the bilateral inequality
uTHTAHu < V(x,n) < u H'BHu Vxe N, = N X NoxX ... X Ny (6)
Here
Wl = (gl Il ozl A =Tlag) B =(byl
H = diag[n{,Mg, - » Nyl

The proof of the Lemma 1 is similar to that of Lemma 1 in [6].
Together with the function (5) its total derivative

DV(x,m) = u' DU @
along the solutions x(¢, #y, xp) of the system (1) is constructed.

Hypothesis 2. Assume that there exist
(i) the matrix-valued function (2) with the elements (3) and (4) ;

(ii) the constants p"(S), PP (S), By(S), i#j, i,j=1,2,...,5, such that
LD, U ) 4%} < BPOIxGIP Vxe Ao, j=1,2,.

ZnJ(D Uy (x; ))TESffA,:,-x,. 5

j=1
l#_}
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5 5 5
Z Z ;M (xj J,(x,x,)) A;jx; + ZSﬁA{ix:‘ +

li=2
i>j ij

&
* (ij Uji (x5, x| Aix + Z S Ayx; ¢ <

Jj#i
5

_2‘, RICTIA RS Y MO PAT ]

j=1 j=li=2
i>j

V(xf’xj)e ij(]x%ixox g_f: i;ﬁ.}) i,j=1,2,...,.§'

Lemma 2. If all conditions of Hypothesis 2 are satisfied, then for expression (7)
we get

DV(x,M) < ' GSu Vxe Ny G, (8)
where
= (Mgl Ml - D,
G©S) = [6;9], i,j=12..,s,
G;i(S) = G;(5),
5;(8) = B(S) + B (S),
Gl = Bu(S), Jj#i, Lj=1,2,..,s

The proof of Lemma 2 is similar to that of Lemma 5.5.1 in [7].
It can be easily verified that for ¢ # 1,(x), k=1,2,..., the estimate

DV, < Ay@E) > Vxe Ny VSe G, ©)

is true. Here A (-) is the maximal eigenvalues of (-). If "qT= (L1 1)e B
then from (6) we get

Mm@ ull? < Vix,m) < Aag(B) || 1| (10)
and for A, (A) > 0 we get

K B)V(em) < [lull® < 251(4) V(s ). (11)
Therefore the estimate (9) can be represented as

Ay (G XA Vx,m)  for Ay (G(S)) > 0;
DV ) < M(“ ) Ko (A) M_
M (G Ay (B) V(x,m)  for Ay (G(S)) < 0.
Lemma 3. If for the system (1) the condition (i) of Hypothesis 1 is satisfied,
then for the function (5) when t = T,(x), k=1,2,..., the inequalities
V(x + Ji(x),n) = V(x,n) < 4 Cuy; (12)

and
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V(x + Ji(x),m) < u{C'uk, (13)
are satisfied, where

uf = (g () 1 2 (5@ [ oo 1, () 1D,

5
Jk(x) = kaxf + E waj,

j=1
J#i

C = [EU'], Elj = Eji’ i,ji=1,2, saa g

=% —k % — § i
¢~ C{;'Ja Gi = Cji» L,Jj=1,2,... s,

= A“M(Cff)’ E{}. = lljaj:fz(CgCg— ) f?fj, f,j:I,Z, e gy

”2() is a norm of matrix (-),

= 1/2 p ~% ~*T o it 3
= ?L’M(Ct;)’ CE? )'M')(ng: )> “';&Jr "'5]=1a 2"”:5;

and
)
T T T
Cii = JigBy + ByJy + Ty ByJyy + 3, Jiy By Ty +
j=1
Jwi

5 &
T
Z i e + T By) + Y, (T By Ty + i By Jig) +
=] Jj=1
J#i Jj=i

&
T T : ;
E ‘fkﬂBﬂ J.‘.j'f + Jljfoj JH{')’ 121,2, T g

e

HMH

L
e

Cij = ByJy + JkUB + By T + Jig By + T +

.
T T T
> (Jiu By Juj + Jui By Je) + By Jyg + Jia By + Jig By Jg +
=1
.y
¥
T T T
+ 3 (By Jwj + e By + Jia By Ty + Ty By Jig) +

I=1
L#i,j

+ i if,';’},-B;er,j, J#i, Li=1,2, .,8;
e
Ci=By+Cy Cj=By+Cy Jj#i, i,j=12,..,s.
Proof. The proof of this Lemma is an Appendix 2.

Corollary 1. If all conditions of Lemma 3 are satisfied, then for the function (5)
Jor t =1,(x), k=1,2,..., thefollowing estimates hold true:
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V(x + Jyx),m) = Vx,m) € AV(e, M) (14)
where _
o { A (C)N35(B)  for Ap(T) < 05
A, ©KNA)  for Ay (©) >0,
and
V(x + Jp(x),m) £ A" Vix,n) (15)
where

A,; {xM(E*}x;,}(B) for Ay (T*) <0;
AT (A) . for Ay (T") > 0.
The assertions (14) and (15) follow from Lemma 3 and the inequality (11).

Lemma 4. If t # Ty(x), k=1, 2,... , then for the total derivative () of the
function (5) the following estimate is true:
DV(x,m) = uTQ(S)uE V(x#0)e R" and VSe G, (16)
where

Q(S) = [gij(S)]: g.[j = gjf: i:j=1=2) cve s 8y
oy = p, () +p,(), i=1,2..,5 SeG,

Gy = 5 (2, (S) + () + P,y (5) + £y () + 3y () + o, (5)),

i,j=1,2,....,5, i#j.

Py (S) and P, (S) are minimal eigenvalues of matrices

N7 (Bid + AT By), i=1,2,...,s;

z MNi le(BTSg Aj! _;: _;r) Bji) g

i-1
+ 2 niﬂj(Bﬂij +(ijAjI)TBU)' j?ff':, .i':,_,'l=1,2,...,-§',
j=i+l

where vector u’l is defined as in Lemma 1, and Er;’j’ r=1,2,3; i,7=1, 2,...,5,
are computed.

Proof. The proof of this lemma is simjlz:ﬂ' to that of Lemma 2.
Let nT: (1,1,...,1)e R{. Thenin view of (16) and (11) the inequality
DV(,M) 2 A (G Ilull*>  VSe G, an
can be rewritten in the form
Am(GEN X (A V(&) for Ay (G(S) < 0;

DV(x,n)={ i
Am(GES) A3 (B) V(x,m) for A, (G(S)) > 0.
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Lemma 5. Let t = Ty(x), k = 1, 2,..., then for the function (5) and the
system (1)
V(x + J(x),m) = V(x,n) = ul Cup, k=1,2,...,
and
Vix# (o)1) 2 of C%e K120
where

..C_. = [.Q;j]a Cy = ij’ l':,j=1,2, .
CoIgl o= =L,

= lm(Cﬁ)s Cijj = — Eij) E?ﬁj; £9j= 1:'2) ceend,

Ci ij

13

ggo= 3ulCn)s cp=—%gs il Li=12 .05

=ii if ij »
and uT, Jp(x), Sy » g,;, Cii» g,-*f are defined as in Lemma 3.
Proof. The proof of this lemma is similar to that of Lemma 3.
Corollary 2. If all conditions of Lemma 5 are satisfied, then for the function (5)
and the system (1) for t = 1,(x), k=1,2,...,

V(x + Ji(x),n) = V(x,m) 2 AV(x,m)

where
An(C©) K (A for X, (©) < 0;
&= {x,,,@ b (B)  for hpn(©) >0,
and
V(x + Ji(x),n) 2 A*V(x,m),
where

a {km@) N (A)  for A, (CY) <0;
A @NB) for A, (CY > O

Proof. The proof follows from Lemma 5 and (11).

3. Results on stability under structural perturbation. The preliminary analysis *
allows us to formulate theorems on stability and asymptotical stability of the zero

solution of (1) on G;. _

Here we give the definitions of stability and instability under structural perturbation
of impulsive system (1).

Definition 1. The zero solution of (1) is

a) stable in the whole on G if and only if it is stable in the whole for each § €
€ G, in the sense of Lyapunov;,

b) asymptotically stable in the whole on G if it is asymptotically stable in the
whole for each § € G, in the sense of Lyapunov;

c) unstable on G if there exists at least one S € G, for which the zero
solution of (1) is unstable in the sense of Lyapunov.

ISSN 0041-6053. Ykp. sam. xypiH., 1999, m. 51, N2 6
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For the definition of stability in the sense of Lyapunov see [1, 2, 5, 8].

Theorem 1. Let the system (1) be such that matrix-valued function (2) is
constructed with the elements (3) and (4), and

(i) the matrix A in (6) is positive definite, i.e. h,,(A) > 0;
(ii) there exists a matrix Q such that for the matrix G (S) the estimate
GS)<Q VSegG,
. is satisfied component-wise;
(iii) the matrix Q is negative semidefinite or equal to zero, i.e. A,,(Q) < 0.
Then the zero solution of the system (1) is stable in the whole on G;.
If instead of the condition (iii) the following condition is satisfied
(iv) the matrix C in (12) is negative definite, i.e. Ay (C) < 0,
then the zero solution of the systeﬁi (1) is asymptotically stable in the whole on G,.
The proof of the Theorem 1 is similar to that of Theorem 1 in [4].

Theorem 2. Let the system (1) be such that matrix-valued function (2) is
constructed with the elements (3) and (4), and

(i) the matrix A in (6) is positive definite, i.e. A, (A) > 0;

R.Yx.!‘

(ii) there exists a negative definite matrix Q” € such that

"G(S) £ Q" VSe G
(i) Ap(C") > 0;
@iv) the functions Ty (x), k=1,2, ..., satisfy the inequality
'Ck_,_l(x)—'l:k(x) = 9, 0>0.
If
~ 2B 1 2 (C) (18)
A (@7)  Ap(A)
then the zero solution of the system (1) is stable in the whole on G;.
Ifinstead of (18) the condition
Ay (B) - Ay (CH)
— M InpfH— Se—"{ (19)
A(Q7)  Ap(A)
holds for some ¥ > 0, then the zero solution of the system (1) is asymptotically
‘stable in the whole on G,

Proaf. The assertion of Theorem 2 follows from Theorem 2 in [4].

~ Theorem 3. Let the system (1) be such that matrix-valued function (2) is
constructed with the elements (3) and (4), and

(i) the matrix A in (6) is positive definite, i.e. A,,(A) >.0‘, _
(ii) there exists am}zrrax 0% e R forwhich

a) G(S) < 0" VSe G,

b) Ap(Q%) > 0;

ISSN 0041-6053. Yxp. mam. xypie., 1999, m. 51, N¢ 6
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(i) Ay (C™) > 0;
(iv) the functions 7 (x) satisfy for some 0,>0 andforall k =1, 2,... the
inequality
Tp(x) =T (x) = 6
If in addition the condition
P (A A (A)
Ay (CF ) 7L c* -
is satisfied, then the zero solution of the system (1) is stable in the whole on Gs.
If instead of (20) the inequality
A (A) Ay (A)
A (@7 Ay (CH)
holds for some v > 0, then the zero solution of the system (1) is asyn.tptotically
stable in the whole on G.

> 0, (20)

91.'"1’.

Proof. The assertion of this theorem follows from Theorem 3 in [4].

4. Results on instability under structural perturbations. Consider the system
(1). Let for this system the matrix-valued function (2) with elements (3) and (4) be
constructed and the function (5) which satisfies (6) is introduced.

Theorem 4. Let the system (1) be such that matrix-valued function (2) is
constructed with the elements (3) and (4), and

(i) the matrix A in (6) is positive definite, i.e. A,,(A) > 0; :

(ii) there exists a posmve semidefinite or equa! to zero matrix Q such that for
the matrix G(S) the estimate

GO 20 VSeg,
is fulfilled element—wfse;-
(iii) the matrix C is positive definite, i.e. A, (C) > 0.
Then the zero solution of the system (1) is unstable on . G;.
The proof of the theorem is similar to that of Theorem 4 in [4].

Theorém 5. Let the system (1) be such that matrix-valued function (2) be
constructed with elements (3) and (4), and

(i) the matrix A in (6) is positive definite, i.e. h,,(A) > 0;

(ii) there exists amatrix 0~ € R*™ such that

a) G(S) 2 0~ VSe G,

b) 2,,(Q7) <0;
(iii) the matrix C* is positive definite, i.e. A, (C*) > 0; _
(iv) for some constant O > 0 the values Ty (x), k = 1, 2,... , satisfy the
_inequality

Tp(x) = Tp1 () £ 0y, forall k=1,2,....
If for some yv> 0 the inequality

ISSN 0041-6053. ¥Ykp. atam. xypu., 1999, m. 51, N2 6
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Am(4A) - A, (CH)
N, PSR PN A
Mg @) Mg(B) T
holds, then the zero solution of the system (1) is unstable on Gi.
Proof. The validity of this theorem follows from Theorem 5 in [4].

Theorem 6. Let the system (1) be such that matrix-valued function (2) be
constructed with elements (3) and (4), and

(i) the matrix A in (6) is positive definite, i.e. A, (A) > 0;

+Y

(ii) there exists amatrix Q* € R*™ such that
a) G(S) 2 g* VSe G,
b) A, (Q%) > 03
(iil) A, (C*) > 0, ie. thematrix C* is positive definite;

(iv) for some constant 8 >0 the values T,(x), k =1, 2,... , satisfy the
correlation

Tk+1(x) - Tk(x) =06 > 0.
If for some yv>0

M ln&@ <

A (@5 A, (CH

then the zero solution of the system (1) is unstable on G;.

06—,

Proof. The assertion of this theorem is similar to the proof of Theorem 6 in [4].

Example. Let the system (1) be a fourth order system decomposed into two
subsystems of the second order which are defined by the matrices:

L =1 =1 M ) 1
= [ ] Ay = ( | Ap=4y =D, @1)
1 -1 -1 -2

T = diag{~1,-1}, i=1,2; Jyyp =Jjp = 107D,
G, = {S: 8 =diag{S,5}}, S; = [Si1: Si2ls
where I, = diag {1, 1}.
For this example the elements (3) and (4) of the matrix-valued function (2) are
constructed in the form
Uh(xl-) = xlezx‘, i= 1,2,
Upa(x1, %) = Uy (x1, %) = x{ 107 L x, .
It is clear that they satisfy the estimates
Ixl? < Uyw)  VxeR™ i=1,2,
=01 lx % ll £ Upa(xy, ) < 01 x| 221l
For 07 = (1,1)e R” the matrices
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1 -0,1 1 0,1
A= » B=| ;
-0,1 1 0,1 1
are positive definite, i.e.
Am(A) =09, Ayu(B)=1,1.
For this choice of the elements of the matrix-valued function we have

EII(S) =-2 + 0,2.5‘21 < '—1,8,
622(:5‘) = -4 + 0,2512 < —3,8,

o 1
012 (S) = E(Slz o $21 + ’J(—'O,Z + 521)2 + 0,01 +

+ (0,1 + 55)% + 0,01 + 0,432) < 21,

gy = —0968, i=1,2; &, = 0,099.

_ -1,8 21
Gmﬁg:(zl 38]

The matrices

and
_ —-0,968 0,099
C =
0,099 —0,968
are negative definite which is confirmed by the estimate
Au(Q) = -0,474 < 05 Ay(C) = —-0,867 < 0.

Thus, all conditions of the Theorem 1 are satisfied and the zero solution of the system
(1) with matrices (21) is structurally asymptotically stable in the whole on G,.

Appendix 1. In order to describe the structurally variable large scale system (1) let
the following notation be introduced. The structural parameter s;;: [0, ) — {0, 1}

is a binary valued function of ¢, or Sijt [0, ) — [0, 1], and represents the (i,j)-th
element of the structural matrix S; of the i-th interconnected subsystem .S;,
Sy e [y Ly Sya L conyiphly Ay & S8g {10, ;1 e R RN

Notice that it may be, but need not be, required that st»j(t) = 1 implies s;;(¢) = 0 for

all k#j.
Let

S = diag[Sy, Sy, ..., 8], 0;€RXR™, i#j.

The matrix S(¢) describes all structural variations of the system (1) and will be called
the structural matrix of the system (1). The set of all possible S(¢) will be denoted by

G, and referred to us the structural set of the system (1) :

(J-} = {S: S=diag[Sl,Sz,.”,S_,], Sf‘: [SEIIE’SEZII:---’-"EnIi]: i,je{D,l}}.
For a detailed discussion of this notion, see [1] and references in this monograph.
Appendix 2. The proof of Lemma 3. =

ISSN 0041-6053. Yp. smam. xypn., 1999, m.51, N2 6
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First we consider the assertion a). For all # =1 (x), k=1,2,..., for the function
(5) and the system (1), we have
N
V(X + J’k(x) T]) — V(x n) = CHZ it X; + kaxi + 2 Jku. i +
j=1
J#i J

§ 5
E E i X; +J;ax£ + Z Jki.fxi, x +J;ng = kaﬂx; .
i=1 =1 I=1

JTz
e I#i I#i
L) 5 s
= Z U (x) — 22 2 Uy (x; x5) =
i=1 i=1j=1
j>i
T
2 5
2 + Jux +2Jk;} Xj By | x; + Jyx; + Z‘ka}xj +
i=1 J 1 J=1
J#i i
T
s 8 5
ZZ xi+Jﬁxj+erkfIXg B x+JkJJ+ZJkJI‘xI -
= _j'=1 I=1 =1
j>i I#i I#j
N T
- Elxi 2:5 Elx i J =
i=1 i=1j=1
j>i

& 5
T T T T
= Z Xi | By Jy + Jig By + Jig By Jyy + Z Jigi Big Jiji | % +
i=1 i=1
J#i

5 5
T
+ 22 Z x,-T Bu"rky + JhJ,B -+ JEI:BfiJkI} + th.BﬁJh' +
i=1j=1

5
+ >, (JluByJwy + Jiy By Jwy) | x5 +

& § 5
T

i=1 j=1 j=1

Jj#i J#i

ISSN 0041-6053. Ykp. mam. xypn., 1999, m. 51, N2 6
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5 ¥
T T
+ > (Jiy By Ty + T By Ju) ¢ x; +
J
J

.
. —

#Ijei

, .
T T

2> z ByJy + Ji By + T By Ty +

i=1j=1

_;>

+ Z (Bd "rkb + kaz B.Lr + sz Bfl Jkﬂ =+ th B{; ka) + z z J!z ir r Xp =
I=1 I=1r=1

I=i,j . l#r
I T J g T 2
DX Cyxp +23, 3 x5 Cyxy <
=1 =1 j=1
i>i
5 K4 5
>, M Ca) Il 2, Y, WA D Ixlllxgll = uf Cuy,
i=1 f=] j=1
i>i
k=l 2

Inequality b) is proved in the same way.
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