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2-QUASI CROSSED MODULES OF COMMUTATIVE ALGEBRAS
2-KBA3I CXPEIEHI MOAYJII KOMYTATUBHUX AJII'EBP

We define 2-quasi crossed modules of commutative algebras obtained by relaxing some 2-crossed module conditions.
Moreover, we prove that there exists a functorial relationship between these two structures which enables us to construct
the coproduct object in the category of 2-crossed modules of commutative algebras.

JlaHo BU3HAUCHHS 2-KBa3i CXPELICHUX MO/IYIiB KOMYTaTHBHHUX aJireOp Ha 6a3i mocnabieHHs AeIKUX YMOB JUIsl 2-CXpELeHUX
MmoayniB. Kpim Toro, moBeneHo, mo icHye (yHKTOpPHE CIIBBITHOIIEHHA MK IMMHU JBOMa CTPYKTypaMH, sIKE JO3BOJISIE
30ymyBaTH 00’€KT KO-TOOYTKy y Kareropii 2-cXpeleHnx MOJyJIiB KOMYTaTHBHHX ajreop.

1. Introduction. Crossed modules of groups [[14] are given by a group homomorphism 9: EF — G,
together with an action > of G on E, such that the following Peiffer relations:

XMI: 9(gre) =gad(e)g™!, XM2: d(e)>f=ecfe !

are satisfied, for all e, f € F, g € G. Without the second condition, we call it a precrossed module.

2-crossed modules of groups [7]] are given by a group complex L SES G, satisfying certain
conditions together with the actions of G on L and E, making it a complex of G-modules, where
G acts on itself by conjugation. The first Peiffer relation for the map 0: F — G automatically
holds, thus 0: F — G is a precrossed module. The second Peiffer relation does not hold in general.
However the Peiffer lifting {—, —}: E x E — L measures how far the second Peiffer relation is
from being satisfied, namely: d({e, f}) = (efe_l) (8(6) > f‘l), for all e, f € E. The category of
2-crossed modules is equivalent to a reflexive subcategory of the category of simplicial groups with
Moore complex of length two [[11]].

As for the group case, 2-crossed modules of commutative algebras are introduced in [8] to
obtain a method for computing the (co)homology groups of a commutative algebra with coefficients
which coincides with the Andre— Quillen theory for n = 0, 1, 2, 3. Consequently, without simplicial
theory, they get the Jacobi — Zariski sequence. The construction of 2-crossed modules of commutative
algebras depends on, essentially switching actions by automorphisms to actions by multipliers under
certain conditions. A 2-crossed module of commutative algebras L 2, 5 % R has an underlying
complex of commutative algebras and the following data: we have the algebra actions > of R on F,
L; and a Peiffer lifting map {—, —}: E' x F — L satisfying the conditions given in Definition

As in the group case, simplicial commutative algebras and 2-crossed modules of commutative

algebras are closely related. A simplicial commutative algebra [2,/10] A = (A, d¢, s},

), i.e., a simpli-
cial object in the category of commutative algebras, is given by a collection of algebra morphisms dZ, :
Ay — Ay1,i=0,...,n,and s’ : A, — A1, i =0,...,n, called boundaries and degeneracies
respectively, such that satisfying the well known simplicial identities. The Moore complex of the

simplicial commutative algebra A is the complex

N(A)n %5 .. 25 N(A) 25 N(A) 25 A),

d(n+1)
—

N(A):(...
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where N(A), = ﬂ?;ol ker(d!)) C A, at level n and the boundary d,,: N(A), — N(A),_1 is the
restriction of dj; : A, — A(,_1). We say that the Moore complex of a simplicial commutative algebra
A has length n if N(A); is trivial for all i > n.

If A has Moore complex of length one, then N(A); ﬂ) Ag defines a crossed module [[12]]. One
level further, a simplicial commutative algebra A with Moore complex of length two, corresponds
to a 2-crossed module N(A)o LNy Y (A)1 LN Ap; see [3] for details. Conversely, one can get the
corresponding simplicial commutative algebra by using a 2-crossed module. This gives an equivalence
between the categories of simplicial commutative algebras with Moore complex of length two, and
that of 2-crossed modules of commutative algebras [9]].

The crossed modules of groups with a fixed codomain G are called crossed G-modules. For
any two crossed G-modules of groups 9: E — G and &' : E' — G, the coproduct is defined via
the quotient of the free group E *x E’ by Brown in [4]. However, we should replace the free group
structure by the semi-direct product when we work in the category of commutative algebras [|13]].

However, the construction of the coproduct of 2-crossed module is definitely more complicated
than crossed modules. Because 2-crossed modules have much more data than crossed modules. To
overcome this difficulty, it was necessary to define something weaker than a 2-crossed module, yet
with some functorial relations (adjunction) again with 2-crossed modules. For this aim, in this paper,
we first define 2-quasi crossed modules in the category of commutative algebras inspired by [6].
Afterwards, we give an adjunction between the category of 2-crossed modules and the category of
2-quasi crossed modules. This adjunction allow us to define the coproduct object with the category
theoretical point of view.

2. Preliminaries. We fix a commutative ring x, not necessarily with 1. All algebras considered
will be associative and commutative over x, but not necessarily with a multiplicative identity.

If E and R are two algebras, a bilinear map (r,e) € R x E — r>e € E is called an algebra
action of R on F if, for all e,¢’ € ¢ and r,r’ € R, we have

Al: ro(e€) = (rve)e =e(rveé), A2: (r)pe=r>(r>e).
Then we get the semidirect product £/ x R with
(e,r)(e,7")=(rve +1">be+ee rr'),

forall e,e’ € F and r,7' € R.

Convention: Let L — E — R be a chain complex of R-algebras. The actions of R on E and L
will be both denoted by “>>"in the rest of the paper. We say that the subalgebra E’ of E is R-invariant
if roe’ € B forall ¢ € E/ and r € R. A function f: L — FE is said to be R-equivariant if
f(r>l) =rp> f(l), forall [ € L and r € R. Remark that R has a natural R-algebra structure where
the action is defined via its multiplication.

2.1. Crossed modules of algebras.

Definition 2.1. A precrossed module of algebras (E, R, ), is given by an algebra homomorphi-
sm 0: FE — R, together with an action > of R on E, such that the following relation, called the
“first Peiffer relation”, holds

(XM1) O(r>e) =rd(e), forall e € E and r € R.

A crossed module of algebras (E, R, ) is a precrossed module satisfying, furthermore, the “second
Peiffer relation”
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2-QUASI CROSSED MODULES OF COMMUTATIVE ALGEBRAS 325

(XM2) d(e)>e =eé, forall e,e’ € E.

Example2.1. Let R be an algebra and £ < R be any ideal of R. Then (E, R, i), where i:
E — R is the inclusion map, is a crossed module. We use the multiplication in R to define the action
of Ron E.

Definition 2.2. A crossed module morphism (f1, fo): (E,R) — (E', R') consists of algebra
homomorphisms fo: R — R and f1: E — E' such that the following diagram commutes:

E—2 >R
fll lfo
/ /

and preserve the action, namely fi(r>e) = fo(e)> fi(e), forall r € R and e € E.
Thus we get the category of crossed modules of algebras denoted by XMod.

Definition 2.3. The category of crossed modules with fixed codomain R is the full subcategory
of XMod that is denoted by XMod/R. These crossed modules will be called crossed R-modules.

2.2. 2-crossed modules of algebras.

Definition 2.4. A 2-crossed module of algebras L g 2 Ris given by a chain complex
of R-algebra homomorphisms (01 o Oy = 0), equipped with an R-equivariant bilinear map namely
re{e, e} ={r>e,e'} ={e,r>e'}, called Peiffer lifting

{—,—}: E®QrE — L,

such that satisfying:
(2XM1) Oa{e, €'} = e’ —01(e) e,
(2XM2) {D5(0), 02(1')} = U,
(2XM3) {e,e’e’} = {ee,e"} + 01 (e") > {e, €'},
(2XM4) {e,02(1)} — {Da(1), e} = D1 (e) > 1,
forall Il € L, e e, e’ € E, and r € R.

Remark2.1. Note that 05 : L — F is a crossed module, where F acts on L with
e’ 1 ={e,0s(1)}.

However, 01 : E — R is a precrossed module in general. The Peiffer lifting in £/ measures exactly
the failure of 91 : E — R to be a crossed module.

Example2.2. Let (E, R,0) be a precrossed module. ker(9) B -2 R, where i: ker(9) —
— F is the inclusion map, is a 2-crossed module, where

{—,—}:(e,¢) e EQr E+—— {e,e'} =ec —d(e) > € ker(d).

Notation. Any 2-crossed module of algebras will be denoted by (L, F, R, 01, 02).
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Definition 2.5. Given 2-crossed modules (L, E,R,01,02) and (L', E', R',07,8}), a 2-crossed
module morphism consists of algebra homomorphisms fo: R — R', fi: E — E' and fo: L — L,
making the diagram

1)) o1

L E R

\sz ifl \Lfo

r E' R
2 e

commutative and preserving the actions of R, R/, and the Peiffer lifting, namely

filr>e) = fo(r)> fi(e), forall ec€ E and r € R,
fa(r>1) = fo(r)> fo(l), forall 1€ L and r € R,
f2{€7 6/} = {fl(e)v fl(e/)}v fOI” all 6,6/ SO

Thus we get the category of 2-crossed modules of algebras that is denoted by XoMod.

Definition 2.6. The category of 2-crossed modules with fixed tail (E — R) is the full subcategory
of XaMod that is denoted by XoMod/(E — R). This type of 2-crossed modules will be called 2-
crossed (R — E)-modules.

3. 2-quasi crossed modules of algebras.

Definition 3.1. A 2-quasi crossed module of algebras is a chain complex of R-algebra homo-

morphisms L Py p oy R, together with an R-equivariant bilinear map
{—,—}: E®QrE — L,

satisfying the following axioms:

(2QX1) Oofe,e’'} =ee’ — 01()) e,

(2QX2) {e,e'e"} ={ec,e"} + 01(e")>{e, €'},

(2QX3) {e,e}o1(e) > {e,02(1)} = {ee'e, D2(O1 (') > 1)} — (D1(e) > e){e, Da(D1(e) > 1)}
foralll € L and e, e, " € E.

Definition 3.2. 2-quasi crossed module morphisms can be defined in a similar way. Therefore,
we get the category of 2-quasi crossed modules of algebras denoted by QXsMod.

The category of 2-quasi (E — R)-modules, namely QXoMod/(E — R) can also be defined
according to Definition

3.1. 2-crossed modules vs 2-quasi crossed modules.

Lemma 3.1. Any 2-crossed module is a 2-quasi crossed module. This leads an inclusion functor

XoMod — QXsMod. (1)

Proof. Let L RNy /N R be a 2-crossed module. We only have to prove that axiom 2Q X3 is
verified. So we obtain

{e/,e}d1(e") > {e, ()} = (e — O1(e) > €' ){e, D2(D1(e) > 1)} =
=c'e{e,0x(01 () > 1)} — (01(e) > €' ){e, D2 (01(') > 1)} =
=cde(e- (01(e) 1)) — (O1(e)pe) - (e- (01(e)>1)) =
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2-QUASI CROSSED MODULES OF COMMUTATIVE ALGEBRAS 327

= ¢ (e (@(<)p1) — e((r(e) > e) - (Br(€) 1)) =
— e ({e, (D1 () o 1)} — {D1(€) b e, Ba(Dr(e) 5 1)}) =
= {ece, D(01(e) b 1)} — {e(1()) > e), Da(By (/) b 1)} =
= {ec'e, Da(D1 (') > 1)} — (D(¢)) b e){e, Ba(01 () > )1,

forall [ € L and e, e’ € E, that completes the proof.

Lemma3.2. Let L -2 E %% Rbea 2-quasi crossed module and let [L, L] be the ideal of L
generated by the elements of the form

exl=di(e)sl—{e, ()} + {Ba(l), e},
logli =1loli —{02(l0), 02(l1)},

forall l,1y,ly € L and e € E. Then [L, L] is an R-invariant ideal of L.
Proof. Forallr € R, e € E and ly,l1,lo € L, we get

r>(exl)=r>(0i(e)>l—{e,da(l)} + {0a(),e}) =
=r>(Oi1(e)>l) —r> ({e, (D)} +{02(0),e}) =
=roi(e)pl—r>{e, da(l)} +r>{0(l), e} =
=0i(ree)>l—{r>e,da(l)} + {02(1),r>e},
Fix r>e = ¢ € E; it follows
() pl—{e,0:()} +{02(1),¢'} =€ xl e [L,L].
If we handle the second type of elements, we get
r>(lotly) =r> (ol —{02(lo), 02(l1)}) =
=r>(loh) —r>({0(lo),02(l)}) =
= (relo)l = {rv>0x(lo), G2 (lh) } =
= (rolp)ly — {02(r>lp), 0a(lh)},

Fix r > Iy = Iy € L; then it follows

l2 ll — {82(12), 62([1)} = l2ﬁl1 (S [L, L]

and proves that [L, L] is an R-invariant ideal.
Proposition 3.1. Hence we get the quotient R-algebra

L = LJ[L,L].
Lemma 3.3. The quotient map ¢: L — L/[L, L] provides an induced functor
( )er s QXoMod — XoMod
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which maps any 2-quasi crossed module L %, B %% R 10 a 2-crossed module
aC’V'
2 p 2R )
with the new Peiffer lifting {—, —}": E®@r E — L given by the composition

(==}

EwpE 'S L5 1,
Proof. Axioms 2XM2 and 2XM4 are satisfied as the elements e = [ and [ygffl; are already
quotiented out in the definition of L.

Since O2(e x 1) = a(lpfily) = 0, we also have

0q2([L,L]) =0,
forall e € F and [,1p,l; € L.
Moreover we get
(2XM1) 05 {e, &} = 05 (¢{e.'}) =

= ({e,e'} +[L,L]) =
= Oafe, €'} + 02([L, L]) =
=ce' —0i1()>e (" 2QX1)
and

(2XM3) {e,e'e"}" = ¢p{e, e} = {e, e’} + [L,L] =

/N

{ee' "} + (") > {e, e'}) + (L, L] (.- 2QX2) =
= <{ee', e} + L, L]) + (81(6”) >{e,e'} +[L, L]) =
({ee', ¢'} + |L, L]) o) b ({e, ¢+ L, L]) -

= ¢fee, "} + O1(e") > ple, €'} =
— {ee/’ell}cr + 61(6”) > {6’61}07“

for all e, €', e” € E, that completes the proof.
Remark that, we used the fact that [L, L] is R-invariant, in the above calculations.
Corollary3.1. We get the following adjunction:
(er
—

QX2 Mod L XQ Mod.
~ 3)

3.2. Simplicial algebras vs 2-quasi crossed modules of algebras. We know that the category
of 2-crossed modules of algebras is equivalent to the category of simplicial algebras with Moore
complex of length two. This equivalence is proven by higher dimensional Peiffer elements in [3]] with
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the method introduced in [5]. Briefly, for a given simplicial algebra A = (A,,,d’, s%,) with Moore
complex of length two, the subalgebras generated by

(ker dg) (ker dq Nker dy), (ker dy ) (ker dy N ker dy), (ker dy)(ker dy N ker dy)

of A, are all trivial. However, the notion of 2-quasi crossed modules arises by weakening some of
these conditions as follows:

— define A} be the subalgebra of ker(d;: A2 — A;) generated by the elements in the form
s1(x) — so(x), for all x € Ay,

— define A} be the subalgebra of ker(dy: As — Ap) generated by the elements in the form
so(x) — s180d1(x), for all x € A;.
Then we get the definition of 2-quasi crossed modules corresponding to the 2-truncated simplicial
algebras with the following trivial subalgebras of Aj:

(A}) (ker do Nker dy), (A%) (ker do Nker dy).

4. Coproduct of 2-quasi crossed modules. Let us recall the coproduct of crossed modules of
algebras from [[13]].

4.1. Coproduct of crossed modules. Let (A, R,0;) and (B, R, 02) be two crossed R-modules.
There exists an action of B on A with

bra=0z(b)>a. 4)
Then, we have the semidirect product B x A. Define 0: B x A — R by
8((), a) = ag(b) + o1 (a)

for all (b,a) € B x A. Here 0 becomes a precrossed module where R acts on B x A in a natural
way, since

O(rv(b,a)) =0(r>b,r>a) =0a(r>b)+0i(rea) =
Da(b) + 7 01(a) =1 (92(b) + D1 (a)) =rd(b,a),

forall r € R and (b,a) € B x A.
Let P be the ideal of B x A generated by the elements of the form

(b,a)(¥',a’) — d(b,a) > (V,a")
for all (b,a), (¥, a’) € B x A. On the other hand, we have (by using (@)
(b;a) (V' a') = O(b,a) & (V,d') = (b,a) - (V') — (D2(b )+31(a))>(b',a') =
= (b, 0y(b) >’ + B(V') > a + aa’) — ((Da(b) + D1 (a)) > b, (a(b) + D1 (a)) > a’) =
= (b, 05(b) > a' + Oa(V) >a+ ad’) — (Da(b) > b + 01 (a) > b, 82(b) > d’ —1—81( )pa) =
— (b, 05(b) > a + By(H) > a + aa’) — (b + By (a) >, Da(b) > a + ad’) =
— (=01 (a) > b, B(t) b ).

o~~~
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That means P is generated by the elements
(=01 (a) >V, 02(V) > a).
Remark that 0(P) = 0. Hence we have the induced morphism
0:(BxA)/P— R,
defined by
d((b,a) + P) = 82(b) + 01 (a),
gives us a crossed module since, for all (b,a), (V/,a’) € B x A we have
o((b,a) + P)> ((V,a') + P) = (02(b
= (02(b) >V + O1(a) > b, Da(b
= (b0’ + O (a) >V, 02(b) > d + ad').

+01(a)) > ((V,d) + P) =
>a' +01(a)pd) =

~— ~—

We know that (—d1(a) > b, 02(V') > a) € P, it follows
(b + 01(a) > b, 02(b) > a’ + aa") = (b, 02 (V) > a + D2(b) > a’ + ad’) =
= ((b,a)(t,a")) + P = ((b,a) + P)((V',d) + P).

Therefore we get the crossed module ((B x A)/P, R,d) which is the coproduct in XMod/R.
4.2. Coproduct of 2-quasi crossed modules. Let us fix two 2-quasi crossed (F — R)-modules

A=Li 2B R {— -V ExE— L,
ol
A =L, 2E2R [~ -} ExE— L

throughout the entire section.
Remark that, we have

Oo{e, e’} = Oh{e '} =ec —O1(e) e,

when we consider A and A’.
Construct L; x Lo in the sense of subsection [4.1] Then let P be the ideal of L; x Lo generated
by the elements

(61{6, 6,}17 62{67 el}Q)a
where €; = +1 and €] # €.
Define the Peiffer lifting

{—,—}2 Ex FE — (Ll X LQ)/P,
with
{e,e'} = ({e,€'}1,0) + P = (0, {e,€'}2) + P,

by considering ({e,e’'}1, —{e, e'}2) € P.

ISSN 1027-3190. Vkp. mam. ocypn., 2022, m. 74, Ne 3



2-QUASI CROSSED MODULES OF COMMUTATIVE ALGEBRAS

E acts on (L; x L9)/P in a natural way, namely
e ((IL,LU)+P)=(evlexl') + P,

forall e € F and (I,I') € Ly x Lo.
There exists an induced morphism

0: (L1 X LQ)/P-)E,

where

I((l1,12) + P) = da(ln) + 95(l2),

by using the fact that 9(P) = 0.
Thus we get a 2-quasi crossed module

(L1 % L) /P 2 B 25 R

since
(2QX1) o{e,e'} = 0({e,€'}1,0) + P =
= Oo{e, e’} = ee’ — 01 () >e,
(2QX2) {e,d'e"} = ({e,e'e"}1,0) + P =
= ({ee/,e"}1 + O1(¢") > {e,€'}1,0) + P =
= ({e€/,€"}1,0) + P+ (01 (e") > {e,e'}1,0) + P =
={ee',e"} +01(e") > {e, €'}
and also

2QX3) {e,€'}oi(e) > {e,0((1,I') + P)} = {e,e'}01(e) > {e/,02(1) + 05(I")} =
= {e,e'}01(e) > ({e', ()} + {€/, 05(I")}) =
= {e,e'}(O1(e) > {, ()} + di(e) > {e, 05(I')}) =
= {e,e'}oi(e) > {', (1)} + {e,e'}On(e) v {e', (1)} =
= (({e,€'}1,0) + P)d1i(e) > (({€', 02(1) }1,0) + P)+
+((0, {e, e'}2) + P)01(e) » ((0, {€, (1) }) + P) =
= (({e,€'}1,0)01(e) > ({€/, 02(1) }1,0) + P)+
+((0,{e,e'}2)0n(e) > (0,{e', 05(1)}) + P) =
= (({e,e'}101(e) > {€, 02(1) }1,0) + P)+
+((0, {e, '}201(e) > {€,05(I") }2) + P) =
= (({e'ee’, 02(01(e) > 1) }1 — (91 (e) > ) {e', D(D1(e) > 1) }1,0) + P)+
+((0,{e'ee’, 05(81(e) > 1) }o — (81 (e) > e){e’,85(1(e) > ') }2) + P)
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= (({¢'e€’, 02(01(e) > ) }1,0) + P) — (Or(e) > €)(({€/, 02(1(e) » 1) }1,0) + P)+
+((0, {e'ee’, 0(01(e) > I') }2) + P) — (91(e) > €)((0, {€’, 05(01 () > ') }2)) + P) =
= {e'ee’, 02(01(e) > 1)} — (Or(e) > €' ){e',02(01(e) > 1) }+
(e, 4(On(e) > 1)) — (1(e) > &) e, DD () > 1)) =
= {e'ec’,05(O1(e) > 1) + B4 (D1 (e) > 1)} —
—(O1(e) > e ){e,02(01(e) > 1) + D5 (Or(e) > 1)} =
= {c’ec’, 0((On(e)>1,01(e) > 1) + P)}—
—(01(e)>e){e,0(01(e) > 1,01 (e) > 1') + P)} =
= {cec’, 0(01(e) > (1) + P))} = (9u(e) > €){e, 0(01(e) > ((1,V) + P))},

for all e,€’,e” € E and ((I,I') + P) € (L1 x Lg)/P.
Theorem 4.1. Given two 2-quasi crossed (E — R)-modules A and A’, we have the coproduct

AT A =(LixL)/P-5E2R

QXyMod

in the category QXoMod/(E — R).

Proof. Let
L —>2 g% _R
J- P |
DBy
and

L— % g " _p
l B i id J/ id
D 5 E . R

be two 2-quasi crossed module morphisms. Then there exists a unique 2-quasi crossed module
morphism

5 P
(L1 % Ly)/ P —2 E ! R
l¢ iid \Lid
D E R
oy o1

where the morphism
¢: (Ll X LQ)/P—>-D7

is given by
o((l1,l2) + P) = a(lr) + B(l2),

ISSN 1027-3190. Vkp. mam. ocypn., 2022, m. 74, Ne 3



2-QUASI CROSSED MODULES OF COMMUTATIVE ALGEBRAS 333

which satisfies the universal property of the coproduct object with the following diagram, and
completes the proof.

9y 01
D—=—F—R
A

8/
(L1>4L2>/P—> Ly ——F —R.

0] 0
(41,3d,id) (i,3d,id)

5. Coproduct of 2-crossed modules. In this section, we construct the coproduct object in the
category XoMod/(E — R) through 2-quasi crossed modules and their functorial relationship with
2-crossed modules.

First of all, let us denote two fixed 2-crossed (E — R)-modules

A=L1 2 B2 R (- -V ExE- L,

a/
A =1L, 2E %R {—,-)2: ExE— L.

Theorem 5.1. Given two 2-crossed (E — R)-modules A and A’, we have the coproduct

ALl A= (a1 )
XoMod QXzMod or
in the category XoMod/(E — R).
Proof. Suppose that we have 2-crossed (EF — R)-modules 4, A’. Considering the inclusion
functor XoMod — QX2Mod given in (1], we naturally have 2-quasi crossed (E — R)-modules A
and A’. Thus, from Theorem we obtain

ATl A =(LixLy)/P-5HE2R (5)
QXoMod
which is the coproduct object in the category QXoMod/(E — R).
Recall from (3] that the functor

( ) QXoMod — XoMod (6)

is left adjoint to the inclusion functor ().

From the categorical point of view, it is a well-known property that left adjoints preserve colimits;
moreover, the coproduct object is defined as a colimit over the diagram that consists of just two objects
[1]. Consequently, the functor ( ). maps coproducts to coproducts.

Then, when we apply the functor (€) to (3)) we get the 2-crossed module

(4 Il A’)* = (21 % LQ)/P>CT g YR (7)

QXsMod cr

that follows from ; which gives the coproduct A 11 A’ in the category XoMod/(E — R).

XoMod
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Remark5.1. In fact, defines the coproduct of (A)%. and (A’)%. in general. However, the

cr cr
inclusion map in our adjunction (3)) provides that: when we have a 2-crossed module and apply the

inclusion functor and ( )}, respectively, we obtain the same 2-crossed module up to isomorphism.

Summarily, A € XsMod —— A € QXsMod 275 (A)2, 2 A € XyMod.
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