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ON THE DIFFERENTIAL PROPERTIES
OF CONTINUOUS FUNCTIONS

PO JTUOEPEHIIIAJIBHI BJIACTHBOCTI
HEIIEPEPBHHX ®YHKIII

‘We introduce and investigate some new differential properties of continuous functions by means of the
geometrical properties of their derivatives.

Bpepeno Ta pociifkeno gesxki nosi jgucepenuiasnui BnacTubocTi nenepepnnux ghynkuii sa
JIOTIOMOI'OI0 MeOMETPHUYNHX BiacTHBocTel Ix moximmx.

1. Preliminaries. It is usual to say that a ,,typical” element of some Baire space has a
certain property if the set of elements that do not possess this property is of the first
Baire category [1]. Then we also say that ,,most” elements have the given property.

It is known, [2], that typical real continuous functions of one real variable have 1o
finite unilateral derivative at any point [1], have no infinite derivative at any point, [3],
but have an infinite unilateral derivative at a set not of the first Baire category [4].

Let I=[0, 1]. Itis known [2] that the space C of all real continuous functions of
one real variable f: I— R, endowed with the usual distance sup, .| f(x)— g(x)]
between f, g € C is a Baire space. The subspace M < C of all increasing functions
in C is also a Baire space.

For fe C, xe I, the set M,(f), right set My(f), and left set My (f) of
derived numbers are defined, respectively, as follows:

M) = (L0,

g>0
M) = [ M),
e>0
M) = [ M)
e>0

where the overbar denotes the closure operators, Mg (x) [ M{(x)] is the set of values

of the increment ratio % forall Ax, Axe (0,e)[Axe(—¢,0)] and M(x) =
X

= M{(x) U M(x).
For any function fe C, let fi be the lower, f; the upper, f the left lower,
fo theleftupper, f;" the right lower, and £ the right upper Dini derivatives of f.

Thus, we have £/, f/ € M.(f), £, fi € MJf), f, e ML(P).

We recall the following known results.

Theorem A [2]. For a typical function fe C, at each point x € I, we have
—oe M. (f) and +eo e M,.(f).

Theorem B [1]. For a typical function fe C, at each point xe (0,1], we
have —es &€ MJ(f) or +ee M{(f) and, at each point x & [0, 1), we have
—oe € My(f) or +o€ My (f).

Theorem C [4]. For a typical function fe M, at each point x € (0, 1], we
have 0e M (f) or +e=e M/(f) and, at each point x € [0, 1), we have Oe€
€ My(f) or +e=€ M.(f).

Theorem C has the following immediate consequences.
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Corollary A [4]. For a typical function fe M, we have M.(f)={0} a. e
Corollary B. For a typical function fe M, we have M.(f) = {} at
densely, uncountably many points x € L.

* Proof. Since f is strictly increasing, there exists f"l, which being monotone, is
differentiable a. e. But f has in no point of / a finite derivative different from zero,
by theorem C. Hence, (f'l) =0 a. e, whence M.(f) = {e} at densely
uncountably many points x & I.

A function fe M is called nonangular if

figfand fr<E

The following result is known [1]:

Theorem D. A typical function in C is nonangular.

It is not hard to show that the same is true for monotonc continuous functions and
that the following theorem holds:

Theorem 1. A typical function in M is nonangular.

There is an analogy between the properties of typical continuous. and typical
monotone increasing functions. This is evident by comparing Banach’s theorem B
with theorem C, and theorem D with Theorem 1.

Now we prove the following theorem.

Theorem 2. For a typical function fe C, we have

- & My(f) N MI(f), +=e M;(f) N M(f)
at most points x € I.
Proof. In [2] it was proved that for any function g € C, we have g7 (x)=g"(x)

and g5 (x)=g; (x) at most points x € I. Now by theorem A above we get the

required result.
2. Main results.

Theorem 3. For a typical function fe M, we have 0e M.(f) N MI(f)

and < e M.(f) N M{(f) atmostpoints x € I.
Proof. Let fe M and

= {x€(0,1): f*(x)=0 and f}(¥)=o}.

For xe (0,1), we set

i) = sp TEERIE i ipy,
0<h<e h
sy = nt LEED=IO e priry.

‘We see that
= {IE(O,I): f_(x)=0 and f+(x)=oo}

Let F be the family of all functions fe M such that A is not residual. Consider fe
€ F and write

= {xe(0,1): £.(x)<1/n and frx)>n}.

Obviously, x, —x and fi(x,)<n imply that f.(x)=<n. Also, from
f(xp)21/n, weget f(x,)21/n.
Thus, for x,, = x, fi(x,)sn or fux,)z1/n (meN), it results that f,(x)<n

or f.(x)<1/n. Hence, I/A, isclosed.
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Since A= ﬂ A, is not residual, the set [/A= U , (I14,) is ot of the first
category. It follows that theset I/A, is not nowhere dcnse for some ne N,
I/A, includes an interval. Let F,, , be the set of all functions fe F, such that I .i' A

includes, for some 1nd;:x n, anmtcrval of length 1/m (m,ne N). Itis easy to show
that each of the sets F,, , is closed.

To prove that M/F,, , is dense, one can approximate any function fe M by
piece wise linear, strictly increasing functions g: I— R. By replacing appropriately

linear restrictions g
b] — R defined so that h(a) =g(a), h(b)=g(b), k(@) =0, hi(a) =, with
max|h—g| ([a,b]) small enough, we find functions approximating f in M/FE, ,

Now it is shown that each F,, , is nowhere dense, i. e., F = U F, , of the first
) m,n

[ a,4] of g (with b—a <1 /m) by increasing functions 4: [a,

_category.
Hence, for a typical fe M, the set A is residual; analogously, the set

= {xe@D: (=0 and fy(x)=o}

is also residual, which shows that A [ B is residual.

Hence, contrary to the measure — thcorct:lcal point of view (Lebesque’s theorem),
we have the following result:

Corollary. A typical functions fe M is not differentiable at most points of I.

For the last two theorems we need the following simple lemma: -

Lemma. Let —o< 0. <P <o If fe C and ff(x)=a and fF(x) =B,
o, B e ML(f) ata dense set of points x, then for each ke (o, ), there are two
dense sets Ay and B such that f; (x) k< fiT(x) for xe Ay and e =
k< fi (x) for xe By

Proof. We prove the existence of Bk Let z € I. Thereis apoint xe [0, 1) as
close to z as we want such that

() = o and £7(x) = B.
‘Let oo <a<k<b<P. Wecan choose x;, x, arbitrarily close to x such that
Mg a, MZ b. Then exists x3€& (x,%) such that
Xy —Xx X — X : .
M:k_ Let y be an absolute maximum of g! [ ], where g(t) =f(t) —
X3 —X
—kt. Obviously, g7 ()20 and g (»)<0, whence fi (y)2k and F 24 <k,
Analogously, the existence of A can be verified.
Theorem 4. For a typical function fe C and any k € R, there exist two dense
sets Ay and B such that

FO) =, £ =f@ =k £) = for xeAp

) == F =@ =k f(x) = for xeB

Proof. By Thecrem 2 and'the lemma with .a = —ee and .b = s, for each k€ R,
there exist densc sets A 2 B, such that

f, (x) f,."(x) for xe A, and fI(x) < k £ fF(x) for x€ B,.
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Now, in view of Theorems B and D, it is obvious that the inequalities of the theorem
hold. :

Theorem 5. For a typical function fe M and any k > 0, there exist two dense
sets Ay and B, such that -

@ =0, £ =
=0, ffx)=f(x)=k fi(x) =c for xe B,

Proof. The argument is analogous to the preceding one and uses Theorem 3. the
lemma with &c =0 and P = e, Theorem C, and Theorem 1.

Conclusion. We note that the Dini derivatives of a typical monotone continuous
function are exactly determined at almost all points, at most points, and some other
dense sets of points.

k,  fH(x) = e for xe Ay,
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