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STABILITY ANALYSIS WITH RESPECT
TO TWO MEASURES OF IMPULSIVE SYSTEMS
UNDER STRUCTURAL PERTURBATIONS

AHAJII3 CTIAKOCTI IMITY JIbCHUX CACTEM
BITHOCHO JBOX MIP ITPY CTPYKTYPHUX 35YPEHHIX

The asymptotic stability with respect to two measures of impulsive systems under structural
perturbations is investigated. Conditions of asymptotic (p,, p)-stability of the system in terms of the
fixed signs of some special matrices are established.

HocniKyeTsCsl aCHMITOTHYHA CTIMKICTL 3a ABOMA MipaMM iMIIYJILCHMX CHCTEM INPH CTPYKTYPIHX
36ypenniax. Beranopneno yMoBH acumn'mmqum (pu, p)-cTifiKocTi cHCTEMH B TepMiHax 3HAKOBH3HA-
4elOoCTi CreLiahbiuX MATPHIb. X .

1. Introduction. The systems of impulsive differential equations under structural
perturbations attract the attention of experts because they model some realistic
phenomcna in mechanics, biology, control theory and other branches of natural
sciences.

The aim of the present paper is to establlsh SufflCIEIlt stability cond1t10ns for
impulsive systems under structural perturbations in terms of two measures.

The paper consist of six sections.

In sections 2—4 the stablllty problem on impulsive systems under structural
perturbations in two measures is introduced and necessary definitions on matrix-valued
Lyapunov functions are presented. Conditions for positive definiteness and
decreascent of matrix-valued functions with respect to a measure are established.

In section 5 results on (pg, p)-stability and asymptotic .(po,p)-stability of
impulsive systems relatively two meastres are ‘established. - :

2. Impulsive systems under structural perturbatlons in general. We consider
an impulsive system with structura] perturbation ([1 3D '

dx

7 Fltx% P, S) t# 'Ek(x),

Ar = L), t3 @, (1)
x(t5) = %, %20, k=12,
where x€R"; te Tg= [tg, ), Tk-E_CI(R",_(C'; oo)), T () < Tp 4 1(X) for all k,
T(x) — +oo uniformly with respectto x € R".

The matrix P = (HT,PZT,...,I*"‘ST)T e R°*4 reﬂeﬁ;ts internal (e.g. parameter) and /

or external perturbations. The class of all admissible _matrices P_ is deno_te.d by P,
- {P:R<P()SK VieR}. @
The matrices P; and P, are completely defined. ‘The set P may be the singleton { 0 }.

The matrix S=S(¢)€ G, describes all structural variations of the system (1) and
will.be called the structural matrix of the system (1), where
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= {S: S=diag[ S, Sy,..., S, ],

Si = [SﬂI,',S;zI",...,SENIf], S‘}'E{O,l}, (3)
Iy = diag{1,1...,1}eR"*™ =12 ..,s

The set of all possible S(#) will be referred to as the structural set of the system (1).
In the system (1) fe F, where

Fui d P I L e C(RxR"xfgg,R"), F=1,2.0N &

Here A is a natural number.

The number N, the families # and (possibly arbitrary) variations of the
superscript k = k(t) overtheset Al={1,2,...,N}, k(t)e N Vte R, describe
(possible arbitrary) structural variations of the whole impulsive system (1) (see [1] and
the bibliography therein). The whole system (1) is structurally invariant if and only if
k(t)=K, ie.the set A is singleton, A{= {K}. The number N is the number of all
possible structures of the whole impulsive system (1). At ¢ = T,(x), k=1, 2,..., the
relations

Ax = x(t+0) — x(t-0), )

hold true, and I,: R" — R" forall k=1, 2,.... We shall say that hypothesis (A)"
holds if the following conditions are satisfied:

H ;. The function f(¢, x, P, S) is continuous in its domain of definition.

H,. The functions Iy(x), £ = 1, 2,... are continuous in their domains of
definition. '

H3 The functions T(x) are continuous and for x € R" the followmg relations
hold

0 < 7(x) < 19(x) <..., klj_l)n“'ck(x) =

uniformly in xe R”,
mf Tes1(X) = sup Ti(x) 20 >0, k=1,2,...
xeR"

H,. For each point (fg, xq) € Ty x R" forall (P,S)e P x G, the solution x(z,
tg, xqg, P, S) =x(t) of system (1) is unique and defined in (g, o).

The solutions x(#) of the impulsive system (1) are piecewise continuous functions
with points of discontinuity of the first type in which they are left continuous, that is at
the moment 7T,(x), when the integral curve of the solution x(t) meets the
hypersurface

or = {(tx)eTyxR": t=m,(x) }. (6)
We shall say that condition B is satisfied if the following condition holds:
B. The integral curve of each solution of system (1) for each pair (P, §) e P X G,
meets each of the hypersurfaces: { G} at most once.

Condition B means that for system (1) for each pair (P,S)e P x G, the
phenomenon called “beating” is not observed.

3. (pg, p)-stability concepts under structural perturbations. For our study of
(1) it is convenient to introduce the fo]lowwg classes of functions [1, 2, 4]:

Definition 1. A function:

(2) abelongs to the class K if a: Ry =R, and a( u) is strictly increasing in
u and a(0)=0;
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(b) g belongs to the class L if q: R, —R.,~ q(u) is strictly decreasing in u
and lim,, _, ., q(u) =0;

() m belongs to the class PC if : R, =R, is continuous on (Tk—l: 'tk]
and lm:lt_”n](r)- ('ck)

(d) ¢ belongs to the class PCK if {: R, >R, C( ,u)e PC for each ue
€ R, and {(t,-)e K foreach te R ;

(e.) p belongs to the class M if p : R' XR" > R,, p(:,x)e PC for each
xe R" and p(t,-)e C(R",R,) for each te R, and inf -, .np(t x) =0.

Definition 2. Suppose that py, p € M. We say that:

- (a) the measure p is continuous with respect to the measure p o if there exist
a ¢ >'0 and a function { € PCK such that p(t,x) < {(t,po(t,x)) when
Po(t; x) <05 _.

(b) the méasure p is uniformly continuous with respect to the measure po if
there exista § >0 and a function ¢ € K such that p (% xj < ¢(po(t, x)) when
polt, x) < 8.

Definition 3. The impulsive system (1) is sma' to be:

(a) (pg; p)-stable on P X G, if and only if for each pair of (P,S)e P X G
and for every tg € R, and every € >0 'there exists a & (ty, €) > 0 such that
p(t, x() < <& for all t >ty when po(rg, xo) < 8, where x(t;tg, xo, P,S) is any
solution of the system (1) for (P,S)e P X G

(b) uniformly (pg, p)-stable on. P X G if and only if the conditions of (a)
hold, and for every €>0 the maximal quantity 8, satisfies the inequality

inf (8,,(t,€): € R,) > 0;

(©) (pg, p)-attracting on P X G, if and only if for each pair of (P,S)e P'X G,
and for every tye€ R,, there exists a A(ty) >0 and for every { > 0 there exists a
(tg, x0, ) € R, such that p(t, x(r)) < for all t21ty+1 when po(tg,xo) <
< A(tp);

(@) uniformly (pg, p )-aﬂmctmg on Px G, if and only zf rhe conditions of (c)
hold with constants A and 7 independent of ty € R;

(e) asymptotlcafly ( Po p)-stable on P x G, if and onfy if the cond:t:ons of (a)
and (c) hold,

(f) uniformly asymptotically (pg, p)-stabfe on P X G, if and only if the
conditions of (a) and (d) hold.

4. Auxiliary lemmas. In order to prove some auxiliary results which are useful in
discussing the (pg, p )-stability under structural perturbations of (1), we need to
employ a matrix-valued Lyapunov function U(r, x) satisfying some properties. Let
U: R, xR" — Rsxr, s> 1, .be a matrix-valued _fuﬁction [5].

Definition 4. We say that the matrix-valued function U(t, x) belongs to the
class Uy if it satisfies the following four conditions: .

(@) U(t,x) is continuous on each set E , = {tx)eR, XR” T_1(x) <t <
< %@}, k=1,2,..., and E=J;_, E};

(b) for each x€ R" and k=1, 2,... the limit relations
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) Lnao-xo) U(t, x) = Ulty —0, xp), - ]__l)r(l}c‘ 3 U(t,x) = Uty +0, xp),
(t,x)eG, (tx)eCpyy

hold and U(ty — 0, xq) = Ul(ty, xy), where (ty, x9) € Gy;

(c) U(t,x) is a locally Lipschitz function with respect to x € G;

(d) U(t+0,x+I(x))<U(t,x) for any pair (t,x)€ G,. The conditions (a) —
(d) in Definition 4 are satisfied componentwise.

Definition 5. A matrix-valued function U : R, XR"— R
said fo be :

(2) p-positive definite if there exists a connected neighborhood N, < R" of the

point x =0, that is invariant in time, a vector \y € R; with y > 0, a constant
8> 0 anda function o € K such that the condition p (t,x) <8 implies the
inequality

SHE

withU e Uy is

alp(t %) < UG Y @
forall (t,x=0, y=0)e R, xA[x Rj;

(b) p-decreascent if for the neighborhood N, < R" and the vector \y indicated
in (a) there exists a constant & 1 > 0 and a function p € K. such that the
condition p(ty, x) < &, implies the inequality

VUG XY < Blps ) ®
forall (¢,x#0, y#0)e R, XA[x R}; o
(c) weakly p-decreascent if for the neighborhood \. < R" and the vector
indicated in (a) there exists a constant & "> 0 and a function b e PCK such
that the condition p(t,x) <8 implies the inequality

vTU@ x)y < b, pt, x)) O

forall (t,x#0, y#0)e R XN X RJ;

(d) asympotically p -decreascent if for the neighborhood N < R" and the
vector  indicated in () there exists a constant A > 0 and a function { e KL
such that the condition p(t,x) <8 implies the inequality

YTUGxY < s )0
forall (t,x#0, y#0)e R, XN X R{;
(e) p-negative definite if (—U(t, x)) is p-positive definite.
Lemma 1. A matrix-valued function U € Uy is p -positive definite if and only
if it can be represented in the form .

ViU )y = vIULE )y + alp(t, %) (10)

forall (t,x#0, y#0)e R, XA X R{, where U,(t, x) is a positive semi-definite

matrix-valued function and o € K. '
Proof. Necessity. Let the matrix-valued function U(t,x) be p-positive definite.

Then, by Definition 5(a) there are a connected neighborhood A = R" of the point x =

0, avector € Ry, aconstant 8> 0, and a function ¢ e K such that in the domain
p(t,x) <8 condition (7) holds.
We introduce the function

VU@t )y = vTUE x)v ~ alp(t, x)), - oan
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which by condition (7), is non-negative (i. e. positive semi-definite). From (11) we
obtain the expression (10) for U(t, x).

Sufficiency. Let correlation (10) hold, where y U, (s, x)y =0 for all (z,x # 0,
w#0)e R, xAx RS, and oo e K. Then it follows from (10) that W U(, x) —
— alp(t, x)) = Y Ut x)y 20 forall (4x#0, y#0)e R, X A(X RS.

Hence condition (7) hold for U(t, x), i.e. U(t,x) is p-positive definite.

Lemma 2. A matrix-valued function U € Uy is p -weakly decreascent (p-
decreascent) if and only if it can be represented in the form

VUG = VU6 2w + Bt p(t ), (12)
(U@ x)y = vTU_(t x)y + v(p(t, x))), (13)
forall (t,x#0, y#0)e R, XA X R, where U_(t,x) is a negative semi-
definite matrix-valued function, 3 € PCK, and ye K.
The proof is analogous to that of Lemma 1.

5. (pg, p)-stability conditions under structural perturbations. In this section
we will use the function

Ve, x ) = y'UGx)Y, we R, w>0. (14)
For (t,x)e (“Ek_l, T } x R" the right-hand upper derivatives of the function (14) are
defined, as usual '
D'V, x,v) = yID'UE x)y, we R, vy >0, (15)
where
DU x) = [DU(H], 4i=12...,8
and .

D*Uy(t, x) = Lim{[ Uy(t+6, x+6f(t, x, P, $)~Uy(t, %) |: 67,8 = 0F k
forall i,j =1,2,...,5 and (P,S)e P X G,. In the following exposition we use the
notation

Sp, H) = {(r,x) S ('l:k_l,‘l:k]xR”:_ p(t, x) < H, H = const > D}, k= 120000

We give some sufficient conditions for the (pg, p)-stability of the system (1) in terms
of a matrix-valued Lyapunov function [5].

Theorem 1. Assume that the following conditions hold:

(i) the measures pg and p are in M, and p is continuous with respect to p;

(ii) there exist a matrix-valued function U(t,x)€e Uc. and a vector y € R{
with > 0 -such that
(a) U(t,x)e Uy is p-positive definite on S(p, H);

(b) the functions D+Uij(t, x) forall i,j=1,2,...,5 are bounded on P X G;
and there exist a matrix G (P, S) and a vector w T = (wll"fz(||x|]),..., wyz(i]xﬂ))
such that the inequality

vID*U(t, x)y < w'G(P, S)w (16)
holds on E (1 S(p, H) X R for eath pair (P,S)e P X G,;
(c) the inequality
WUty (%), + [ () ~ U(te(x), %) Iy < u Buy
holds, where g
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“k = ( llz(Tk(x) Hx“) 3 u.%m('ck(x) Hx”)) k=12,.., uj('} ) € PCK,
and B is a constant s X s malrix;

(iii) there exists an 0 € (0, @) such that

Pl x+ L () <@ if . p(tx) < ag;

(iv) there exists a constant matrix Q € R°*® such that

G(P,S) =0 V(P S)E PXGg

(v) the marrzces Q and B are negarwe semi- def nite or :dennca!ly equal to
zero.

Then the system (1) is:

(a) (pg,p)-stable on P % G if U(t,x) is weakly p-decreascent;’

(b)) uniformly (pg, pg)-stableon P x G, if U(t,x) is py-decreascerit.

_ If the condition.(v) is modified as follows: : .

(v") the matrices Q and B are negative defm:re and U (t, x) is po-
decreasing, then the system (1) is *

‘(c) asymptotically (py, )-srabfe on PX G,

" Proof. We begin with the assertion about (py, p)-stablhty on Px G; of the
Theorem 1. Because the matrix-valued function U(f, x) is weakly pg-decreasing, by
Definition 5 (c) there exists 8" > 0 and a function B € PCK such that the condition

po(t,x) < &
implies )
YU, X)W < Bt po(t, %)) for (%, ) e S(p, H) X Ry.
Condition (ii), (a) of Theorem 1 implies that there exists a functl_on o € K such that
alp(t x)) < WU Xy for (¢ x,y) € S(p, H) X Ry.
Condition (i) of Theorem 1 unphes that there exist 81 >0 anda functlon {e PCK-
class such that

LR S Wpe) )
provided that pg(t, x) < 8. S
Let fpeR, and-ee (0,H ). The assumpnons concemmg the functlons C.Be

€ PCK-class imply that there exist 0 < 84 < 8 and 0 <83 < &y such that :
B(to,82) < o(e) and ((f,83) < H. . - (18)
We take &= mm(&z, 83) and consider.a solution x(t, &g, xg, P, ) of system (1) for
which ; ; e
Polty, xp) < 8. . (19)

By virtue of conditions (i), (b) and (iv) the function m (t) = TU(: x)y sausﬁes the
inequality :

D"'m(t) < wTG(P S)w < wTQw < xM(Q)wTw = Ay (Q) Z W) (]|x]|)

M(Q)w(llx[l) V(P,S) e Px f}s (20)
on the solution x(¥, ty, xg, P, S) of the system (1). Here Ap(Q) <0 is the maximum
eigenvalue of the matrix @, and w € X is a function satisfying the inequality

wlxl) 2 3 willxD)-
j=1
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Since B is a negative semi-definite mdtrix, from conditions (ii), (¢) and (iii) we have
Ay(B) <0 and

m(Ty(x)+0) — m("c L (x)} ur. Buy <

~Mu(B) ity = My (B) 2 WD) S D BEEE 1D, @D
where ; :
—_ 5 +
T (te(x), 1) = 2j=1uj(1k(x)a =), k=12...

Consequently, the function m(¢) decreases for all ¢ > £y. Furthermore, conditions (i)
— (v) of the Theorem 1 imply
a(p(t, x)) = m(t) < mtg+0) < B(to, po(to, x0)) < 0(E)-

Hence it follows that p(z, x(£)) < & for all ¢ =¢, for each pair (P,S)e P X G
provided that (19) is satisfied. Thus, the assertion about (pg, p)-stability on P X G
of Theorem 1 is proved. Assertions about uniformly (pg, p)-stability on P x G, and
about asymptotically (pg, p)-stability on P X G, is proved in a similar way. Since
U(t,x) is a uniformly pg-decreasing function, the parameter & can be chose.n
independent of the value of #;.

Corollary 1. Assume that

(i) the conditions (i), (b) and (ii), (c) in Theorem 1 are rept‘aced by the
conditions

) vID'U@E x)y < 0 on ENS(p, H)X RS for each pair (P,S)e PX G,

©) YU, x+1,(x) - Ut (x), x) Iy < 0,

(ii) the conditions (iv), (v) and (v') is dropped. _

. Then the assertions (a) and (b) of Theorem 1 are preserved.

Corollary 2. Assume that the following conditions hold:

(i) the conditions (i), (ii) (b), (iii) and (iv) of Theorem 1 are satisfied,

(ii) the matrix-valued function U(t,x) is weakly p o-decreascent;

(iii) the inequality

v [ U (x), x + I (x)) — U(Tk(x) X)W < =k ( TU(ty (), x)‘l’)

holds for all” (‘Ek(x), x) € ENS(p, H), where x 0, ):,:;_1 Ap=c0, O €
e C(R,,R,), o(0)=0, ofs)>0 for s>0; ' '

(iv) the matrix Q is negative semi-definite.

Then the system (1) is asymptotically- (pg, p)-stable on P % G. : -

Deﬁnition 6 (see [8])). A measurable function N\ : R, — R, is said to be
mregraflyposzrzve if _[ Ms)ds=eo, for J=J_ [0u,B:], ;< B1 <041 and
[3;—0!. =286>0.

Theorem 2. Assume that the following conditions hold:
(i). the measures p and p are in M, and p is continuous with respect to p o;

(ii) there exist a matrix-valued function U(t,x)€ UO and a vector y € R®, y >
0, .such that -
() U(t, x) is locally szschzrzmn with respect to x on each E, p-positive

definite, and po-decreascent;
®) wIDU@, )y £ -A@)alp(t, x)) on ENS(p, H)x R for each pair (P,S)
€ PX G,, where ae K and A(t) is an integrally positive function;
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(i) WTU(, +0,x+ (%) < WU, x).on E; N S(p, H).

Then the system (1) is uniformly asymptotically ( Po» p)-stable on PX G,.

Proof. The conditions of the Theorem 2 imply that system (1) is uniformly (p,,
p)-stableon Px G, (Theorem 1). Consequently, for £*> 0 there exists & = 87(e”
such that the condition Poltexg) < 5" implies the inequality

' p(tx(t) < e* (22)
forall ¢> to, where x(t) = x(t, to, Xq, P, §) is an arbitrary solution to system (1) for
each pair P, S)e Px G,.

Choose 0 <e<eg*, andlet § = &(g). Theorem 2 will be provcd if we show that
under its conditions there exists T = T(g) > 0 such that

p(t%,x(¢*)) < 8, forsome t*e [ty to+T]. (23)

Assume that this is nof true. Then for the indicated T(g) > 0 there exists a solution
x(t) to system (1) satisfying condition (22) and

p(t,x(#) = 8, for ty <t <ty+T(g). (24)
By condition (ii), (b) of Theorem 2 there exists a function [ € K- class such that
- M)alpo(s x(s))ds < B(8) | (25)

for every solution x(t) of system (1), satisfying condition (23).

Since A(t) is an integrally positive fuuctlon, it follows that there exists 7> 0
such that

Ao +T(e)
3)+1

Nt s-BOEL  gan 26
! ()ds > Ee=1 tos R, (26)
0

Let the solution x(¢) of system (1), satisfy conditions (25) with T(e) satisfing
inequality (26). From (25) and (26) we find

tg+T(e)
B(8) = jx(s)a(po(s, x(s)))ds > [ Ms)ds > B(8)+1 27)
‘o

and thus we are led to a contradiction. This implies that assumption (34) is not true,

and consequently, system (1) is uniformly asymptotically (p,, p)-stable on PX G, .
. 6. Conclusion. We remark that the use of an auxiliary matix-valued function and
two measures in the construction of the direct Lyapunov method creates a flexible _tool
for investigating’ many dynamical properties of the system (1) due to “two

circumstances.
First, functions satisfying the following estimates can be taken as the elements of

the matrix-valued function |[ --(t x)]:
i P (f x;) < Uyt x) < Bupit %),
5 -~ )
where x;e R, 2;‘:1”?_ n, 1—1, e
aijpf(fs x:)p_f(f)x;) < Ut}'(f}x) < Bt}'pf(t: x:')pj(tz xj)! I i;tj’ (28)

where (x;, x;) eRMxR"Y, i,j=1,2,...,s
Here oy, B> 0, (o) ﬁij)_ are constants for i#j, the p,(t x;), _.pj:(-t, x;) are

measures evaluating the change in the subvectors (x; eR",x; e R"J") and

P (fa x) = 2-:=1 pf(t: xt)
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or

p(tx) = ZA p; (r x;) foraposuwe vector A)D
i=1
P(f,x_)_ = 8(91@ xl_):-":ps(ts xs))}

where Ee C(R{, R,), E(w) is hondecrcasing in u and E(0)=0.

“Second, the collection of measures p, and p adequately characterizing the
different dynamical properties of the system (1) is sufficiently broad (see [4, 3, 8]).
Here are some such measures:

(@) p(t,x)=pg(t,x)=]x||, where ||-|| is the Bucliden norm of a vector xe R’ ;

(®) p(t,x)=polt,x)=]lx— xo(t)ll whcre xq(t) is some prescnbed motion of the
system (1);
(©) p(t,x)=py(t,x)=d(x,A), where d(x,A) is the distance from x to the set

A SRY;
(@) p(Lx)=po(tx)=|lx||+ o(), where o(t)e L;
@ ptx)=|lxll;, 1<s<n, and po(t,x)=||x|l;:
(B p(t,x)=d(x,B) and p,(t,x)=d(x,A), whereA =B cR";
(& p(tx)=|x|| and py(t x)=||x]|+d(x M), where M is the k-dimensional

manifold containing the origin;
(h) p(t,x)=py(t,x)=p(x), where p is the k- d1mens1ona] vector norm with i-th

component p;x)=p;(x), p(x): R"— Rf_ and with the properties
pix)20 Vx, € R"f pel R
pix;)=0 VxeR", i=12..,K
Pilx;+y) < pix)+p; ) Yiphe BY: =12 ok
piAxy) = lMpl-(xi). iné B =ik leR.

Itis easy to show that the components p;(x;) of the vector norm p(x) can be used
instead of the measures -p,(t, x) in the estimates (28). Recently [6] stability conditions

for the impulsive system under structural perturbations are studied by usmg measures
(a) together W1th the mah'l.x -valued Lyapunov functions method.

1. Gruji¢ Lj. T, MarryrryukA A., Ribbens-Pavella M Large scale systems stability under structural
‘and singular perturbations. — Berlin: Springer, 1987. — 366 p.

2. Hahn W. Stability of motions. — Berlin: Springer, 1967. — 443 p.

3. Samoilenko A. M., Perestyuk N. A. Impulsive differential equations. — Smgapore World Sci.,
1995.—462 p. . :

4. Leela S. Stability of differential systems with impulsive perturbations in terms of two measures //

Nonlinear Anal. — 1977. — N® 1. - P. 667—- 677.
5. Martynyuk A. A. A matrix-valued Lyapunov function and stability with respect to two measures of

impulsive systems // Rus. Acad. Sci. Dokl. Math. — 1995, — 50, N2 2 — P. 330-334.

6. Martynyuk A. A., Miladzhanov V. G. On stability impulsive systems under structural perturbations
// Electron. Model. — 1994, — 16, N? 1. — P. 3-7.

7. Martynyuk A, A., Stavroulakis I. P, Stability analysis of linear impulsive differential systems under
structural perturbations // Ukr. Math. J. — 1999. — 51, N2 6. — P. 784795,

8. Xinzhi Liu. Stability results for impulsive dlﬂ’erentla] systems with applications to popu]atmn
growth models // Dynamics and Stability Syslems —1994, —N29,-P. 163-174. =

Received 27.10.97

s ISSN 0041-6053. Ykp. meun. Kypi., 1999, m. 51, N 11



	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043

