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GENERALIZED HORSESHOES AND INDECOMPOSABILITY
FOR ONE-DIMENSIONAL CONTINUA"

Y3AT'AJIBHEHI INIIKOBU TA HEPO3KJIA/THICTDH
OJHOBHUMIPHHUX KOHTHHYYMIB

We consider dynamical systems given by a sequence of continuous maps of graphs. We obtain the
results which generalize the known results concerning the existence of indecomposable subcontinua in
terms of the corresponding maps of one-dimensional continua.

Posaruis/iao e JIHHaMigi CHCTEMHM, L0 33JIA10THLCH MOCJJIOBNICTIO HenepepniiHX BiloGpaXenn 1'pa-
his. OJiepiKalO pesyITaTH, HKi Y3araiLIoo s BIOMI PeayJi Tali CTocoBHO iciyBatisa Hepo3K.Jiajl-
HUX NJIKOHTHILYYMIB Yepes Bi/INosijui Bi)IoBpaXKens o/IoBHMIPHIHX KOITHIYYMIB.

1. Introduction. In the recent yers, there is a growing interest in investigating the
connection between the dynamics of a continuous map of a graph and the topological
structure of the inverse limit space using the map as a sole bonding map, as some
attractor of a dynamical system can be shown to be the inverse limit space of a
continuous map of a graph [1], see, e.g., [2 - 6]. In [3] Barge and Martin proved that if
a continuous map of a closed interval has positive topological entropy then the inverse
limit space using f as a sole bonding map contains an indecomposable subcontinuum.
This result has been generalized to a continuous map of a graph by Barge and Diamond
[2] and to a continuous map of a hereditarily decomposable chainable continuum by
the author [5].

A finite graph or a graph is understood as a connected compact one-dimensional
branched manifold. As we know, generally a one-dimensional continuum is the
inverse limit space using a sequence of continuous maps of graphs as bonding maps
[7]. Hence, it is interesting if we could describe the topological structure of the inverse
limit space using a sequence of continuous maps as bonding maps from the
information on the dynamics of the sequence and vice versa. The purpose of this paper
is to try to understand some of the connections.

Let G; be a graph and f;: G,,— G, be continuous for each ie N. We

introduce the notion of the generalized horseshoe for f; . = {f;};=; and show that if
fi.- has a generalized horseshoe then the inverse limit space using f, .. as bonding

maps contains an indecomposable subcontinuum. We also show that if {G;: i€ N}
is finite then the converse of the above statement is true. These results extend some
known results concerning the existence of indecomposable subcontinua through the
dynamics of the bonding maps for one-dimensional continua, for example, the above
mentioned result of Barge and Diamond and the result in [6].

We apply the above result to show the existence of indecomposable subcontinua for
certain continua. We also give a simple proof of the fact that if G isa graphand f: G
— G is topologically mixing, then the inverse limit space using f as the sole bonding
map is indecomposable, and then we use this fact to determine the inverse limit space
of a transitive map of a graph.

The text is organized as follows: in the next section, we introduce necessary notion
and preliminary results; in Section 3, we show that the existence of a generalized
horseshoe implies the existence of an indecomposable subcontinuum in the inverse
limit space and, in Section 4, we discuss the converse of the main result proved in
Section 3. Finally, in Section 5, we give some application of the results obtained in the
previous sections and give a simple proof of some known result and determine the
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GENERALIZED HORSESHOES AND INDECOMPOSABILITY ... 1047

inverse limit space of a transitive map of a graph.
2. Preliminary. Let X, be a compact metric space and f;: X;,,— X; be a

continuous map for each i€ M. Denote {f;};Z; by f) ... and let
X., = im{X;, f:Yo; = {(x, %3, -..): fi{x; ) =x;, foreach i21}.

The space X.. is called the inverse limit space of f, .. and f, . are called bonding
maps. Note that X, is a compact metric space as the subspace of the product space

H::IX,-. If X;=X and f;=f for cach i>1, the space lim{X,f} is called the

inverse limit space of f and f induces a homeomorphism f on lim{X,f} in the
following way: f(x,. Xy, ... )= (f(x)), X, x5, ...) foreach (x}, xs,...) € lim{X,f}

For each pair i,j e N with i+ 1<}, define fij=fit Xip > X; if i+1=j and
fij=fiofis1o o fis : X;= X if i+1<j. Notethat f;_jof;;=f;_, j foreach i 22
and j=2i+ 1.

For each ie M, define =;: X, —X; by m(x)=x; foreach (x|, x;,...)€ X... &;
is an open continuous map and satisfies the relation f;em;, | =m; foreach iz 1.

A continuum is understoodas a non-empty connected compact metric space. A
continuum is said to be decomposable (resp. indecomposable) if it can (resp. cannot)
be written as the union of its two proper subcontinua. We say that a continuum is

hereditarily decomposable (resp. hereditarily indecomposable) if each its
nondegenerate subcontinuum is decomposable (resp. indecomposable). Let [ be a
closed interval. A continuum M is chainable if M is the inverse limit of {f;}/Z,,
where f;: I— [ is continuous for each i = |. For the basic properties of chainable
continua and one-dimensional continua, we refer [7, 8]. Let M be a hereditarily
decomposable chainable continuum. Then there is a continuous map g from M onto
[0, 1] such that, for each re [0, 1], g~ '(+) is a maximal nowhere dense
subcontinuum of M. The map g is called a Kuratowski function for M. g~ '(0) and
g~ '(1) are called end layers of M.

Let G be a graph. We assume that each subset of G which is homeomorphic to
S! contains at least 2 vertices. Thus, cach edge of G is homeomorphic to [0, 1]. Let
f: G— G be a continuous map of a graph G. If there are two closed non-degenerate
intervals J, and J, contained in some edge of G with at most one common point
such that £(J,)Nf(J5) D J; UJ,, then we say that f has a horseshoe. Not let G;

be a graph and let f;: G.,, = G, be continuous for each i € M. We say that f _, has
a generalized horseshoe if there is a strictly increasing sequence {n;};—; of positive

integers, edge E, C G, and nondegenerate closed intervals I(n;, 1), I(n; 2) of E,
with at most one common point such that

I(n, DUI(n,2)C S, (H(ny D) OV, (H(0g 2))

for each i 2 1. If the above I(n, 1) and I(n; 2) are disjoint for each i = I, then we
say that f, ., has a strongly generalized horseshoe. 1t is easy to see that the following
statement is true:

Remark 1. Let G; be a graph and let f;: G;,| — G, be continuous for each
ie N. Then f| .. has a generalized horseshoe if and only if it has a strongly

generalized horseshoe.
3. Generalized horseshoe — indecomposable subcontinuum. In this section, we
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1048 X. YE

show that if f; ., has a generalized horseshoe, then the inverse limit space using {f;}
as bonding maps contains an indecomposable subcontinuum, where G; is a graph and

fi: G, — G; is continuous for each i € N.

The following statements are basic facts in continuum theory [8]. As we shall use
them several times, we represent them as lemmas here.

Lemma 1. Let X; be a compact metric space and let f;: X;,,— X; be

continuous for each i€ N . Then lim{X,, f;} is homeomorphic to lim{X,,
Sy, } for each strictly increasing sequence {n;} of positive integers.

Lemma 2. Let X =1lim{X, f;} with X; being compact metric space and let
fi: Xi1= X; being cintinuous for each i€ N. If A, B are two closed subsets of
X then ANB=1im{C,f;|C;,,}, where C;=m;(A)N\x;(B) foreach ie N.

Lemma 4 is one of the key steps to the proof of the principal results of the section,
namely, Theorem 1. To show it, we need the following statement:

Lemma 3. Ler [; be a closed interval, let f;: |, — I; be continuous for each
ie N, and let X = lim{l, f;} be a hereditarily decomposable chainable

continuum. Assume that A is an end layer of X. Then there exists an iye N
such that m ;(A) contains one and only ony end point of I; for each i Z I,

Furthermore, if A is a subcontinuum of X and j, € M such thar m (A)
contains an end point of I; for i 2j,, then A intersects the union of the end

layers of X.
Proof. Let g: X = [0, 1] be the Kuratowski function for X. Assume that A =

=g~ 1(0).

Let s,€ (0, 1] with 5,>5,,, foreach ie N and lim 5,=0.
R L

Denote A,=g~'([0,s,]) and B,=g '([s, 11). Then X=A4,UB, ie N.
Hence, m;(A,)Um;(B,) =1I; and, consequently, m;(A,) contains an end point of [;

foreach i,ne N.

Let I;=[a, b;], ie N. Forfixed ie N, assume that 7,€ mn;(4,) with 1,€ {a;
b;}, ne N. Then there exists strictly increasing sequence n; of N such that 1, €
e m;(A,) and 1, =1 foreach j e N.

Foreach ke N, as A¢D A, forsome joe N, wehave re m(A, )Cm;(Ap.
Hence, 1€ m;(A;), ke N. Thatis, m;(A) contains one end point of /; because A =

= m:;l Ak‘

Since A is a proper subcontinuum of X, we know that there is iy € M such that
m;(A) contains one and only one end point of /; for i=iy.

We now assume that A is a subcontinuum of X such that m;(A) contains an end
point of I; for i > j, and we show that A intersects the union of the end layers of X.

Otherwise, there are 0 <c<d<1 suchthat ACB=g""([c,d]). We claim that
there is nyge N such that m,(B) does not contain end point of /, for n = ng. In
fact, if m,(B) contains end point of I, for infinitely many of n € N, then =n,(B)N
N(m,(g'(O0NUmr,(g~'(1)))#D for infinitely many n € M (by the first part of
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GENERALIZED HORSESHOES AND INDECOMPOSABILITY ... 1049

the lemma), and, consequently, BN (g~'(0)U g~'(1)) # &, contradicting the fact
that B=g~'([c, d]). Hence, for some nye N, m,(B) does not contain end point of
I, for n 2 ng. This contradicts the assumptionon A for A CB.

Lemma 4. Let I; be a closed interval, let f;: I;,,— I; be continuous for each
ie N, and let X = lim{l, f;} be a hereditarily decomposable chainable
continuum. If A and B are two subcontinua of X such that n;(A)\ n;(B) = @

and m;(A)U n;(B) contains the end points of I; for each i e N, then there are

two nonempty proper subcontinua C, D of X and some ige N with X = CU
UD such that m;(A) C n;(C), n;(B) C n;(D), and n;(C)Nn (D) C I;\(m;(A)U
U, (B)) foreach iz,

Proof. Let g: X — [0, 1] be a Kuratowski function for X. By Lemma 3 and the
assumption, we may assume that AN g~ '(0)# @ and BNg~'(1) = @. Since
n;(A)Nn;(B)=D, ie N, we have A B =@. Hence, it is impossible that there
are 0<c)<cy <1 with g(A)=[0,¢,] and g(B)=[c|, 1]. If thereis O0<c <1
such that g(A)=[0,c] and g(B)=[c, 1] then ANB = (Nyc.g”' (10, 51)) N
N(Npscg™'([b, 1]1)) # B, since g~ '(¢) is a subcontinuum of X and
(Npec g™ (10, 1)) U(Nps g™ ([b, 11)) =g~ " (¢). Hence, g(A)=[0,c] and g(B)
=[d, 1] forsome 0<c<d<1. Let e satisfy c<e<d andlet C=g~'([0, e]), D
=g~ '([e, 1]). Then C, D are subcontinua which we need.

Finally, we state a simple technical lemma which can be checked easily.

Lemma 5. Let G be a graph and let E be an edge of G. Assume that I}, I,
are two non-degenerate closed intervals of E with at most one common point and
Ay, A, are two proper subcontinua of G satisfying that Ay UA, = G and A;
does not contain G for i,j=1,2. Then there is iye {1,2} with A, ,CE and
A N A, has two connected components contained in I and I,, respectively.

With the above preparation, we are ready to show the principal result of the section.
Note that if X is a topological space and A CX, then we use cl(A) to denote the
closure of A. We remark that some special case of Theorem 1 can be proved by using
the notion “indecomposable inverse sequence” introduced in [8, p. 20].

Theorem 1. Let G; be a graph and let f;: G;,. |, — G; be continuous for each
ie M. Assume that M =1im{G,, f;} has a generalized horseshoe. Then M

contains an indecomposable subcontinuum.

Proof. Without loss of generality (by Lemma 1), we may assume that there are
two closed intervals I(i, 1), /(i, 2) contained in some edge E; of G; with at most
one common point satisfying the relations

IGNDUIG2)YCRUG+ 1L, D))NLAUGE+1,2))

foreach i 2 1.
Let

A= U £;0G.DUIG.2)

j=i+l

for each i e N. It is checked that
D £ AG DUIG2)) Chhj (TG + L, DUIG + 1, 2));
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2) A; is a connected subset of G;;

3) fi(A;4)) = A;, consequently f;(cl(A;,)) =cl(A;)

Let M, = lim{cl(A;) f;|cl(A;,,)}. We show that M |, contains an
indecomposable subcontinuum.

Assume the contrary, that is, M| is hereditarily decomposable. Let M; =AU B
with A, B being nonempty proper subcontinua of M,. If there are a strictly
increasing sequence {n;} of positive integers and a sequence {j(i)} of {1,2} such
that either 7, (A) D I(n;j(i)) or n, (B) D I(n; j(i)), then either A =M, or B=
=M,, contradicting the assumption on A and B. Hence, we only have the following
situation: there is iye N and some edge E; of G; such that m;(A) or m;(B) C E;
and w;(A)m;(B) has two connected components which are contained in /(i, 1) and
I(i, 2), respectively, for each i2i; by Lemma 5.

By Lemma 1 and Lemma 5, we may assume that A is a chainable continuum with
m;(A) C E; for each i = i,. Itis easy to see (Lemma 2) that A (B is the union of two
disjoint subcontinua A, B, of A such that m;(A,)U n;(B,) contains end points of
m;(A). According to Lemma 4, there are some i, = i, and two nonempty proper
subcontinua C, D of A with A=CUD suchthat n;(A4,) C n;(C), w;(B))C
C m;(D), and m(C)Nm;(D) Cw(A)\(m;(A)Umn;(B))) foreach i=i,.

Without loss of generality, we assume that m;(BUC) D I(i, 1) for infinitely many
i. Let A=BUC and B’=D. Onthe one hand, A", B’ are two proper subcontinua
of M; with AAUB'=BUCUD=BUA=M, as ANB' =(BNDYU(CND)=#
#A” or B’. On the other hand, as ®;(A") D I(i, 1) for infinitely many i, we have
that A" == M, which is a contradiction. Hence, M| contains an indecomposable

subcontinuum, that is, X contains an indecomposable subcontinuum.
4. Indecomposable subcontinuum — generalized horseshoe. Let G; be a graph

and let f;: G;,,— G; be continuous for each i € N. In this section, we show that if
M =1im { G;, f;} contains an indecomposable subcontinuum and {G;: i e N1 is
finite, then {f;} has a strongly generalized horseshoe. Since M = lim { (M),

flm; . (M)} (Lemma 2), we assume that f;: G;,, — G, is surjective throughout this

section. To start with the following lemma, we need some notion. Let X be a
continuum and let p, g € X. We say that X is irreducible between p and g if
there is no proper subcontinuum of X containing both p and gq.

Lemma 6. Ler G; be a graph and let f;: G;, | — G; be continuous for each

ie N. Assume that M =1im{G,, f} is irreducible between a = (a,, a,,...), b =
=(by, by,...) and J; is a subcontinua of G; such that {a; b;}CJ;, ie N.
Then for each ie N, lim fijUp)= G,
jore
Proof. Assume that there is ipe N such that limf; ;(J;)= G,  does not hold.

That is, there is a strictly increasing subsequence {n;} of positive integers such that

limf,-"’”ju,y) =G # G

Iy Hy

Itis easy to see that {a,, b; } C G; . Choose asubsequence m; of n; such that

limﬁ“+l.mj(‘]m_;) = G"n*‘l'
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GENERALIZED HORSESHOES AND INDECOMPOSABILITY ... 1051

then G = ][mfr“ m( m) f.-,,(][mf+]m (Jm )) f;n( ,+I) {a1"+1’ :“+i} c Gr,,+|
Conlmumg in :hls way, we get a sequence of subcontinua { G/ C G;: i =iy} with
f;(Gj,-i-I} = Gj and j = I'.D.
Let G,-’"_t = f,-"_I(G,-:]), ..., G = £i(G3). Then Ilim {G fIG’,H} is a proper
subcontinuum of M with {a;, b;} C Gj foreach je K which is a contradiction.
We use dy to denote lhe Hauadortt metric induced by the metric d of some
compact metric space.
Lemma 7. Let G; be a graph with metric d;, let f;: G;,,— G, be
continuous for each i€ M, and let M =1im {G,, f;} be indecomposable. If there

are strictly increasing sequence { n;} of positive integers, edge E, C G, , and
12 points x',....x'%e M with n,,:_(,IJJC E,, for ie N, 1<j<12, and if M

is irreducible between each pair from the 12 points, then there is a strongly

generalized horseshoe.

Proof. Without loss of generality, we may assume that x, < ... < x,'if for some

fixed orientation of E, , i€ M (otherwise, we can take a subsequence of {n;} and
relabel ¥, 1<i<12).

Let 1] =[x7)"",x2/] for 1<j<6 and ie N. Let A, ={ I,/ U LY/ 1 1< <
<3} and j; = 1.

By Lemma 6, for fixed 1 <;<6, lim f,, L (l;f_) = G,,J_]. Hence, there exists j, €
i—oo !

e N such that
V1 (fu, o, € w,) < min{d, (o, xithi=1,...,5}
for each 1 <j < 6. This imp]ies that, for each 1 <j £ 3, f“n-” 124' |
N f":‘. s (I,?;i) contains at least one element of AN;.'
We now assume that we have obtained j, for 1 <g </ with the property that, for
1<j<6 and 1<ks<i-1, f. ,. (I, 7’ ]) N L A~ (I¥ ) contains at least one

+1 Jk+1
element of A” . Replacing j, by j, in the abovc pl‘OLCbS, we may get j;,, with

Ty, ony :" ')ﬂ ) (1> ) containing at least one element of A, for cach
1+ di+1 [
1<j<3. Th:s lmpllcs thal there is a sequence {k;} of {1,2,3} such that
2kpyq -1 2k 2k -1 2k,
f"ﬂ'")’fn “"}'aq ) n f"ff'")':u (I"Jrn )= ["J': U I"H

for each /e M. Hence, there is a strongly generalized horseshoe for {f;}.
Theorem 2. Let G; be a graph and let f;: G;, | — G; be continuous for each

ie N. Assume that {G;: ie N} is a finite set. Then there is strongly generalized
horseshoe for { f;} if and only if M =1im{G, f;} contains an indecomposable

subcontinuum.

Proof. The only if part of the theorem is a weak version of Theorem 1. Thus, we
only need to show the if part of the theorem.

By the definition of strongly generalized horseshoe, we may assume that M is an
indecomposable continuum. By Lemma 1, we can further assume that M = lim{ G,

£} with G;=G foreach ie N.
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Let e denote the number of edges of G. From the indecomposability of M [8, p.
204], we may take 12¢ points {y', ¥, ..., '} of M such that M is irreducible
between each pair from the 12¢ points. Moreover, we may assume that 7, (x') #

#7,(¥), 1<i<j<12e. Then, foreach ie N, thereisan edge E; of G such that
E; contains at least 12 points from {n,-(yf}: 1 <j < 12e}. Thus, there exist a strictly
increasing sequence {n;} of positive integers and {x', x%, ..., x'2}C {y', y% ...

.., ¥'2¢} such that rl:"'_(,\J}C E, foreach ie N and 1<;<12. Then Lemma 7
may be applied here and the theorem is proved.

5. An application. In this section, we give an application of Theorem 1. We need
some notation. Let G be a graph and C (G, G) denote the collection of all
continuous maps of G. For f,ge C(G,G), let d(f,g)=sup{|f(x)-—g(x)|: xe
€ G}. d isametricon C(G, G). Recall thatif fe C(G, G) and s= 2, then an s-
horseshoe for f is an interval J contained in some edge of G and a partition D of
J into s subintervals such that the closure of each element of D f— covers J (the
image of the element contains J). A collection J,, J,, ..., J, of pairwise disjoint
subintervals of some edge E which do not contain any endpoint of E is said to be a
strong s-horseshoe for f if each of these intervals f— covers U:=| J;. We have
the following theorem:

Theorem 3. Let f: G — G be a continuous map of a graph G. If f has
positive topological entropy, then there is a neighbourhood U of f in C (G, G)
such that 1im { G, f;} contains an indecomposable subcontinuum for any chosen
fielU izl

To prove the theorem, we need a lemma from [9] (see also [10]).

Lemma 8. Let fe C(G, G) have an s-horseshoe, s 2 4. Then f has a
strong (s — 2)-horseshoe such that any map sufficiently close to f has the same
strong (s —2)-horseshoe.

Proof of Theorem 3. By [10], there is an n € N such that f" has an s-
horseshoe for s 2 4. Hence, by Lemma 8, there is a neighbourhood U’ of f" such
that any map of U’ has a same strong (s — 2)-horseshoe. Now let U be a
neighbourhood of f such that, for any g, g,.....g,€ U, wehave g og,0...0g, €
e U

Let {f;};=; be a sequence chosen from U. Thus, for the sequence {n,} with
n=kn+1, ke {0}UN, L S
implies that lim {G, f;} contains an indecomposable subcontinuum,

To end the paper, we determine the inverse limit space of a transitive map of a
graph. First, we give a simple proof of the following Proposition [11]. We start with
some notion. Let f be a continuous map of a topological space X. f is topologically
transitive if, for each pair of non-empty open subsets U and V of X, thereis n =
=n(U, V) suchthat f"(U)NV# @D and f is topologically mixing if, for each pair of
non-empty open subsets U and V of X, thereis n=n(U, V) such that f';(U)ﬂ V#
# @ for i2n. Wenote that if X is a metric space with metric d and A CX then
diam (A)=sup {d(x,y): x,ye A }.

Proposition 1. Let f be a topologically mixing map of a graph G . Then the
inverse limit space of X =1im{G, f} is indecomposable.

- Proof. Let X=AUB with A, B being subcontinua of X. Let A, =m,(A) and

}e=, has a strongly generalized horseshoe. This
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GENERALIZED HORSESHOES AND INDECOMPOSABILITY ... 1053

B,=mn,(B), ne N. Then, foreach ne N,
max { diam (A,), diam (B,)} = (1/2)diam (G).

Without loss of generality, we assume that diam(A,) 2 (1/2)diam(G) for some
strictly increasing sequence of positive integers and A, = A C G in the Hausdorff

metric. It is easy to see that diam (A) 2 (1/2)diam (G). Hence, there exist iy e N
and a non-empty open subset U of G contained in A, for i 2 ij.

Let xe G andlet V, be a neighborhood of x. Then there exists Me N such
that f"(U)NV,# D for n2 M. Thus, A, NV, # D for i2iy as f7" (A"j} =A,
and UC A”;_ for i<j. Since A, is closed and connected, we conclude that A, =G

for i21iy. The fact that f is surjective implies that A,,= G for each n € N. Hence,
A =X. Thatis, X is indecomposable.

The following lemma was proved in [12]:

Lemma 9. Ler G be a graph and let f: G — G be continuous and transitive.
Then

a) if Per(f)= D then G is homeomorphic to the unit circle and f is an
irrational rotation of G,

b) if Per (f)# @ then there are n € N and subgraphs G,, G,, ..., G, of G
such that

1 G N G; is a finite subset of G for 1<i<jsn;

2) f(G;) = Giyi(modny and f"|G; is topologically mixing 1 <i<n.

We now are ready to prove

Theorem 4. Let G be a graph and let f: G — G be continuous and transitive.

Then
a) if Per(f)=D then lim{G,f} is homeomorphic to the unit circle;
b) if Per(f)# @ then there is n € N such that im{G,f} = :_;1 K;,

where each K; is an indecomposable subcontinuum which is invariant under f"
and K;NK; is a finite subset of im{G,f} if i#].

Proof. a) follows from a) of Lemma 9.

Now we prove b). By b) of Lemma 9, there are n € N and subgraphs G,,
Gs, ..., G, of G such that 1) Gf-ﬂG_,- is a finite subset of G for 1 <i<j<m
2) f(G)) = Giyy(moany and f"| G; is topologically mixing 1 <i<n.

Foreach 1<i<n, let K; = lim{A/, fIA/™'} with A/ =G;_j,i(moany j€ N.
It is checked that 1im {G,f} = |J_, K; and each K; is invariant under f". The
indecomposability of K; follows from Proposition 1.

Let A=sup{G;NG;: 1<i<j<n}. Then A is a finite invariant subset of G.
This implies that each point of A is an eventually periodic point of f, that is, for each

]

point x € A, thereis nge N suchthat f™(x) isa periodic pointof f. Let 1< i<
<j<n and (x,xy ...)€ K;N Kj. Then, for each /e N, x e (Kf-ﬂKJ-}C A. As
flxe)=x, le N, we getthat x;€ A is a periodic point of f for each i€ N.

Thus, Kf-ﬂKJ- is a finite subset of lim{ G, f} foreach i#}j.
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