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SPECTRAL THEORY OF SOME MATRIX DIFFERENTIAL
OPERATORS OF MIXED ORDER

CIIEKTPAJIBHA TEOPIA MATPHYHUX NUOEPEHIIAJILDHHUX
OIIEPATOPIB MIHIAHOI'O IIOPAIKY

We develop spectral and scattering theory for a class of self-adjoint matrix operators of a mixed order.
Posnusacines crexrpainia 'I'Cﬂpi}t Ta 'ICOpiH pOBCi)lllIIH JUIA OJUTONO KJIACY CaMOCNpHAKEIIHX MATPHY-
HUX JiHcpepeniiialibiiiX oneparopis  Millalioro nopsjiKy.

1. Introduction. Our purpose in this work is to study the spectral properties and the
scattering theory of self-adjoint operator matrices of the form

( -A+gq -Vb+v
H=|.. (1
b div +v* h J

acting in the product of Hilbert spaces H = L,(R" ©") x L,(R"), n > 1. Here,
L,(R" €©") is L,-space of vector functions u: R"— €", g is an n x n Hermitian
matrix function, b is a complex function, v isan nx 1 matrix function, h is a real
function. In the recent paper [1] (see also [2]), an abstract approach was proposed to
study the essential spectrum of 2 x 2 block operator matrices acting in a Banach
space. In particular, this approach was proved to be very useful for dealing with the
spectral theory of some mixed order differential operators occurring in
magnetohydrodynamics [1, 3, 4]. On the other hand, the structure of the continuous
spectrum of such matrix differential operators has not been investigated. Here, we give
a sufficiently complete analysis of the self-adjoint operators of form (1). In particular,
we prove (under certain assumptions) the limiting absorption principle and the absence
of singular continuous spectrum. Moreover, we describe the possible points of the
eigenvalue accumulation. In Section 2, we study the essential spectrum of some
general self-adjoint operator matrices of the form

A B
L] j )
B C
In particular, we prove (cf. [2]) that, under some natural assumptions, O, (H) =
= O (Hy), where
(—A 0 3
H = 1 (
0 0
hy = h—|b|% (4)

In Section 3, we present some variant of Mourre's commutator method, which is
suitable for dealing with the operators of form (1). The limiting absorption principle
for the operator H is proved in Section 4. In Section 5, we show that, for the pair H,
Hy, there exist complete wave operators. Note that the case b(x)= 0 was
investigated in [5]. The results of the paper were partially announced in [6].

2. The essential spectrum of some matrix operators. First introduce some
notations. Let T be a linear closed operator in a Hilbert space with the domain D (T).
Denote by p(T) the resolventsetof T, o(T)=T\p(T) is the spectrum of 7. The
sel Op(T)={Ae T | T -A is not a Fredholm operator} is called the essential
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spectrum of T. If T is a self-adjoint operator, then G, (7T) = {A e o(T)|A is not
an isolated eigenvalue of finite multiplicity}. Denote by L(H, K) (S.(H, X)) the
space of bounded (respectively compact) linear operators from H into X, L(H) =
= L(H, H), S.(H)=S.(%H H).

Consider symmetric operator matrices of form (2) acting in the product of Hilbert
spaces H=H,x H,. Suppose that A and C are self-adjoint operators in %, and
H,, respectively. Let B be a densely defined closable operator from #, into #,
such that D(B) is a core of C. We assume that

D(B") D D(|A]"?). Q)

Under these conditions, L is essentially self-adjoint on D(A)x D (B) [7, 8]. We
preserve the notation L for the closure of operator (2). Define

So(A) := B'(A-A)"'B, Ae p(A).
By (5), the closure S(A):= Sy(A) is a bounded operator in 9{2. On D(C), define
T(A) = C=S(A), Arep(A). (6)

Note that Le p(T(A)) forall Ae T\R [9].
Define

FA) := B'(A-M)"'e L9,3), re p(A).
Then, forall A e C\R,

i = [ A=V +(FR) TO-NTFO)  =(F) (T -2) ) .
—(TM) =1 F) (T -2)!
(see [7-9]). Denote

A 0

0 T

Theorem 1. Suppose that, for some (and, hence, for all) A€ C\R,

G(A) :m (C-A)'B (A=A e S.(%, 35). 8)

Then, for all A € (C\R)Np(T(L), the difference of resolvents D (A) := (L -
A (L) =) € SL(H). Inparticular, G (L) = Gpgs (L(1)) = Gsg(A) U
U Gss (T(1)).

Remark 1. It is clear (see (6)) that, for ¢ large enough, ite p(T(W)).

Remark 2. Under the assumptions of Theorem 1, G, (7(1)) does not depend on
p e p(A) (see the proof).

Remark 3. The essential spectrum of 2 X 2 block operator matrices acting in the

product of Banach spaces was studied by F. V. Atkinson, H. Langer, R. Menicken and
A. A. Shkalikov [1, 2]. Their compactness conditions are more restrictive then (8). It

was assumed that A has a compact resolvent or B (A -p)™' € S.(#,, %,). On the
other hand, they did not suppose (5). To weaken (5) and extend Theorem 1 to the case
of Banach spaces is beyond the scope of this paper.

Proof. By (7),

DQ) = [

L(p) = ( J He p(A).

FOY (T -2 FQL) FOO (T =-2)"" ]

-(TW-M)T"FA) (T -2)" =T -2
Consider
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1066 A. Yu. KONSTANTINOV

TM=-2)TFQ) = (C=2)TFQ) + (TR -2 = (-1 )FR =
= GV + (T -A)'SMGA) € S.(H,, H,). )
Analogously, (F(X))'(T(l)-l)" € S.(H,, #,). Furthermore, by (9)
TR -2 -Tw-1)" = TV -V (T -TONTEW-1" =
= A=pW(TMN) -V FONF@) (T -N" e S.(%h, 7).
Hence, D(A) e S..(H).
Let us apply Theorem 1 to operator (1). Denote by Q; the operator of

multiplication by the variable x; acting in L,(R"). Let Q =(Q,,..., Q,) be the

position operator, a(Q) be an operator of multiplication by a s x ¢t matrix function a
acting from L,(R" C') to L,(R" €*) (s,te N). For simplicity, we assume
throughout the paper that (matrix) functions g, b, v are bounded over R". Moreover,
we assume that b is a Lipschitz function and h is continuous on R”". Denote H,| =

=L,(R" C"), H, =L,(R"). Now A is a vector Schrédinger operator in
defined by
A =-A+q(Q), D(A)= D(-A).

B=-Vb(Q)+v(Q) with D(B)= C5'(R") and C =h(Q). Clearly, (5) is satisfied

and H is essentially self-adjoint on (CE(IR"))" X CS"(IR"). Below, we denote by the

; 172
same symbol |-| the norm in R"(ixlz(-’f]z*--*-"ﬁ) » x=(xp .0, «“n)] and the

norm of s Xt (complex) matrices. Here, s, are arbitrary positive integers.
Theorem 2. Suppose that

[v(x)]| +|b(x)|

e -0 as |x|— e (10)

[g(x)] +

Then
(H+i) "= (Hy+i) " e S.(H). (11)

In particular, Ge(H) = Geis(Ho) = [0, %) U hy(R").
Proof. Define the self-adjoint operator H in H=H,xH, by

. -A B
H = ( . J (12)
B C

(H+i)' = (A+i)" e S.(3).
As D(H)= D(H) (q is bounded), it suffices to prove that
(H+i) ' (H-A)H+i) " e S.(H).
As D(H) C D((-8)""?) x D(h(Q)) (see [1]), this follows from the condition

We first prove that

A+ 290 (-A+1)V2 e S_(H)), (13)

which is a consequence of (10). We now apply Theorem 1 to the operator H. By (10)
and (8),
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(A+ f)" — (L) +i) e S.(H),

where L(-1) = diag{-A,T(-1)}, T(-1)=C- B (-A+1)"'B (see (6)). To prove
(11), it suffices to show that

(TED+i)™ = (hg (@ +i)" € S.(H>). (14)
We have

T(-1) = hQ) - (b(Qdiv +v"(Q)(-A+1)"'(-VH(Q) +v(Q)) =
= hy(Q) + BQ(-A+1)"'H(Q) - v (@) (-A+1)"v(Q) -

— b(Q)div (A + 1) 'u(Q) + v*(Q)(-A +1)"'Vb(Q). (15)
As D(T(-1)) = D(h(Q)) = D(hy(Q)), (14) is equivalent to the condition

(W) +i) (T = hy(Q)(H(Q) +i)" € S.(H,),

which follows from (10) and (15).

Remark 4. Clearly, condition (10) can be weakened. We need only (8), (13)
and (14).

3. Conjugate operator method. Here, we give a version of the abstract Mourre's
method [10 — 12], which is suitable for the study of the operators of form (1).

Let M be a self-adjoint operator in a Hilbert space # and L(#). We say that
e (M) if the bounded operator function

T@) = ™ T M (16)

is differentiable in the strong operator topology. Te C : (M) if and only if the

commutator [T, M]:=TM - MT (defined in the form sense) extends to a bounded

operator in H. Analogously, one can define a class C¥(M), k € N. We say that a

self-adjoint operator H € C‘k{M) if, for some (and, hence, for all) ze p(H), the

resolvent (H — z)_1 € Ck(M). Throughout this section, we assume that H € C : (M).
We say that M is conjugate to H on an open set J if there is a compact operator K
and o >0 such that

Ey(D[H,iMEy(J) =2 aEy(J) + K. a7
Here, Ey is the spectral measure of H. If we have estimate (17) with K =0, we say
that M is strictly conjugate to H. We also need the following definition. An operator
Te L(H) isofclass C*O(M) if

|
fiTo =TI dr < . (18)
0

Here, T(t) is defined by (16). Clearly, C*°(M) C C'(M).

Theorem 3. Assume that a self-adjoint operator H € C : (M) and M is
conjugate to H on an open set J C R. Suppose also that, for any ¢ € Cy(R)
and some z € p(H),

O(H)|(H-2)", iM]o(H) e C™(M). (19)

Then H has in J at most a finite number of eigenvalues (counting multiplicities)
and no singular continuous spectrum. Moreover, for any compact Ac J\ o,(H)

and €>0,
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1068 A. Yu. KONSTANTINOV

sup  [(IM|+1)7" 2 H =L - i) M+ 1) < . 20)
AeA uz0

If, in addition, M is strictly conjugate to H on J, then H has no eigenvalues
in J.

Corollary 1. The assertion of Theorem 3 remains true if (19) is replaced by the
assumption

(H-2)'[(H-27", iM|(H-2" e C*°(M), ze p(H). 1)
Proof. We have
QH)[(H -2, iM|o(H) = w(H)Ty(H),

where y(x)=@(x)(x-z)€ Cy(R) and T is the right side of (21). As He clm,

we have y(H) e CI(M) [12]. Therefore, (21) implies (19).
Remark 5. Conditions (19), (21) weaken the condition

[(H-27", M]e C**(m), (22)

which was used in [13, 14]. Note that, in our applications to the operators of form (1),
condition (22) is not satisfied. Moreover, we cannot apply the more general results of
[14]. On the other hand, we can verify (21). Note at last that, under the assumptions of
Theorem 3, the limiting absorption principle (see (20)) can be proved in some Besov
spaces [12, 14].

The proof of Theorem 3 can be obtained following the line of [13, 15]. It will be
given in the later paper of the author devoted to the abstract Mourre theory.

4. Limiting absorption principle. In what follows, we assume that 2 and b are

of class C>. Moreover, we suppose that hg (see (4)) is bounded. We say that a real
number A is a threshold of h if, for any open neighbourhood J of A,
inf {|Ag(x)|| ho(x) € J } = 0. The set of all thresholds of h is denoted by T(hq).

T(hy) is a closed subset of R such that t(hy) D c(hy), where c(hy) =
= {ho(x) [h,;)(x]:O} is the set of critical values of h . Denote P_,- - —iai, Pr=
X
-iV=(P,,..., P,) is amomenum operator. As usual, f(P)= F1r(Q) F, where F
is the Fourier transform. Denote T=1(hy) U {0}. Let J be a bounded open interval
such that its closure J c R\ 1. Let us construct an operator M conjugate to the
unperturbed operator Hy on J. Let 8 € Cy(R) such that 6(x) =1 if x e J.
Suppose that supp 8 <R \ 1. Define

M, ©
)
0 M,
where
My = L(R(P)Q + QR(P). 24)
My = 2(RQP + PRQ). @5)

Fi(x) = 20(1xP)x[2x,  Fy(x) = =8(hy (x)| o (0] g (x),

B =

1/2
|x| = (x|2+...+x,?) , xeR"

Since F; are Lipschitz functions, M is essentially self-adjoint on (S(]R"))” X S[]R”)

i
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[14]. Here, S( ") is the space of temperate test functions. It is easy to see that
[Hg, iM] = 6(H,),
(26)
[[Ho, iM], iM] = 6(Hy)6'(Hy),
so both commutators are bounded in H and H, e Cz(M). Moreover, (26) implies
that M is conjugate to H on J. Introduce the diagonal operator

A (1+|Q|2)”2 0

@n
0 (1+| PP

)lf?,
acting in H=H, x H,.
Theorem 4. Let H, H, be self-adjoint operators defined by (1) and (3),
respectively. Assume that
(i) for some ¢>0,8>0
lg(0)| + |b(0)] + [vx)] < c(+]x)"°,  xe R"

(ii) b, v, h are bounded functions of class C % with bounded first and second

derivatives.
Then
(a) the only possible (finite) accumulation points for the eigenvalues of H are

in T. Any eigenvalue not in t has finite multiplicity. Hy has no eigenvalues in T,
(b) the singular continuous spectrum of H lies in t. In particular, if t© is
countable, then H has no singular continuous spectrum;
(c) for any compact Ac R\ (IUUP(H)) and £>0,
sup H A2 (- —ip) T ATV 2E " < oo, (28)
AeA p=0
Remark 6. 1t is possible to generalize Theorem 4 to some unbounded functions h
[5]. Moreover, in this situation, we can weaken (i). It suffices to assume that, for
some ¢>0 and 8>0,

lq(o)] + ‘—bmgl'j‘f)' < e(1+]x)S.

Proof. Let J be arbitrary bounded interval such that JcR\ 1 and let the
operator M be defined by (23). The direct calculations (see (7)) show that the

commutator [(H—?L)".:‘M’] € L(H) (A e p(H)) and, hence, H € C'(M). Further-
more, by Theorem 2
(H+i)™" = (Hy+i)" e S..(#H).

Hence, M is conjugate to H on J [14]. Now verify condition (21). Since H, €
€ Cz(M), we have (for sufficiently large A)

H+N[(Ho+M 7 iM|(H+M)™ e M) < Ccm).
Therefore, it suffices to show that

H+N ' [(H+M)" = (Hy+0)", iM|(H+M)™" e (). (29)

To simplify calculations, we prove (29) in the case g(x)= 0. The proof in the general
case is of the same type (see also the proof of Theorem 2). Note that, in order to verify

that a symmetric bounded operator S is of class Cm{M), it suffices to show [14]

that, for some function £e C~(IR) with E(r)=0 near zero and E(f) = 1 near
infinity,
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1070 A. Yu. KONSTANTINOV

[learns|rar < e. (30)
1
We have (for sufficiently large A)
R R
(H+A)™" = (Hy +2)™! =( N ”} 31
12 RZZ
where (see (7) and (15))
Ry = (A+0)7'(=VBQ)+v(Q)T(B(Q) div + v'(@)(-A+1)™",  (32)
Ry = =(-A+ 1) (-VH(Q) +v(Q)T, (33)
Ry = (ho(@)+2) (v (@)(-A+1)v(@) - AB(Q)(-A+1) " b(Q) +
+ b(Q) div(-A+1)"'w(Q) - v (Q)(-A+1)'VH(Q))T, (34)
T = (MQ)-(B(Q) div+v (Q)-A+1) ' (-VHQ) +u(@)+1) . (39
We write
(H+A)' =(Hy+A)™" = R, +R,,
where

Ry, 0 0 R
Rl = s RZ = * S
0 Ry Ri> 0

Simple calculations show that

218/2
((]‘L!Ql ) 0 }[R,, iM] e L(H).

0 (-A+1)"12
Here, 8> 0 is defined by (i). In particular, A% [Ry, iM] € L(H) and (see (30))
(R, iM] e C*(M). (36)

On the other hand, condition (30) is not sutisfied for the operator S = [R,, iM].
Therefore, we need to consider the operator

U= (H+N)'[Ry, iM(H+1)" = [Uil U.z)_

12 Uxn
0 T
(RyiM] = | . |
T, O

We have

where T, = i(R;M, — M|R,5). Therefore,
Ujp = RaT((-A+0)7 +R,) + ((-A +0)7+R, |)?F12R;2v
Uy = RaToR; + (FA+0) 7+ Ry T, ((ho @+ + Rzz)»
Uy = ((h @+0"+ Ry )TiaRia + RixTio ((ho @+0" "'Rzz)-

Using (i), it is easy prove that AU e L(H). Therefore (see also (36)),
condition (29) is verified. Now Theorem 4 directly follows from Corollary 1. Note
only that, as D(M) = D(A), estimate (20) implies (28).

5. Wave operators. We see that the unperturbed operator Hj acts in one channel
as the (vector) Laplace operator and in the other channel as a multiplication operator.
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Therefore, we can expect existence and completeness of wave operators for the pair H,
H if the perturbation is of short-range in Q-variable in the first channel and in P-
variable in the other one. In general, R,, (see (31), (34) and (35)) has only Coulomb
decay in P-variable, and we cannot prove the existence of wave operators. On the

other hand, we shall see that if b(x)v(x) € R" (x € JR"), R,, has a decay like

|P|_2. We below prove that, in this situation, the wave operators for the pair H, H
exist and are complete.

Denote by P,.(H) the projector on the (spectrally) absolutely continuous subspace
H,.(H) of the operator H. Let H,.= HP,.(H) be the absolutely continuous part of
H and let o,.(H)=0o(H,.) be the absolutely continuous spectrum of H.

Theorem 5. Suppose that

(i) the assumptions of theorem 4 are true;

(ii) bv: R" > R";

(iii) for some ¢>0 and 8> 0,

Ibf(x)‘ + |v’(x)| < ¢l +|x|)_”2_8. xe R"

(iv) T is a countable set.

Then

(a) 6,.(H)=0,.(Hy);

(b) H has no singular continuous spectrum;

(c) the wave operators

itH e—f'.an P

W' = s—lime e (Hg)

1—rtoe

exist and are complete: Ran(W*) = H,.(H). In particular, operators H,. and
Hy .. are unitary equivalent.
Proof. Assertion (b) was proved in Theorem 4, (a) follows from (c). By

Theorem 4 and Theorem 2, it suffices to show that, for some 8§ >0 and A > 0
(sufficiently large),

Let H be the operator defined by (12). By (i) of Theorem 4, for sufficiently small
8>0,

A ((H+ " = (A+2) A2 e L(H).

Therefore, it is sufficient to show that, for small & >0,

A2 ((H+0) = (Hy +A) AV e L(H). @37
Relation (37) is equivalent to the following conditions (see (31)):
(I +IQ|1)”4+GHR“[1 +IQF2)U4+6!2 e L(H,)), 38)
\1/4+8/2 +
(1+1OR) P Ry A+ )14 & L(3H,, o), (39)
(_A+])1!4+512R22{_A+l}”4+84’2 e L(ﬂz) (40)

Condition (38) easily follows from the assumptions of Theorem 4. Let us prove (39).
)|.|’4+5.|’2‘ Baciot l}_.l]‘ [(1 +|Q|2)]J’4+54’2’ A 1)_1V],

[(=A+1)""4*372 ] (T defined by (35)) are bounded for & (0, 1/2]. Therefore, it
suffices to show that, for some &> 0,

Note that commutators [(] +|0]?
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1072 A. Yu. KONSTANTINOV

Q) (-A+1)4012 e [(3H,, H,),

(—A+ 1}_|V(] +rQ]2)”4+§fZ

A% l)_l(l +|QF2)|!4+81’2

w(Q)(-A+ D42 e L(H,, H,).
These conditions directly follow from (iii). It remains to prove (40). Since the
functions b, v, A are smooth with bounded first and second derivatives, it suffices to

verify that, for some & >0,
(~a+1)""**2(5(0) div(-a+2)v(Q) -
= V(@) (-A+1)'VBQ)(-A+ 1) e L(3,). 1)
Clearly, for 8¢ (0,1/2],
A+DV42[B(Q), div(-A+A)' [p(@)(-A+ D412 e L(3(,)
and
A+ ), (~A+0)V]b@)(-Aa+ )42 e L(3,).

Therefore, (41) follows from (ii).

I am grateful to Professors R. Mennicken and A. Shkalikov for their interest in this
work.
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